Title	Integral formulas for harmonic functions associated with boundaries of a bounded symmetric domain
Author(s)	Inoue, Toru
Citation	Osaka Journal of Mathematics. 1989, 26(3), p. 527-534
Version Type	VoR
URL	https://doi.org/10.18910/6395
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

Osaka University

INTEGRAL FORMULAS FOR HARMONIC FUNCTIONS ASSOCIATED WITH BOUNDARIES OF A BOUNDED SYMMETRIC DOMAIN

Toru INOUE

(Received October 20, 1988)

1. Introduction

In the case of the unit disc, or the upper half-plane in the theory of one complex variable, the Poisson kernel can be expressed in terms of the Cauchy kernel in the following simple way; in either case, denoting the Cauchy and the Poisson kernels by $\mathscr{C}(z, w), \mathscr{P}(z, u)$ respectively

$$
\begin{equation*}
\mathscr{P}(z, u)=\frac{|\mathscr{\varphi}(z, u)|^{2}}{\mathscr{\varphi}(z, z)} \tag{1}
\end{equation*}
$$

It is natural, therefore, to extend this definition whenever the Cauchy kernel is defined. Hua [3] did this for four classical types of bounded symmetric domains and established some of its basic properties. For generalized half-planes this was done by Koranyi [6] who then used the theory of Cayley transform to determine the Cauchy and Poisson kernels for all the bounded symmetric domains (See also [8], [5]).

It is known that the Poisson kernel has another interpretation; it can be regarded as the Jacobian of an automorphism restricted to the boundary. This way of viewing the Poisson kernel was shown to work on arbitrary non-compact Riemannian symmetric spaces by Furstenberg [1]. For any symmetric domain it turns out that these two possible definitions of the Poisson kernel coincide (See [6], though it is not explicitly stated).

Now let D be an irreducible bounded symmetric domain in the canonical Harish-Chandra realization. If r is the rank of D, then the topological boundary ∂D breaks into r boundaries B_{1}, \cdots, B_{r}, such that $\bar{B}_{i} \supset B_{i+1}(1 \leq i \leq r-1)$, and B_{r} is the Silov boundary. As is shown in [4], for each boundary $B_{i}(1 \leq i \leq r)$, there is a natural measure σ_{i} on B_{i} and a Cauchy type kernel function $\mathscr{\varphi}_{i}(z, w)$ such that

$$
f(z)=\int_{B_{i}} \varphi_{i}(z, u) f(u) d \sigma_{i}(u)
$$

whenever f is holomorphic in a neighborhood of \bar{D}, the closure of D. For the

Silov boundary B_{r}, the function $\mathscr{\varphi}_{r}(z, w)$ is the usual Cauchy(-Szego) kernel of D, from which Hua et al. defined the Poisson kernel by (1). Therefore it is natural to define, for each boundary B_{i}, the Poisson type kernel $\mathcal{P}_{i}(z, u)$ by putting

$$
\mathscr{P}_{i}(z, u)=\frac{\left|\varphi_{i}(z, u)\right|^{2}}{\varphi_{i}(z, z)}, \quad z \in D, u \in B_{i} .
$$

In this note we show that the kernel $\mathscr{P}_{i}(z, u)$ represents harmonic functions f in D in terms of the boundary values on B_{i}, i.e.,

$$
f(z)=\int_{B_{i}} \mathscr{P}_{i}(z, u) f(u) d \sigma_{i}(u)
$$

whenever f is harmonic in D and continuous on its closure \bar{D}. We also show that the kernel $\mathscr{P}_{i}(z, u)$ can be regarded as the Jacobian of an automorphism restricted to the boundary B_{i}, i.e., if g is an automorphism of D,

$$
\mathscr{P}_{i}(g \cdot o, u)=\frac{d \sigma_{i}\left(g^{-1} \cdot u\right)}{d \sigma_{i}(u)}
$$

where o is the origin of D.

