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Application of Bayesian Neural Network to Materials Diagnosis and

Life AssessmentT

Hidetoshi FUJII*, Harshad K.D.H BHADEASHIA™* and Kiyoshi NOGI ***

Abstract

The purpose of this paper is to introduce some examples of the application of Bayesian neural
network to materials diagnosis and life assessment. The concept of Bayesian inference is added to
the traditional neural network, enabling its reliable application to problems of materials diagnosis
and life assessment. As an example, the fatigue crack growth rate of nickel base superalloys has
been modeled as a function of some 51 variables, including stress intensity range AK, log AK,
chemical composition, temperature, grain size, heat treatment, frequency, load waveform,
atmosphere, R-ratio, the distinction between short crack growth and long crack growth, sample
thickness and yield strength. The Bayesian method puts error bars on the predicted value of the rate
and allows the significance of each individual factor to be estimated. In addition, it has been
possible to estimate the isolated effect of particular variables such as the grain size, which cannot in

practice be varied independently.
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1. Imtroduction

Any diagnosis and life assessment method for
materials must to some extent depend on a knowledge of
the current state and how that might change with future
service. The modeling of changes is particularly difficult
in the context of engineering materials because the
properties can depend on a vast array of potential
variables. Such a problem is ideal for neural networks
which are capable of realizing a variety of non-linear
relationships of considerable complexity. Although the
training of the network can be very computer intensive,
the trained network can be utilized in real time.

A number of attempts have been made to use a neural
network as a control device in applications such as
electrical appliances and the control of the welding
process. There are, however, difficulties because of
statistical noise. In order to redress this, the authors have
recently introduced the Bayesian neural network in the
field of the materials diagnosis and life assessment". The
method yields error bars which are dependent on the

reliability of the model in specific set of variavles of
interest in the input space.

The method is introduced in the context of some work
on the fatigue life of nickel base superalloys. Superalloys
have been used in acroengine gas turbines for about 50
years. The weight percentage of the superalloys in engines
has increased over the years to 30%. A typical loading
cycle comprises starting up, takeoff and climb, cruising,
landing and shut-down. The highest stresses are
experienced in the bore of the disc early in the flight cycle,
generally while it is in the lower temperature range 200-
300°C. Stress in the rim region is lower, but at a higher
temperature, 500-600°C>,

Thus, the requirements for fatigne crack propagation
are dependent on the environment where the material is
vsed. Quantification of fatigue crack growth rate is
essential in life prediction. The neural network model is
more effective than linear regression analysis. When
combined with sound statistical and metallurgical theory,
the method allows an estimation of fatigue crack growth
rate in nickel base alloys and its dependence on particular
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variables in isolation. The latter may not be possible to
measure in experimental studies where it is rare that a
single quantity can be varied in isolation.

2. Neural Networks with Bayesian Statistics
2.1. Biological neuron

The neural network is literally based on the structure
of a neuron. Figure 1 shows an outline of a biological
neuron. In the structure of a neuron, many synapses. are
connected to one soma. When the sum of the stimuli from
the synapses exceeds a critical value, the soma sends a
pulse to the next soma. For this structure, McCulloch-
Pitts” suggested the first model of a neuron in 1943 using
the following equation:

x(t+1) = 1[2 w,x, () —6,] 1

where w is the strength of the connection of a synapse to
the soma and @is the critical value for the transmission of
a pulse.

1[x] is a step function and can be described as shown
in Fig.2. However, nowadays non-linear functions such as
the sigmoid function is generally used for an artificial
neural network because it is a continuous, non-linear
function and thus easy to use.

/ dendrite

Fig.1 Biological neuron.

—~ ;
1 220 1
lz] = r) = ———
=l {0 x<0 /=) 1+ exp(—2)
step function sigmoid function

Fig.2 Functions for neural network.
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Fig.3 Neural network model used in this study.

2.2 Artificial neural network

The framework used in this study consists of the two
ideas of mneural network modeling and Bayesian
statistics*®. Neural networks are non-linear parallel
computational devices inspired by the structure of the
brain®. )

Figure 3 shows the structure of the neural network
used in our model. Experimental conditions and other
factors such as chemical composition, grain size, heat
treatment and temperature are input from the left hand
side. To predict the output, that is, materials properties,
hidden units were used between the inputs and the output
so that more complex relationships could be expressed.
The transfer function relating the inputs to the i#% hidden
units is given by

, =tanh(> w{x, +67) @)
J

The relationship between the hidden units and the output
is linear:

y=2 wPh+6? ©)

The coefficients w and bias & of these equations are
determined in a such way as to minimize the energy
function, as explained later.

