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1. Introduction

In the case of the unit disc, or the upper half-plane in the theory of one
complex variable, the Poisson kernel can be expressed in terms of the Cauchy
kernel in the following simple way; in either case, denoting the Cauchy and the
Poisson kernels by ¥(z, w), P(z, u) respectively

N EACADIN

1 Pz, u) = ‘ff(z,z—) .

It is natural, therefore, to extend this definition whenever the Cauchy kernel is
defined. Hua [3] did this for four classical types of bounded symmetric domains
and established some of its basic properties. For generalized half-planes this was
done by Korényi [6] who then used the theory of Cayley transform to determine
the Cauchy and Poisson kernels for all the bounded symmetric domains (See
also [8], [5]).

It is known that the Poisson kernel has another interpretation; it can be
regarded as the Jacobian of an automorphism restricted to the boundary. This
way of viewing the Poisson kernel was shown to work on arbitrary non-compact
Riemannian symmetric spaces by Furstenberg [1]. For any symmetric domain
it turns out that these two possible definitions of the Poisson kernel coincide
(See [6], though it is not explicitly stated).

Now let D be an irreducible bounded symmetric domain in the canonical
Harish-Chandra realization. If 7 is the rank of D, then the topological bound-
ary 8D breaks into  boundaries B,, +++, B,, such that B;DB;,,(1<i<r—1), and
B, is the Silov boundary. As is shown in [4], for each boundary B;(1<i<r),
there is a natural measure o; on B; and a Cauchy type kernel function ¥;(z, w)
such that

f@ =, o0 fwdow

whenever f is holomorphic in a neighborhood of D, the closure of D. For the
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Silov boundary B,, the function ¥,(2, w) is the usual Cauchy(-Szegs) kernel of
D, from which Hua et al. defined the Poisson kernel by (1). Therefore it is
natural to define, for each boundary B;, the Poisson type kernel P;(z,u) by
putting

|9 (=, u) |2

Pl ) = g )

, 2€D,ueB;.
In this note we show that the kernel 2,(z, #) represents harmonic functions
fin D in terms of the boundary values on B;, i.e.,

f&) = iz ) f0) do(w)

whenever f is harmonic in D and continuous on its closure D. We also show
that the kernel (2, u) can be regarded as the Jacobian of an automorphism
restricted to the boundary B;, i.e., if g is an automorphism of D,

doi(g ™' u)

g)i(g°0’ u) = do"(u)

b
where o is the origin of D.

2. Preliminaries

We begin by reviewing the general background on bounded symmetric do-
mains (cf. [2], [9]). Every bounded symmetric domain D can be written as
D=G|K, where G is a connected semisimple linear Lie group and K is a max-
imal compact subgroup of G, such that G operates holomorphically on D. In
this note we assume that G is simple, i.e., that D is irreducible. We further
assume that the complexification G; of G is simply connected. Let g, ¥ be the
Lie algebras of G, K and g=%+p be the corresponding Cartan decomposition.
We denote the complexifications of g, £, b by g, £, Pc, respectively. Then P, is
decomposed into the direct sum of two complex subalgebras p*, p~, which are
(4 +/—1)-eigenspaces of the complex structure of p, respectively, and are abelian
subalgebras of g. normalized by .. Let P*, K, be the connected subgroups of
G, corresponding to p*, ., respectively. Then the map p* X K. X p~—>G,, given
by (X*, k, X")—exp X*-k-exp X, is a holomorphic diffeomorphism onto a
dense open subset P*K P~ of G, which contains G. Therefore every element
gEPTK P~ can be written in a unique way as

(2) g =n.(8) 7(8) 7 (8), w(8)EK., mi(g)EP*.

Furthermore, the map ¢: P*K P~ —p*, given by {(g)=log (7.(g)) induces a
holomorphic diffeomorphism of D=G/K onto ¢(G), and ¢(G) is a bounded
domain in p*. Henceforce we assume that D is a bounded symmetric domain



INTEGRAL FormuLAs FOR HarmMoNIC FuNCTIONS 529

in p* realized in this manner. In this realization the action of G on D is given
by

g:2=¢(gexp2), g€G, 2€D,

and extends smoothly to D.