2. Preliminaries

We begin by reviewing the general background on bounded symmetric domains (cf. [2], [9]). Every bounded symmetric domain D can be written as $D=G / K$, where G is a connected semisimple linear Lie group and K is a maximal compact subgroup of G, such that G operates holomorphically on D. In this note we assume that G is simple, i.e., that D is irreducible. We further assume that the complexification G_{C} of G is simply connected. Let $\mathfrak{g}, \mathfrak{l}$ be the Lie algebras of G, K and $\mathfrak{g}=\mathfrak{p}$ be the corresponding Cartan decomposition. We denote the complexifications of $\mathfrak{g}, \mathfrak{t}, \mathfrak{p}$ by $\mathfrak{g}_{c}, \mathfrak{t}_{c}, \mathfrak{p}_{c}$, respectively. Then \mathfrak{p}_{c} is decomposed into the direct sum of two complex subalgebras $\mathfrak{p}^{+}, \mathfrak{p}^{-}$, which are ($\pm \sqrt{-1}$)-eigenspaces of the complex structure of \mathfrak{p}, respectively, and are abelian subalgebras of \mathfrak{g}_{c} normalized by \mathfrak{f}_{c}. Let $P^{ \pm}, K_{c}$, be the connected subgroups of G_{C} corresponding to $\mathfrak{p}^{ \pm}, \mathfrak{l}_{c}$, respectively. Then the map $\mathfrak{p}^{+} \times K_{C} \times \mathfrak{p}^{-} \rightarrow G_{C}$, given by $\left(X^{+}, k, X^{-}\right) \rightarrow \exp X^{+} \cdot k \cdot \exp X^{-}$, is a holomorphic diffeomorphism onto a dense open subset $P^{+} K_{C} P^{-}$of G_{C}, which contains G. Therefore every element $g \in P^{+} K_{c} P^{-}$can be written in a unique way as

$$
\begin{equation*}
g=\pi_{+}(g) \cdot \pi_{0}(g) \cdot \pi_{-}(g), \quad \pi_{0}(g) \in K_{C}, \pi_{ \pm}(g) \in P^{ \pm} \tag{2}
\end{equation*}
$$

Furthermore, the map $\zeta: P^{+} K_{c} P^{-} \rightarrow \mathfrak{p}^{+}$, given by $\zeta(g)=\log \left(\pi_{+}(g)\right)$ induces a holomorphic diffeomorphism of $D=G / K$ onto $\zeta(G)$, and $\zeta(G)$ is a bounded domain in \mathfrak{p}^{+}. Henceforce we assume that D is a bounded symmetric domain
in \mathfrak{p}^{+}realized in this manner. In this realization the action of G on D is given by

$$
g \cdot z=\zeta(g \exp z), \quad g \in G, z \in D
$$

and extends smoothly to \bar{D}.
Let t be a maximal abelian subalgebra of \mathfrak{t}. Then t_{c}, the complexification of t, is a Cartan subalgebra of \mathfrak{g}_{c}. Let Φ be the root system of \mathfrak{g}_{c} relative to t_{c}. For each $\alpha \in \Phi$, let H_{α}, E_{α} denote the usual basis elements of \mathfrak{g}_{c}. We can choose a linear order in the dual of the real vector space $\sqrt{-1} \mathrm{t}$ such that \mathfrak{p}^{+}is spanned by the root spaces for noncompact positive roots. We let Φ^{+}be the resulting set of positive roots.

We choose a maximal set $\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$ of strongly orthogonal noncompact positive roots as follows. Let γ_{1} be the highest root of Φ and for each j, γ_{j+1} be the highest positive noncompact root that is strongly orthogonal to each of $\left\{\gamma_{1}, \cdots, \gamma_{j}\right\}$. We write H_{j}, E_{j} for $H_{\gamma_{j}}, E_{\gamma_{j}}$. For each $1 \leq i \leq r$, we define the partial Cayley transform $c_{i} \in G_{C}$ by

$$
c_{i}=\prod_{j=1}^{i} \exp \frac{\pi}{4}\left(E_{-j}-E_{j}\right)
$$

Since $c_{i} \in P^{+} K_{C} P^{-}$, we can define $o_{i}=\zeta\left(c_{i}\right)$. Let B_{i} denote the G-orbit of o_{i}. Then