3. The Analysis

The neural network is implemented in a such way as
to minimize the difference between the values in a data
base and the predicted values by the neural network. In
order to make a better neural network, more data are
required. The data base used in this study consists of 1894
combinations of fatigue crack growth and 51 inputs
including the stress intensity factor AK, chemical



composition, temperature, grain size, the condition of
heat treatment, frequency, loading condition, atmosphere,
R-ratio, load waveform, sample thickness and yield stress.
All these data are from the published literature>’>®. The
details of the data used for the predictions is shown the
literature”. Log AK is included as an input factor because
a factor which has a metallurgical meaning helps to find
the optimum relationship between the input and the
output.

Both the input and output variables were first
normalized within the range +0.5 as follows:

_x:x&_o.s

Xy = @
Xnax — Xmin
where xy is the normalized value of x, x,. is the
maximum value and X, is the minimum value of each
variable of the original data. This normalization is not
essential to the neural network approach but allows a
convenient comparison of the influence of individual
input variables on outputs.

Using the normalized data, the cocfficients (weights)
w and bias & were determined in such a way as to
minimize the following energy function®:

M(W) = af p+ BE, ©)
The minimization was implemented using a variable
metric optimizes*”. The gradient of A/(w) was computed
using backpropagation algorithm*”’. The energy function
consists of the error function, £ and regularization Ey .
The error function is the sum squared error as follows:

Ep (W) =%Z(y(x”;w)—t'">2 ©)

where {x”,7"} is the data set. x” represents the inputs and
" the targets. The m is a label of the pair. The error
function Ep, is smallest when the model fits the data well,
i.e., when y(X™,w) is close to ¢”. The coefficients w and
biases @ shown in eqs.(2) and (3) make up the parameter
vector w. A number of regularizers E, ) are added to the
data error. These regularizers favor functions y(x;w) are
smooth functions of x. The simplest regularization
method uses a single regularizer E,=1/2Xw;. Here,
however, we have used a slightly more complicated
regularization method known as the Automatic relevance
determination model*®. Each weight is assigned to a class
¢ depending which neurons it connects. For each input,
all the weights connecting that input to the hidden units
are in a single class. The hidden units' biases are in
another class, and all the weights from the hidden units to
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the outputs are in a final class. £, is defined to the sum

of the squares of the weights in class c”.

E o (W) = %Z w? ™

igc

This additional term favors small values of w and
decreases the tendency of a model to 'overfit' noise in the
data set. The control parameters «, and J together with
the number of hidden units determine the complexity of
the model. These hyperparameters define the assumed
Gaussian noise level ,2 =1/f and the assumed weight
variances oy.)2= 1/0y). @, is the noise level inferred by
the model. The parameter « has the effect of encouraging
the weights to decay. Therefore, a high value of o,
implies that the input parameter concerned explains a
relatively large amount of the variation in the output.
Thus, o, is regarded as a good expression of the
significance of each input though not of the sensitivity of
the output to that input. The wvalues of the
hyperparameters are inferred from the data using the
Bayesian methods of ref42. In this method, the
hyperparameters were initialized to values chosen by the
operator, and the weights were set to small random initial
values (Gaussian with mean 0 and standard deviation 0.3).
The objective function M(w) was minimized to a chosen
tolerance, then the values of the hyperparameters were
updated using a Bayesian approximation given in ref.4.
The M(w) was minimized again, starting from the final
state of the previous optimization, and the
hyperparameters were updated again, repeating 8 times.