Let t be a maximal abelian subalgebra of . Then t, the complexification
of t, is a Cartan subalgebra of g.. Let ® be the root system of g, relative to t..
For each a €®, let H,, E, denote the usual basis elements of g.. We can choose
a linear order in the dual of the real vector space /1 t such that p* is spanned
by the root spaces for noncompact positive roots. We let @* be the resulting
set of positive roots.

We choose a maximal set {vy,, -+, ,} of strongly orthogonal noncompact
positive roots as follows. Let <, be the highest root of ® and for each j, v;,, be
the highest positive noncompact root that is strongly orthogonal to each of
{vy -+, v;}. We write H;, E; for Hy, Ey,. For each 1<i<r, we define the
partial Cayley transform ¢;=G, by

¢ = Il exp 2 (E~E).
Since ¢;eP*K P~, we can define o,={(c;). Let B; denote the G-orbit of o;.
Then
D—D = U B; (disjoint union).
1Sisr
Moreover B;DB;., (1<i<r—1), and B, is the Silov boundary.

Let C,(CB;) be the boundary component of D containing o;, and let P;=
{geG; g-C;=C;} and S;={g=G; g-0,=0;}. Then P; is a maximal parabolic
subgroup of G, and we have a Langlands decomposition P;=M; A; N; such
that if we put L;=M;NS; then S;=L; A; N; (cf. [4]). Further there exists a
semisimple subgroup G; of G such that C;=G;-o,.

For each 1<i<r, we define a C* function p; on G as follows. Since P;=
M; A; N; is a parabolic subgroup, each g& G can be uniquely written in the form
g=kman (ke K, meM;Nexp p, ac A;,, nEN,); so put p,(g)=(det(Ad(a)ly,))",
where 1, is the Lie algebra of N;. Let dk denote the Haar measure on K such
that S dk=1. Then we can normalize various left Haar measures in such a way
that **

®3) [ f@de={ fhgs)pis) drdgias,

KXG;XS;

for any integrable f on G (cf. [4], p. 89).
Let {a,, -**, @;} be an enumeration of the set of simple roots for ®* such
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that «, is the unique noncompact simple root for ®*, and let A be the linear
form on t, such that

20m a)f(ey ) =1 and (A, ) =0 for j=2, 1

where ( , ) is the inner product induced by Killing form of g;. Then A is the
differential of a holomorphic character of K.

Let tz= 2 R H;. Then the restrictions of t;-roots to iz are of the form
+; (each w1th mult1phc1ty one), w(yjj:ry,,) (j<k, each with the same multi-
plicity #>0), i 7; (each with the same multiplicity 2v>0). For each 1<i<7,

let (as in [4], p. 91)
“) b= U= +u(r—i+o+1,

and set w;=—p; M. Note that each p; is an integer or a half-integer. If p; is
an integer, w; is also the differential of a holomorphic character of K;. For the
moment we assume that this is the case and let 7; be the corresponding character
of K, i.e., 7,=e". We define J;: Gx D— C* (C*=the multiplicative group of
non-zero compex numbers) by

Ji(8, 2) = 7i(mo(g exp 2))
where 7, is as in (2). Then we have
Ji(81802) = Ji(80 &%) Ji(80: %) » £, &EG, 2€D.
Let X: K;— C* be a holomorphic character of K. defined by
X (k) = det(Ad(R)| ),
and let X: DX D—C* be a function defined by
HK(z, w) = X(mo(exp (—W)exp 2))

where w— % denotes the complex conjugation of g, with respect to g. Then,
up to a constant factor, K(2, w) is the Bergman kernel functoin of D (cf. [7], [4]).
Let n=dim¢ D, n;=dim¢ C;, and d;=dimg B;, and set

n—n,
3n—n,—d;

Since DX D is simply connected, we can define powers K(z, w)% of K(2, w)
with K(o, 0)=1. We let

q; =

Fi(z, w) = K(=, w)’.
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For a fixed 2ED, ¥,(2, +) extends smoothly to D. If p; (in (4)) is an integer,
then it follows from Lemma 6.24 of [4] that

¥i(3, w) = 7; (7 (exp (—W) exp 2)),
and we have
Li(g-2 g-w) = Ji(g, 2) &:(z, w) Ji(g w).