$$
\bar{D}-D=\bigcup_{1 \leq i \leq r} B_{i} \quad \text { (disjoint union) }
$$

Moreover $\bar{B}_{i} \supset B_{i+1}(1 \leq i \leq r-1)$, and B_{r} is the Silov boundary.
Let $C_{i}\left(\subset B_{i}\right)$ be the boundary component of D containing o_{i}, and let $P_{i}=$ $\left\{g \in G ; g \cdot C_{i}=C_{i}\right\}$ and $S_{i}=\left\{g \in G ; g \cdot o_{i}=o_{i}\right\}$. Then P_{i} is a maximal parabolic subgroup of G, and we have a Langlands decomposition $P_{i}=M_{i} A_{i} N_{i}$ such that if we put $L_{i}=M_{i} \cap S_{i}$ then $S_{i}=L_{i} A_{i} N_{i}$ (cf. [4]). Further there exists a semisimple subgroup G_{i} of G such that $C_{i}=G_{i} \cdot o_{i}$.

For each $1 \leq i \leq r$, we define a C^{∞} function ρ_{i} on G as follows. Since $P_{i}=$ $M_{i} A_{i} N_{i}$ is a parabolic subgroup, each $g \in G$ can be uniquely written in the form $g=k \operatorname{man}\left(k \in K, m \in M_{i} \cap \exp \mathfrak{p}, a \in A_{i}, n \in N_{i}\right)$; so put $\rho_{i}(g)=\left(\operatorname{det}\left(\left.\operatorname{Ad}(a)\right|_{n_{i}}\right)\right)^{-1}$, where \mathfrak{n}_{i} is the Lie algebra of N_{i}. Let $d k$ denote the Haar measure on K such that $\int_{K} d k=1$. Then we can normalize various left Haar measures in such a way
that

$$
\begin{equation*}
\int_{G} f(g) d g=\int_{K \times G_{i} \times s_{i}} f\left(k y_{i} s_{i}\right) \rho_{i}\left(s_{i}\right)^{-1} d k d g_{i} d s_{i} \tag{3}
\end{equation*}
$$

for any integrable f on G (cf. [4], p. 89).
Let $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be an enumeration of the set of simple roots for Φ^{+}such
that α_{1} is the unique noncompact simple root for Φ^{+}, and let λ be the linear form on t_{c} such that

$$
2\left(\lambda, \alpha_{1}\right) /\left(\alpha_{1}, \alpha_{1}\right)=1 \quad \text { and } \quad\left(\lambda, \alpha_{j}\right)=0 \quad \text { for } \quad j=2, \cdots, l
$$

where (,) is the inner product induced by Killing form of g_{c}. Then λ is the differential of a holomorphic character of K_{c}.

Let $\mathrm{t}_{\bar{c}}=\sum_{i=1}^{r} \boldsymbol{R} H_{j}$. Then the restrictions of t_{c}-roots to $\mathrm{t}_{\bar{c}}$ are of the form $\pm \gamma_{j}$ (each with multiplicity one), $\pm \frac{1}{2}\left(\gamma_{j} \pm \gamma_{k}\right)(j<k$, each with the same multiplicity $u>0$), $\pm \frac{1}{2} \gamma_{j}$ (each with the same multiplicity $2 v \geq 0$). For each $1 \leq i \leq r$, let (as in [4], p. 91)

$$
\begin{equation*}
p_{i}=\frac{1}{2} u(i-1)+u(r-i)+v+1 \tag{4}
\end{equation*}
$$

and set $\omega_{i}=-p_{i} \lambda$. Note that each p_{i} is an integer or a half-integer. If p_{i} is an integer, ω_{i} is also the differential of a holomorphic character of K_{c}. For the moment we assume that this is the case and let τ_{i} be the corresponding character of K_{C}, i.e., $\tau_{i}=e^{\omega_{i}}$. We define $J_{i}: G \times \bar{D} \rightarrow \boldsymbol{C}^{\times}\left(\boldsymbol{C}^{\times}=\right.$the multiplicative group of non-zero compex numbers) by

$$
J_{i}(g, z)=\boldsymbol{\tau}_{i}\left(\pi_{0}(g \exp z)\right)
$$

where π_{0} is as in (2). Then we have

$$
J_{i}\left(g_{1} g_{2}, z\right)=J_{i}\left(g_{1}, g_{2} \cdot z\right) J_{i}\left(g_{2}, z\right), \quad g_{1}, g_{2} \in G, z \in \bar{D}
$$

