

Title	Finite groups which act freely on spheres
Author(s)	Nakaoka, Minoru
Citation	Osaka Journal of Mathematics. 1974, 11(2), p. 323-330
Version Type	VoR
URL	https://doi.org/10.18910/6406
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nakaoka, M.
Osaka J. Math.
11 (1974), 323-330

FINITE GROUPS WHICH ACT FREELY ON SPHERES

MINORU NAKAOKA

(Received October 16, 1973)
(Revised December 25, 1973)

We will study the problem: Let G be a finite group which acts freely (and topologically) on the sphere S^{2t-1} . Can G act freely and orthogonally on S^{2t-1} ?

The result of T. Petrie [5] shows that the answer is no for t odd prime. As is easily seen, the answer is yes for $t=1$. The problem for $t=2$ is unsolved at present (see [2], [3], [4]). In this note it will be shown that the answer is yes for $t=4$, and also for $t=2^\nu$ ($\nu \geqq 3$) if G is solvable.

1. Preliminary theorems

By J. Milnor [3] we have

(1.1) *If G is a group which acts freely on S^n , then G satisfies the following properties:*

- i) *Any element of order 2 in G belongs to the center of G .*
- ii) *G has at most one element of order 2.*

The following (1.2) and (1.3) are shown in [1].

(1.2) *If G acts freely on S^n , the cohomology of G has period $n+1$.*

(1.3) *For a finite group G , the following two conditions are equivalent:*

- i) *G has periodic cohomology.*
- ii) *Every abelian subgroup of G is cyclic.*

A complete classification of finite groups satisfying the condition ii) of (1.3) is known by H. Zassenhaus [11] and M. Suzuki [6]. For future reference we reproduce it below after J. Wolf [10] and C.B. Thomas-C.T.C. Wall [8].

(1.4) *Let G be a finite group satisfying the condition ii) of (1.3). If G is solvable, it is one of the following groups:*

Type	Generators	Relations	Conditions	Order
I	A, B	$A^m=B^n=1$, $BAB^{-1}=A^r$	$m \geq 1, n \geq 1$, $(n(r-1), m)=1$, $r^n \equiv 1 \pmod{m}$	mn
II	A, B, R	As in I; also $R^2=B^{n/2}$, $RAR^{-1}=A^l$, $RBR^{-1}=B^k$	As in I; also $l^2 \equiv r^{k-1} \equiv 1 \pmod{m}$, $n=2^u v, u \geq 2$, $k \equiv -1 \pmod{2^u}$, $k^2 \equiv 1 \pmod{n}$	$2mn$
III	A, B, P, Q	As in I; also $P^4=1, P^2=Q^2=(PQ)^2$, $AP=PA, AQ=QA$, $BPB^{-1}=Q$, $BQB^{-1}=PQ$	As in I; also $n \equiv 1 \pmod{2}$, $n \equiv 0 \pmod{3}$	$8mn$
IV	A, B, P, Q, R	As in III; also $R^2=P^2, RPR^{-1}=QP$, $RQR^{-1}=Q^{-1}$, $RAR^{-1}=A^l$, $RBR^{-1}=B^k$	As in III; also $k^2 \equiv 1 \pmod{n}$, $k \equiv -1 \pmod{3}$, $r^{k-1} \equiv l^2 \equiv 1 \pmod{m}$	$16mn$

If G is non-solvable, it is one of the following groups.

V. $G=K \times SL(2, p)$, where p is a prime ≥ 5 , and K is a group of type I and order prime to $|SL(2, p)|=p(p^2-1)$.

VI. G is generated by a group of type V and an element S such that

$$S^2 = -1 \in SL(2, p), \quad SAS^{-1} = A^{-1}, \\ SBS^{-1} = B, \quad SLS^{-1} = \theta(L) \quad (L \in SL(2, p)).$$

Here, $SL(2, p)$ denotes the multiplicative group of 2×2 matrices of determinant 1 with entries in the field \mathbb{Z}_p , and θ is an automorphism of $SL(2, p)$ given by

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ -\omega & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & \omega^{-1} \\ -\omega & 0 \end{pmatrix},$$

ω being a generator of the multiplicative group in \mathbb{Z}_p .

Let G be any finite group, and p a prime. Then the p -period of G is defined to be the least positive integer q such that the Tate cohomology groups $\hat{H}^i(G; A)$ and $\hat{H}^{i+q}(G; A)$ have isomorphic p -primary components for all i and all A . The period of G is the least common multiple of all the p -periods. R.G. Swan [7] gave a method to calculate the p -period as follows:

(1.5) (i) If a 2-Sylow subgroup of a finite group G is cyclic, the 2-period of G is 2. If a 2-Sylow subgroup of G is a generalized quaternion group, the 2-period of G is 4.