As the number of hidden units increases, the
difference (c,) between predicted values and experimental
values decreases monotonically, as shown

0.06¢

‘ [ ]

[ ]
0.04

' |
5 s :
$e8s
eglboe

0.02 L ARLAL
0.00

0 2 4 6 8 10 12 14 16 18 20
Number of hidden units

Fig.4 Variation of o, as a function of number of hidden units.
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. Overfitted function

Real function

Fig.5 Overfitting of function.
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Fig.6 Variation of test error as a function of number of hidden
units.

in Fig.4. More complex relations can be modeled with a
larger number of hidden units. However, the function may
then be overfitted, as shown in Fig.5, because
experimental data always contain errors. In order to
reduce overfitting, the test error (the value of the error
function for a non-trained data set) was measured, using
947 randomly chosen rows of data which were not
included in the training set. Figure 6 shows the change in
the test error as a function of the number of hidden units.
There is a minimum at 17 hidden units. The increase in
the test error over 17 hidden units indicates that the
function may be overfitted. However, the increase is very
small. This indicates that the distribution of data is close
to the assumed Gaussian distribution and Bayesian
modeling worked well. In principle, when the Bayesian
modeling is completely optimized, an infinite number of
hidden units could be used without overfitting™.

Figure 7 shows the level of agreement obtained for
both the training and test data respectively. In this model,
in the test data set, too, the predicted data fit the
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Fig.7 Comparison between predicted and experimental fatigue
crack growth rate.

experimental data very well. This indicates that this
model can predict the fatigue crack growth rate precisely.

4. Significance of Individual Factors

The neural network model allows an estimation of
the “significance” of individual factors in influencing
the fatigue crack growth rate using the value of . A
higher value of o, implies that the input parameter
concerned explains a relatively large amount of the
variation in fatigue crack growth rate in the data set.
Note that it is not an indication of the sensitivity of
fatigue crack growth rate for that input parameter.

As shown in Fig.8, logAK is clearly more strongly
linked to fatigue crack growth rate than AK on its own.
This result coincides with our metallurgical knowledge
including Paris' law*®. Note that these physical
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Fig.8 Significance of individual factors on fatigue crack growth
rate.
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Fig.9 Effect of grain size on fatigue crack growth rate in
Astroloy.

relationships were found only from the data and neural
network analysis. As expected, the fatigue crack growth
rate was found to be sensitive to the minimum gram size,
frequency, loading time and yield stress.

5. Effect of Individual Factors !

The neural network permits the effect of ecach factor
to be examined individually, which may be impossible to
do experimentally.

Figure 9 shows the estimated fatigue crack growth
rate of Astroloy at room temperature; the experimental
data are from the published leterature'*'>, summarized in
Tablel. The error bar is one sigma, or standard deviation,
which means a 67% safety margin. As expected'® the
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Table 1. Main experimental condition inputted for the

prediction of Fig.9.
Grain size 11-13pm 40-50pm
1% step 1377K, 4h, AC 1423K, 4h, AC
heat treatment
2m 923K, 24h, AC 923K, 24h, AC
3¢ 1033K, 8h, AC 1033K, 8h, AC
Temperature 293K 293K
Atmosphere Air Air
R-ratio 0.1 0.1
Frequency 40Hz 40Hz
Yield Strength 1021MPa 954MPa

AC: air cooling

-3

| 1 |
o] a L
1 { |

log da/dN (mm/cycle)
h

-8

T T
4 6 8 10 . R0 40
AK (MPa m£?)

Fig.10 Effect of grain size alone on fatigue crack growth rate.

fatigue crack growth decreases when the grain size
increases. Increasing grain size tends to produce more
heterogeneous slip*”, resulting in a reduction of fatigue
crack growth.

In practice, changes in the grain size are usually
achieved by heat treatment. This was the case for the
experimental data shown in Fig.9. Of course, heat
treatment may affect other features within the material. In
fact, in addition to increasing grain size, the heat
treatment reduced the yield stress from 1021 MPa to 954
MPa. In the neural network model, the grain size alone
can be changed, as shown in Fig.10, without altering any
of the other inputs. Figure 10 is in this respect proof that
an increase in grain size causes a reduction in the fatigue
crack growth rate.