Let $\chi: K_{c} \rightarrow \boldsymbol{C}^{\times}$be a holomorphic character of K_{C} defined by

$$
\chi(k)=\operatorname{det}\left(\left.\operatorname{Ad}(k)\right|_{\mathfrak{p}^{+}}\right),
$$

and let $\mathcal{K}: D \times D \rightarrow \boldsymbol{C}^{\times}$be a function defined by

$$
\mathcal{K}(z, w)=\chi\left(\pi_{0}(\exp (-\bar{w}) \exp z)\right)
$$

where $w \rightarrow \bar{w}$ denotes the complex conjugation of g_{c} with respect to \mathfrak{g}. Then, up to a constant factor, $\mathcal{K}(z, w)$ is the Bergman kernel functoin of D (cf. [7], [4]). Let $n=\operatorname{dim}_{C} D, n_{i}=\operatorname{dim}_{C} C_{i}$, and $d_{i}=\operatorname{dim}_{R} B_{i}$, and set

$$
q_{i}=\frac{n-n_{i}}{3 n-n_{i}-d_{i}} .
$$

Since $D \times D$ is simply connected, we can define powers $\mathcal{K}(z, w)^{q_{i}}$ of $\mathcal{K}(z, w)$ with $\mathcal{K}(o, o)^{q_{i}}=1$. We let

$$
\mathscr{\varphi}_{i}(z, w)=\mathcal{K}(z, w)^{q_{i}} .
$$

For a fixed $z \in D, \mathscr{\varphi}_{i}(z, \cdot)$ extends smoothly to \bar{D}. If p_{i} (in (4)) is an integer, then it follows from Lemma 6.24 of [4] that

$$
\mathscr{\varphi}_{i}(z, w)=\tau_{i}\left(\pi_{0}(\exp (-\bar{w}) \exp z)\right),
$$

and we have

$$
\mathscr{S}_{i}(g \cdot z, g \cdot w)=J_{i}(g, z) \mathscr{Y}_{i}(z, w) \overline{J_{i}(g, w)} .
$$

Up to now we have assumed that the p_{i} is an integer. We note that, even if p_{i} is a half-integer, $J_{i}(g, z)^{2}$ is a well defined function on $G \times \bar{D}$, and satisfies the following properties

$$
\begin{gather*}
J_{i}\left(g_{1} g_{2}, z\right)^{2}=J_{i}\left(g_{1}, g_{2} \cdot z\right)^{2} J_{i}\left(g_{2}, z\right)^{2}, \tag{5}\\
\mathscr{\varphi}_{i}(g \cdot z, g \cdot w)^{2}=J_{i}(g, z)^{2} \mathscr{\varphi}_{i}(z, w)^{2} \overline{J_{i}(g, w)^{2}} \tag{6}
\end{gather*}
$$

Let $d \sigma_{i}$ be the quasi-invariant measure on $B_{i}=G / S_{i}$ defined by

$$
\int_{B_{i}} f(u) d \sigma_{i}(u)=\int_{K \times G_{i}}\left|J_{i}\left(k g_{i}, o_{i}\right)^{-2}\right| f\left(k g_{i} \cdot o_{i}\right) d k d g_{i}
$$

for all $f \in C_{c}\left(B_{i}\right)$ (continuous functions with compact support). Then Proposition 4.38 of [4] implies that

$$
\int_{B_{i}} d \sigma_{i}(u)=\int_{K \times G_{i}}\left|J_{i}\left(k g_{i}, o_{i}\right)^{-2}\right| d k d g_{i}<\infty
$$

Therefore we can (and do) normalize the Haar measure $d g_{i}$ on G_{i} so that

$$
\begin{equation*}
\int_{B_{i}} d \sigma_{i}(u)=1 \tag{7}
\end{equation*}
$$

It then follows from formula (6.15) of [4] that

$$
f(z)=\int_{B_{i}} \varphi_{i}(z, u) f(u) d \sigma_{i}(u)
$$

whenever f is holomorphic in the neighborhood of \bar{D}.