(ii) Suppose p is odd and a p -Sylow subgroup G_p of G is cyclic. Let Φ_p denote the group of automorphisms of G_p induced by inner automorphisms of G . Then the p -period of G is $2|\Phi_p|$.

If $N(G_p)$, $C(G_p)$ denote the normalizer and centralizer of G_p , it holds $\Phi_p \cong N(G_p)/C(G_p)$. From this we have the following (see [8]).

(1.6) If a 3-Sylow subgroup of G is cyclic, the 3-period of G divides 4.

We shall next consider free orthogonal actions on S^n . A representation ρ of a group G is said to be *fixed point free* if $1 \neq g \in G$ implies that $\rho(g)$ does not have +1 for an eigenvalue.

With the notations of (1.4), let d denote the order of r in the multiplicative group of residues modulo m of integers prime to m . Modifying the work of G. Vincent [9], J. Wolf proves the following (1.7), (1.8) in [10].

(1.7) For a finite group G , the following two conditions are equivalent:

- i) G has a fixed point free complex representation.
- ii) G is of type I, II, III, IV, V for $p=5$, or VI for $p=5$, with the additional condition: n/d is divisible by every prime divisor of d .

(1.8) Let G be a finite group satisfying the conditions in (1.7). Then each fixed point free, irreducible complex representation of G has the degree $\delta(G)$ which is given as follows:

Type	I	II	III	IV	V	VI
$\delta(G)$	d	d or $2d$	$2d$	$2d$ or $4d$	$2d$	$4d$

If $|G| > 2$, G acts freely and orthogonally on S^{2q-1} if and only if q is divisible by $\delta(G)$.

REMARK. Wolf states in 7.2.18 of [10] that $\delta(G)=2d$ for G of type II. This mistake is revised in the errata sheet of [10].

2. Finite groups acting freely on S^{2^v-1}

We shall consider the following conditions for a finite group G :

(A_v) G can act freely and orthogonally on S^{2^v-1} .

(B_v) G can act freely on S^{2^v-1} .

(C_v) G has the cohomology of period 2^v and has at most one element of order 2.

(A_v) \Rightarrow (B_v) is trivial, and (B_v) \Rightarrow (C_v) holds by (1.2) and (1.3). We shall study whether (C_v) \Rightarrow (A_v) holds.

Let G be a finite group satisfying (C_v). Then, by (1.3) and (1.4), G is of type I, II, III, IV, V or VI. We shall retain the notations in §1.

Case 1: $m \neq 1$.

It follows from the conditions of type I that m is odd. Put $m=\prod p_i^{c_i}$, where $\{p_i\}$ are distinct odd primes and $c_i \geq 1$. Then the subgroup generated by $A_i = A^{m/m_i}$ ($m_i = p_i^{c_i}$) is a p_i Sylow-subgroup of G . Let d_i denote the order of r in the multiplicative group of residues modulo m_i of integers prime to m_i . It follows that

$$B^j A_i B^{-j} = A_i^{r^j} \quad (j = 0, 1, \dots, d_i - 1)$$

are distinct. Therefore, by (1.5) the p_i -period of G is a multiple of $2d_i$. Let d' denote the least common multiple of $\{d_i\}$. Then it follows that d divides d' , and that $2d'$ divides the period of G . Thus 2^ν is a multiple of $2d$, and so d is a divisor of $2^{\nu-1}$. Since $m=1$ is equivalent to $d=1$, we have

$$d = 2^\alpha \quad \text{with} \quad \alpha = 1, 2, \dots, \nu-1.$$

Since n is a multiple of d , n is even. Therefore G can not be of type III, IV, V or VI. If G is of type II and $d=2^\alpha$ with $\alpha \geq 2$, the conditions on k yield a contradiction. Thus G is of type I with $d=2^\alpha$ ($\alpha=1, 2, \dots, \nu-1$), or of type II with $d=2$.