In fact, the fatigue crack growth rate increases when
only the value the yield stress is changed from 1021 MPa
to 954 MPa, as shown in Fig.11. In Paris regime, it is
considered that fatigue behavior is dependent on crack-tip
strain range, or the range of crack opening displacement
Ad per cycle*®.
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YS = 954MPa
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4 6 8 10 . 20
AKX (MPa m?)
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Fig.11 Effect of yield strength alone on fatigue crack growth
rate.

|
>
1

log da/dN (mm/cycle)

4 6 8 10 , 20 40
AK (MPa m?)
Fig.12 Effect of heat treatment alone on fatigue crack growth
rate.
AK?
Ad=Q ®

b4

where Q is constant and o, should be the cyclic yield
stress (though, monotonic o, is often used as an
approximation)®, Accordingly

AKZ
o,E

da
dN

<0 ©)

Thus, when the yield stress is reduced, the fatigue crack
growth should increase. This relation indicates that the
effect of yield stress alone, shown in Fig. 10, is reasonably
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Fig.13 Prediction of effect of addition of 0.1mass% Re.

predicted.

On the other hand, the case where only the heat
treatment is changed, without altering the grain size or
yield strength is illustrated in Fig.12. Thus, any changes
in the crack growth rate should indicate the presence of
other factors affecting fatigue crack growth. There is a
clear change in the near-threshold region which is the
part most sensitive to microstructure.

The effect shown in Fig.12 might therefore be due to
the higher solution treatment reducing coarse y'. Coarse y'
particles have interfaces with the matrix which contain
dislocations'”. Our model does mnot include direct
microstructure because such data have not been reported
frequently. This would be a good area for future work.

One can also predict the fatigue crack rate under
unusual conditions. The effect of adding 0.1 mass% Re to
Astroloy is illustrated in Fig.13. Since the error bars are
large because of the absence of experimental data, it
cannot be concluded that Re really affects fatigue crack
growth. This is a good example of the safety of the
predictions made by the model, in that the error bars are
large when the model is uncertain.

6. Committee Model

A method involving an assessment of predictions
from a variety of models (i.e. a committee of models) has
been proposed to improve the reliability of predictions”
though in the present study a simpler model was used.

The same data can be empirically modeled in many
ways, for example by varying the number of hidden units
or starting value of o,. The variety of models thus
produced can be ranked according to the magnitude of the
test error. The best individual model would then have the
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Fig.14 Comparison of best, second best and third best model.

minimum test error. However, it is possible in principle to
reduce the test error further by using the average of
predictions from a number of models, i.e. a committee of
models.

The test errors of the variety of models produced are
not very different from that of the best model, as can be
seen in Fig.6. This indicates that these models should
lead to a similar predictions. However, for some choice of
input variables the predictions are nevertheless different
because of the limitations in the training data. Figure 14
shows the predictions using the three best models for
Astroloy at room temperature (The main experimental
conditions'*'> are summarized in the first column in
Table 1) When AK is less than 40MPa m'?, the
difference in the predictions is very small, but when AK is
more than 40MPa m'? the difference is large. In the
latter region, the error bars are also large, indicating that
there are insufficient or imprecise data in that region of
input space. The error bars in this case are for 67%
confidence.

A 'committee' model was therefore introduced in
order to see whether more reliable predictions to be made.
The method is as follows:

(1) The individual models are first ranked via their test
CITOT1S.

(2) A committee of N models is then formed by
combining the best N models, where N=1,2.3.....

The mean prediction )_z of the committee is

M=

- 1
==Yy 10
y N 4 i (10)

Il
-
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Fig.15 Change in test error with the number of models in the
committee.

and the associated error oin f is given by

N

o’ =—1—20'.2 +ii(y. -y
N i=1 ! N i=1 '

11

Figure 15 shows the decrease in test error by
combining models. A committee of seven of the best
individual models has a minimum best error. As shown in
this figure, the use of the committee model can reduce the
test error by 3% compared with the best individual
network.

7. Conclusion

(1) As an example of material diagnosis and life
assessment, a neural network in a Bayesian
framework was applied successfully to estimate the
fatigue crack growth rate of nickel base superalloys.
The results are found to be consistent metallurgical
experience.

The model can be used to examine the effects of each
variable in isolation. As a result, it was confirmed
that logAK is more strongly linked to the fatigue
crack growth rate than to AK, as expected from the
Paris Law. Similarly, it was possible to determine
the effect of grain size alone. It was confirmed that
an increase in the grain size should lead to a
decrease in the fatigue crack growth.

The range of the error bar changes in each case
predicted. When the data are noisy or nonuniform,
the error bar indicated tends to be larger. This gives
confidence in the use of the model.
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