3. Integral formulas

As in the introduction we define, for each boundary $B_{i}(1 \leq i \leq r)$, the Poisson type kernel function $\mathscr{P}_{i}(z, u)$ by putting

$$
\mathscr{P}_{i}(z, u)=\frac{\left|\varphi_{i}(z, u)\right|^{2}}{\varphi_{i}(z, z)}, z \in D, u \in B_{i}
$$

Proposition. For $g \in G, u \in B_{i}$, we have

$$
\mathscr{P}_{i}(g \cdot o, u)=\left|J_{i}\left(g^{-1}, u\right)^{-2}\right|=\frac{d \sigma_{i}\left(g^{-1} \cdot u\right)}{d \sigma_{i}(u)}
$$

Proof. Since $\varphi_{i}(o, w)=1$, (5) and (6) imply

$$
\varphi_{i}(g \cdot o, u)^{2}=J_{i}(g, o)^{2} \overline{J_{i}\left(g^{-1}, u\right)^{-2}} .
$$

and

$$
\mathscr{\varphi}_{i}(g \cdot o, g \cdot o)=\left|J_{i}(g, o)^{2}\right|
$$

So the first equality follows from the definition of $\mathscr{P}_{i}(g \cdot o, u)$.
For the second equality, it suffices to show that

$$
\int_{B_{i}} f(g \cdot u) d \sigma_{i}(u)=\int_{B_{i}}\left|J_{i}\left(g^{-1}, u\right)^{-2}\right| f(u) d \sigma_{i}(u)
$$

for $f \in C_{c}\left(B_{i}\right)$. We first note that

$$
\begin{equation*}
\left|J_{i}\left(s_{i}, o_{i}\right)^{-2}\right|=\rho_{i}\left(s_{i}\right) \quad \text { for } \quad s_{i} \in S_{i} ; \tag{8}
\end{equation*}
$$

this follows from the argument in the proof of Lemma 6.30 of [4]. Now for each $f \in C_{c}\left(B_{i}\right)$, we can take $\widetilde{f} \in C_{c}(G)$ such that

$$
f\left(h \cdot o_{i}\right)=\int_{s_{i}} \tilde{f}\left(h s_{i}\right) d s_{i}, \quad h \in G .
$$

Hence

$$
\begin{array}{rl}
\int_{B_{i}} & f(g \cdot u) d \sigma_{i}(u) \\
& =\int_{K \times G_{i}}\left|J_{i}\left(k g_{i}, o_{i}\right)^{-2}\right| f\left(g k g_{i} \cdot o_{i}\right) d k d g_{i} \\
& =\int_{K \times G_{i} \times S_{i}}\left|J_{i}\left(k g_{i} s_{i}, o_{i}\right)^{-2}\right| \tilde{f}\left(g k g_{i} s_{i}\right) \rho_{i}\left(s_{i}\right)^{-1} d k d g_{i} d s_{i} \quad \text { (by (5) and (8)) } \\
& =\int_{G}\left|J_{i}\left(h, o_{i}\right)^{-2}\right| \tilde{f}(g h) d h \quad(b y(3)) \\
& =\int_{G}\left|J_{i}\left(g^{-1} h, o_{i}\right)^{-2}\right| \tilde{f}(h) d h \\
& =\int_{K \times G_{i} \times s_{i}}\left|J_{i}\left(g^{-1} k g_{i} s_{i}, o_{i}\right)^{-2}\right| \tilde{f}\left(k g_{i} s_{i}\right) \rho_{i}\left(s_{i}\right)^{-1} d k d g_{i} d s_{i} \\
& =\int_{K \times G_{i}}\left|J_{i}\left(g^{-1} k g_{i}, o_{i}\right)^{-2}\right| f\left(k g_{i} \cdot o_{i}\right) d k d g_{i} \\
& =\int_{K \times G_{i}}\left|J_{i}\left(g^{-1}, k g_{i} \cdot o_{j}\right)^{-2}\right|\left|J_{i}\left(k g_{i}, o_{i}\right)^{-2}\right| f\left(k g_{i} \cdot o_{i}\right) d k d g_{i} \quad \text { (by (5)) } \\
& =\int_{B_{i}}\left|J_{i}\left(g^{-1}, u\right)^{-2}\right| f(u) d \sigma_{i}(u) .
\end{array}
$$