Since the order of $B^{n/2}$ is 2, by (1.1) we have

$$B^{n/2} A B^{-n/2} = A.$$

Since $B A B^{-1} = A'$, we have also

$$B^{n/2} A B^{-n/2} = A'^{n/2}.$$

Hence $r^{n/2} \equiv 1(m)$, and $n/2$ is a multiple of $d=2^\alpha$. This shows that n/d is divisible by every prime divisor of d . Therefore it follows from (1.7) and (1.8) that G has a fixed point free complex representation whose degree is 2^α if G is of type I with $d=2^\alpha$, and is 2 or 4 if G is of type II with $d=2$. Thus if $\nu \geq 3$, G acts freely and orthogonally on $S^{2^{\nu-1}}$. If $\nu=2$, so does G of type I with $d=2$. However (1.8) shows that some groups G of type II with $d=2$ can not act freely and orthogonally on S^3 .

Case 2: $m=1$, G is solvable.

In this case we have $d=1$. Therefore it follows from (1.7) and (1.8) that G has a fixed point free complex representation whose degree is 1, 2 or 4. Thus if $\nu \geq 3$, G acts freely and orthogonally on $S^{2^{\nu-1}}$. If $\nu=2$, so does G of type I, II, or III. However (1.8) shows that some groups G of type IV can not act freely and orthogonally on S^3 .

Case 3: $m=1$, G is non-solvable.

For

$$X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL(2, p)$$

we have

$$X^i = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \quad (i = 0, 1, \dots, p-1).$$

Therefore X generates a cyclic group of order p . If we observe the order of G , it follows that this cyclic group is a p -Sylow subgroup of G . For

$$Y_i = \begin{pmatrix} \omega^i & 0 \\ 0 & \omega^{-i} \end{pmatrix}, \quad Z_i = \begin{pmatrix} 0 & -\omega^i \\ \omega^{-i} & 0 \end{pmatrix}$$

we have

$$Y_i X Y_i^{-1} = \begin{pmatrix} 1 & \omega^{2i} \\ 0 & 1 \end{pmatrix},$$

$$Z_i S X S^{-1} Z_i^{-1} = \begin{pmatrix} 1 & \omega^{2i+1} \\ 0 & 1 \end{pmatrix}.$$

Therefore it follows from (1.5) that 2^ν is a multiple of $p-1$ if G is of type V, and that 2^ν is a multiple of $2(p-1)$ if G is of type VI. Thus G is of the following type $V_\alpha^*(2 \leq \alpha \leq \nu)$ or $VI_\alpha^*(2 \leq \alpha \leq \nu-1)$.

V_α^* . $G = \mathbf{Z}_n \times SL(2, p)$, where p is a prime of the form $2^\alpha + 1$, and $(n, p(p^2-1))=1$.

VI_α^* . G is generated by a group of type V_α^* and an element S satisfying the conditions in VI.

In particular, if $\nu=2$, G is of type V_2^* and it acts freely and orthogonally on S^3 by (1.7) and (1.8). If $\nu=3$, G is of type V_2^* or VI_2^* , and it acts freely and orthogonally on S^7 by (1.7) and (1.8). If $\nu=4$, G is of type V_2^* , V_4^* or VI_2^* . The groups of type V_2^* or VI_2^* act freely and orthogonally on S^{15} , but (1.7) shows that the groups of type V_4^* can not do so.

REMARK. A prime of the form $2^\alpha + 1$ is called the *Fermat number*, and α is known to be of a power 2^β . But the converse is not true; for example $2^{32} + 1$ is divisible by 641.

Summing up the above arguments, we have proved the following two theorems.

(2.1) Theorem. *The conditions (A_3) , (B_3) , (C_3) are mutually equivalent for any finite group G , and the following is a list of all finite groups satisfying these conditions:*

- 1) *The groups of types I, II, III, IV with $d=1$.*
- 2) *The groups of type I with $d=2^\alpha$ and $n \equiv 0 \pmod{2^{\alpha+1}}$ ($\alpha=1, 2$).*
- 3) *The groups of type II with $d=2$.*
- 4) *The groups of types V, VI with $d=1$ and $p=5$.*

(2.2) **Theorem.** *If $\nu \geq 3$, the conditions (A_ν) , (B_ν) , (C_ν) are mutually equivalent for any finite solvable group G , and the following is a list of all finite solvable groups satisfying these conditions:*

- 1) *The groups of types I, II, III, IV with $d=1$.*
- 2) *The groups of type I with $d=2^\alpha$ and $n \equiv 0 \pmod{2^{\alpha+1}}$ ($\alpha=1, 2, \dots, \nu-1$).*
- 3) *The groups of type II with $d=2$.*

For $\nu=4$ we have also

(2.3) **Theorem.** *The following two conditions for a finite group G are equivalent:*

- i) *G satisfies the condition (C_4) but does not satisfy (A_4) .*
- ii) *$G = \mathbf{Z}_n \times SL(2, 17)$ with $(n, 2 \cdot 3 \cdot 17) = 1$.*

Proof. It has been proved in the arguments above that i) implies ii) and the groups of type V_4^* do not satisfy (A_4) . It is easily seen that the groups of type V_4^* has only one element of order 2. We shall prove that each group G of type V_4^* has period 16.