Up to now we have assumed that the p; is an integer. We note that, even if
p; is a half-integer, Ji(g, 2)? is a well defined function on Gx D, and satisfies
the following properties

) Ji(8182 2" = Ji(& £2°2)" Ji (82 2)°,
(6) Ki(g-2 8 w) = Ji(& ) &i(2, w)* Ji(g w)*.
Let do; be the quasi-invariant measure on B;=G/S; defined by
| fwydoiw) = 17:(kgi 002 f(kgi-o) dh e,
B; K XG;

for all fe C,(B;) (continuous functions with compact support). Then Proposi-
tion 4.38 of [4] implies that

[ dowy={ 17.(kg 00" dhdgi<oo.
B; K XG;
Therefore we can (and do) normalize the Haar measure dg; on G; so that
(7) Li doyu)=1.
It then follows from formula (6.15) of [4] that
f@ =1 i) f0) do )
whenever f is holomorphic in the neighborhood of D .

3. Integral formulas

As in the introduction we define, for each boundary B;(1<7<r), the Poisson
type kernel function P(2, ) by putting

Pi(z, u) = M, zeD, uEB,;.
.(f;(z ,z)

Proposition. For gG, ucB;, we have

Pilgro,u) = | Ji(g™ u)?| = d%iff(—u)u)
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Proof. Since ¥;(0, w)=1, (5) and (6) imply
i(g-0,w)’ = Ji(g, o Ji(g™H w)".
and
Fi(g-0,8-0) = | Ji(& o)l .

So the first equality follows from the definition of P;(g-o0, u).
For the second equality, it suffices to show that

J, few deswy = {1767 01 f0) do )
for feC(B;). We first note that
8) | Ji(s:,0)) 72| = pi(s;) for s,€8;;

this follows from the argument in the proof of Lemma 6.30 of [4].

each f& C,(B;), we can take f& C,(G) such that
f(h0) = Ss‘ Flhs) ds;, heG .
Hence
[, (g dotw)
= { 2o, 1Jilh 07| f(ghei-0) b dg;

I

KXG;xS;

| Ji(h, 0)7| f(gh) dh  (by (3))

G

S
5
[, 17 00721 70y an
Jevcn
Jec
b

l

I

o

|.]i(g_1 kg;si, 0,)7%| f(kgisi) pi(s:)~" dk dg; ds;

IJ(g tkg;, 0;)7%| f(kgi-o;) dk dg;

Kx

K x

-, 0 £ dor ).

This proves the Proposition.

Now for

Ij (kg,s,, x) 2| f(gkg:s ) Px(s) i dk dg: dsi (by (5) and (8))

N Ji(g™ Rgir0,)7| | Ji(Rgi» 0:)72| f(kgi0:) dk dg; (by (5))

Theorem. If f is harmonic on D and continuous on D, then for all z €D,

S =, @itz ) ) dov(w)
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Proof. For each z&D, choose g&G such that z=g-0. Then, by the mean
value theorem for harmonic functions (cf. [2]), we have

f@) = |_figh-w) dk

for weD. The continuity of f on D implies that this formula is valid for all
weD. Therefore

@)=, f@dnw) by 7Y

(f, F(gku) ar) do(w)

( SB.f(gk-u) do;(u)) dk

o\ SB f(g-u)do;(w)) dk (by K-invariance of do;)
f(g-u)do;(u)

P,(2,u) f(u) do;(u) (by Proposition) .

B;

B;
K

I

I

B;

S
S
$
S
|

This finished the proof.

RemMARK. If i7, the maximal compact subgroup K of G does not act
transitively on the boundary B;. 'Therefore Proposition implies that the Poisson
type kernel P;(2,u) is not necessarily harmonic in the variable z.

ExampLE. Let p>¢gand
D = {zeM, (C); 1,—z*2>0} .

Here M, (C) refers to all p by ¢ complex matrices, 1, is the identity matrix
of size g, * is the conjugate transpose of z and ‘“>>0"" means ““is positive definite”.
Then (cf. [9]) D is the bounded symmetric domain of rank g, and for each
1<i<gq, the i-th boundary B; is given by

B, = {zeM, ,(C); 1,—2*2>0 and rank(l,—2*2)=q—i}.
On the other hand the Cauchy type kernel function ¥;(z, w) associated with
the boundary B; is given by (cf. [4], p. 129)
9:(z, w) = det(1,—w*z)~?*re=i
Therefore the Poisson type kernel function P,(z, «) is given by

det(1,—z*z)?*e?
|det (1,—u*z)|2¢+a-9’

Pi(z,u) = (1<i<g).
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