This proves the Proposition.
Theorem. If f is harmonic on D and continuous on \bar{D}, then for all $z \in D$,

$$
f(z)=\int_{B_{i}} \mathscr{P}_{i}(z, u) f(u) d \sigma_{i}(u) .
$$

Proof. For each $z \in D$, choose $g \in G$ such that $z=g \cdot o$. Then, by the mean value theorem for harmonic functions (cf. [2]), we have

$$
f(z)=\int_{K} f(g k \cdot w) d k
$$

for $w \in D$. The continuity of f on \bar{D} implies that this formula is valid for all $w \in \bar{D}$. Therefore

$$
\begin{aligned}
f(z) & =\int_{B_{i}} f(z) d \sigma_{i}(u) \quad(\text { by }(7)) \\
& =\int_{B_{i}}\left(\int_{K} f(g k \cdot u) d k\right) d \sigma_{i}(u) \\
& =\int_{K}\left(\int_{B_{i}} f(g k \cdot u) d \sigma_{i}(u)\right) d k \\
& \left.=\int_{K}\left(\int_{B_{i}} f(g \cdot u) d \sigma_{i}(u)\right) d k \quad \text { (by } K \text {-invariance of } d \sigma_{i}\right) \\
& =\int_{B_{i}} f(g \cdot u) d \sigma_{i}(u) \\
& =\int_{B_{i}} \mathscr{P}_{i}(z, u) f(u) d \sigma_{i}(u) \quad \text { (by Proposition) } .
\end{aligned}
$$

This finished the proof.
Remark. If $i \neq r$, the maximal compact subgroup K of G does not act transitively on the boundary B_{i}. Therefore Proposition implies that the Poisson type kernel $\mathscr{P}_{i}(z, u)$ is not necessarily harmonic in the variable z.

Example. Let $p \geq q$ and

$$
D=\left\{z \in M_{p, q}(C) ; 1_{q}-z^{*} z>0\right\}
$$

Here $M_{p, q}(\boldsymbol{C})$ refers to all p by q complex matrices, 1_{q} is the identity matrix of size q, z^{*} is the conjugate transpose of z and " >0 " means "is positive definite". Then (cf. [9]) D is the bounded symmetric domain of rank q, and for each $1 \leq i \leq q$, the i-th boundary B_{i} is given by

$$
B_{i}=\left\{z \in M_{p, q}(\boldsymbol{C}) ; 1_{q}-z^{*} z \geq 0 \text { and } \operatorname{rank}\left(1_{q}-z^{*} z\right)=q-i\right\}
$$

On the other hand the Cauchy type kernel function $\mathscr{\varphi}_{i}(z, w)$ associated with the boundary B_{i} is given by (cf. [4], p. 129)

$$
\mathscr{\varphi}_{i}(z, w)=\operatorname{det}\left(1_{q}-w^{*} z\right)^{-(p+q-i)} .
$$

Therefore the Poisson type kernel function $\mathscr{P}_{i}(z, u)$ is given by

$$
\mathscr{P}_{i}(z, u)=\frac{\operatorname{det}\left(1_{q}-z^{*} z\right)^{p+q-i}}{\left|\operatorname{det}\left(1_{q}-u^{*} z\right)\right|^{2(p+q-i}}, \quad(1 \leq i \leq q)
$$

References

[1] H. Furstenberg: A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386.
[2] S. Helgason: Differential Geometry and Symmetric Spaces, Academic press, 1962.
[3] L.K. Hua: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Trans. Math. Monographs, vol. 6, Amer. Math. Soc. 1963.
[4] T. Inoue: Unitary representations and kernel functions associated with boundaries of a bounded symmetric domain, Hiroshima Math. J. 10 (1980), 75-140.
[5] A. Koranyi: A Poisson formula for homogeneous wedge domains, J. Analyse Math. 14 (1965), 275-284.
[6] -: The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of math. 82 (1965), 332-350.
[7] I. Satake: Algebraic Structures of Symmetric Domains, Pub. Math. Soc. Japan 14, Iwanami, Tokyo and Princeton Univ. Press, 1980.
[8] E.M. Stein, G. Weiss and M. Weiss: H^{p}-classes of holomorphic functions in tube domains, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1035-1039.
[9] J.A. Wolf: Fine structure of hermitian symmetric spaces, in "Symmetric spaces", (ed. W. Boothby and G. Weiss), Marcel Dekker, 1972, 271-357.

Department of Mathematics
Fuculty of Science
Yamaguchi University
Yamaguchi 753, Japan