If $UXU^{-1} = X^i$ for some $U \in SL(2, p)$, then it is easily seen that i is an even power of ω . Therefore it follows that the p -period of $SL(2, p)$ is $p-1$. This shows that the 17-period of G is 16. By (1.5) and (1.6), the 2-period and the 3-period of G divide 4. If q is a prime dividing n , the q -period of G is 2. Since $|G| = 2^5 \cdot 3^2 \cdot 17 \cdot n$, it holds that the period of G is 16.

Here is a problem: Can $SL(2, 17)$ act freely on the sphere S^{16t-1} ?

In his study on finite groups acting freely on S^3 , Milnor [3] introduces the finite groups presented as follows:

- (1) $D'(2^t(2s+1)) = \{A, B; A^{2s+1} = B^{2^t} = 1, BAB^{-1} = A^{-1}\}$, where $s \geq 1, t \geq 1$.
- (2) $Q(8t, s_1, s_2) = \{A, B, R; A^{s_1 s_2} = 1, R^2 = B^{2^t}, BAB^{-1} = A^{-1}, RAR^{-1} = A^l, RBR^{-1} = B^{-1}\}$, where $8t, s_1, s_2$ are pairwise relatively prime positive integers, and $l \equiv -1 \pmod{s_1}, l \equiv +1 \pmod{s_2}$.
- (3) $T'(8 \cdot 3^t) = \{B, P, Q; B^{3^t} = 1, P^2 = Q^2 = (PQ)^2, BPB^{-1} = Q, BQB^{-1} = PQ\}$, where $t \geq 1$.
- (4) $O'(48t) = \{B, P, Q, R; B^{3^t} = 1, P^2 = Q^2 = R^2 = (PQ)^2, BPB^{-1} = Q, BQB^{-1} = PQ, RPR^{-1} = QP, RQR^{-1} = Q^{-1}, RBR^{-1} = B^{-1}\}$, where t is a positive odd integer.

These groups are generalizations of the binary polyhedral groups. In fact, the binary dihedral group $Q(4n)$ is $D'(4(2s+1))$ if $n=2s+1$ and is $Q(8t, 1, 1)$ if $n=2t$; the binary tetrahedral group T^* and the binary octahedral group O^* are $T'(24)$, $O'(48)$ respectively.

We shall generalize the group $D'(2^t(2s+1))$ as follows:

- (1)_a $D^{(\alpha)}(2^t(2s+1)) = \{A, B; A^{2s+1} = B^{2^t} = 1, BAB^{-1} = A^r\}$, where s, t, α are positive integers, $\alpha \leq t$, and $r^{2^{\alpha-1}} \equiv -1 \pmod{2s+1}$. Note that $D^{(1)}(2^t(2s+1)) = D'(2^t(2s+1))$.

(2.4) **Theorem.** *The following is a list of all finite solvable groups which act freely (and orthogonally) on $S^{2\nu-1}$ ($\nu \geq 3$).*

- (1) *The groups $1, Q(8t, s_1, s_2), T'(8 \cdot 3^t), O'(48t)$.*
- (2) *The groups $D^{(\alpha)}(2^t(2s+1))$ with $t \geq \alpha+1$, where $\alpha=1, 2, \dots, \nu-1$.*
- (3) *The direct product of any of these groups with a cyclic group of relatively prime order.*

Proof. If G is of type I with $d=1$, we have $G=\mathbf{Z}_n$.

Let G be of type II with $d=1$. It follows that there are B_i of order n_i ($i=1, 2$) such that

$$\begin{aligned} \{B\} &= \{B_1\} \times \{B_2\}, \quad n = n_1 n_2, \quad (2n_1, n_2) = 1, \\ RB_1R^{-1} &= B_1^{-1}, \quad RB_2R^{-1} = B_2 \end{aligned}$$

(see p. 203 of [10]). Then $n_1=4t$, and G is the product of $\mathbf{Z}_{n_2}=\{B_2\}$ and $Q(8t)=\{B_1, R\}$.

Let G be of type III with $d=1$. Put $n=3^t n'$, $(n', 3)=1$. Then G is the product of $\mathbf{Z}_{n'}=\{B^{t'}\}$ and $T'(8 \cdot 3^t)=\{B^{n'}, P, Q\}$.

