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1. Introduction
Lotus- and Gasar- type porous metals had been 

developed by Boiko et al. [1, 2] and Nakajima et al. [3-5] 
and these were expected as innovative engineering 
materials because the directional pore yields various unique 
properties [6]. Laser weldability of the lotus-type porous 
copper [7], iron [8] and magnesium [9] was investigated, 
and the effect of pore direction on laser fusion zone shape 
of the magnesium [10-12] and the copper [11,12] by using 
the results of 3D FEM analysis of temperature distribution
during welding were demonstrated. These have pointed out 
that the relation between direction of the pores and the laser 
irradiated direction appreciably influence weld formation.

In the present paper, we performed 3D FEM analysis of 
temperature distribution during laser welding for the lotus-
type porous iron and compared the fusion zone shape with 
those cross sections obtained by experiments [8]. We also 
estimated the anisotropy of thermal diffusivity inherent in 
the lotus-type porous metals, and the anisotropy of the laser 
absorption coefficient caused by the phenomenon of 
multiple reflections of laser on the wall of pores. 

2. Experimental procedure and results
Table 1 shows properties of the lotus-type porous 

metals used; They are Lotus copper [4-6, 7, 13, 14], Lotus 
magnesium [6, 9, 15-17], and Lotus iron [8, 18]. These 
metals exhibited different thermal conductivity along and 
normal to the directional pores [14]. In order to 
demonstrate the effect of this characteristic on the welding 
phenomena, three different combinations of relationships -
pore direction, applied heat source direction, and welding 
direction- were considered as shown in Fig. 1.

Laser welding was conducted using an Nd:YAG laser 
unit. Laser beam irradiated the specimen surface with spot 

diameter of 0.45 - 1.0 mm at irradiate 
angles of 10-32 as shown in Table 1.
Argon with a flow rate of 25-30 l·min-1

was used during welding. Cross sections 
of the welded samples were observed 
with a digital microscopy.

Figure 2 shows bead appearance 
and cross section of the Lotus iron [8]. 
Fusion zone shape and penetration depth
of the weld bead has little difference for 
three combinations.
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Table 1 Properties of the lotus-type porous metals and laser irradiate conditions.

Fig. 2Bead appearance and cross section of Lotus iron 
welds; laser power of 1.0 kW, laser spot diameter 
of 1.0 mm, and welding speed of 1 m·min-1 [8].

Fig. 1 Schematic views of the lotus-type porous metals 
showing combinations of pore direction, applied 
heat source direction, and welding direction.
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3. Numerical simulation and discussions
3D FEM calculations of temperature distribution of the 

Lotus iron were performed using ABAQUS with user-
defined subroutines. The Lotus iron is modeled as an 
equivalent orthotropic material. Equivalent density, 
equivalent specific heat, and thermal conductivity along and 
normal to the directional pores with temperature 
dependencies are described by the pore volume content 
ratio and the property of non-porous iron (AISI1006) 
[20].

Fusion shape of the weld metal is estimated by the cross 
section of maximum temperature exceeding the melting 

point at half of the x direction. Figure 3 shows maximum 
temperature distributions of the Lotus iron. The absorbable 
laser power is assumed to 0.522 kW as the most similar 
results between the experimental fusion depth and the 
calculated ones for the Combination 2 . Fusion 
zone shape has little difference, and the calculated shapes 
and the experimental ones were similar.

The reason is considered as follows; Equivalent thermal 
diffusivity along and normal to the directional pores are 
described as follows:

eq
//

n , eq 1 1
n (1).

Table 2 shows the equivalent thermal diffusivity for the 
used metals. The difference between these values is small 
for the Lotus iron.

Anisotropy of the laser absorption coefficient caused by 
the phenomenon of multiple reflections of laser on the wall 
of open pores is also considered; Number of multiple 
reflections n is described by:

n int t tan / d (2).
Here, t is sample thickness, is laser irradiated angle, 
d is average pore diameter. Equivalent heat input along 
and normal to the directional pores are described as 
follows:

Qin = Q, Qin
// = [(1- ) + (1-(1- )n ) ]Q= ' Q (3).

Therefore, laser absorption coefficient and ' are 

determined as shown in Table 1. There is very little
difference between and ' .

4. Conclusions
The conclusions of this study are summarized as follows.

(1) Fusion zone shape of the weld bead has little difference
for three combinations. Calculated shapes and the 
experimental ones were similar.

(2) The difference between the equivalent thermal 
diffusivity along and normal to the directional pores is 
small for the Lotus iron.

(3) The little difference of laser absorption coefficient 
and ' for the Lotus iron. 
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Table 2 Estimated thermal properties of material used at room temperature.

Fig. 3 Maximum temperature distributions of Lotus iron in 
the cross section at half of the welding (x) direction; 
absorbable laser power of 0.522 kW, laser spot 
diameter of 1.0 mm, and welding speed of 1 m·min-1.