Let G be of type IV with $d=1$. Then $n_1=3t$ with t odd, and G is the product of $\mathbf{Z}_{n_2}=\{B_2\}$ and $O'(48t)=\{B_1, P, Q, R\}$.

Let G be of type I with $d=2^\alpha$ and $n \equiv 0 \pmod{2^{\alpha+1}} (\alpha \geq 1)$. Put $n=2^t n'$, $(2, n')=1$, $m=2s+1$. Then $t \geq \alpha+1$ and G is the product of $\mathbf{Z}_{n'}=\{B^{2^t}\}$ and $D^{(\alpha)}(2^t(2s+1))=\{A, B^{n'}\}$.

Let G be of type II with $d=2$. Then $n=4t$, $m>1$, and there exist positive integers s_1, s_2 such that $m=s_1 s_2$, $l \equiv -1 \pmod{s_1}$, $l \equiv +1 \pmod{s_2}$. G is the product of $\mathbf{Z}_{n_2}=\{B_2\}$ and $Q(8t, s_1, s_2)=\{A, B_1, R\}$.

Consequently the desired result is only a restatement of Theorem (2.2).

From (2.1) and (2.4), we have

(2.5) **Theorem.** *The following is a list of all finite groups which act freely (and orthogonally) on S^7 .*

- (1) *The groups $1, Q(8t, s_1, s_2), T'(8 \cdot 3^t), O'(48t)$.*
- (2) *The groups $D^{(\alpha)}(2^t(2s+1))$ with $t \geq \alpha+1$, where $\alpha=1, 2$.*
- (3) *The binary icosahedral group $I^*=SL(2, 5)$.*
- (4) *The group generated by $SL(2, 5)$ and S , where $S^2=-1 \in SL(2, 5)$ and $SLS^{-1}=\theta(L)$ ($L \in SL(2, 5)$).*
- (5) *The direct product of any of these groups with a cyclic group of relatively prime order.*

REMARK. A necessary and sufficient condition for G of type II (or IV) to have $\delta(G)=2d$ (or $4d$) is given in [10] (see the errata sheet of [10]). If we use these results, the above arguments for $\nu=2$ yield theorems 2 and 3 of [3].

3. Finite groups acting freely on S^{2n-1} (n : odd prime)

Let $Z_{m,n}$ be a group of type I with m odd, n odd prime and $d=n$.

By the arguments similar to §2 but simpler, we have

(3.1) **Theorem.** *Let n be an odd prime. Then the following two conditions for a finite group G are equivalent:*

- i) *G has cohomology of period $2n$, has at most one element of degree 2, and can not act freely and orthogonally on S^{2n-1} .*
- ii) *G is of type $Z_h \times Z_{m,n}$ with $(h, mn)=1$ and $h \geqq 1$.*

REMARK. It is known by T. Petrie [5] that the group $Z_{m,n}$ can act freely on S^{2n-1} . Here is a problem: If $h > 1$, can the group $Z_h \times Z_{m,n}$ act freely on S^{2n-1} ? (R. Lee states in a letter to the author that if h, m are odd primes the problem has an affirmative answer.)

REMARK. Consideration of groups satisfying the condition i) of (3.1) for $n=6$ yields the following problem: Can the group $SL(2, 7)$ act freely on S^11 ?

OSAKA UNIVERSITY

References

- [1] H. Cartan and S. Eilenberg: *Homological Algebra*, Princeton, 1956.
- [2] R. Lee: *Semicharacteristic classes*, Topology **12** (1973), 183–199.
- [3] J. Milnor: *Groups which act on S^n without fixed points*, Amer. J. Math. **79** (1957), 623–630.
- [4] M. Nakaoka: *Continuous maps of manifolds with involution* I, Osaka J. Math. **11** (1974), 129–145.
- [5] T. Petrie: *Free metacyclic group actions on homotopy spheres*, Ann. of Math. **94** (1971), 108–124.
- [6] M. Suzuki: *On finite groups with cyclic Sylow subgroups for all odd primes*, Amer. J. Math. **77** (1955), 657–691.
- [7] R.G. Swan: *The p -period of a finite group*, Illinois J. Math. **4** (1960), 341–346.
- [8] C.B. Thomas and C.T.C. Wall: *The topological spherical space form problem* I, Compositio Math. **23** (1971), 101–114.
- [9] G. Vincent: *Les groupes linéaires finis sans points fixes*, Comment. Math. Helv. **20** (1947), 117–171.
- [10] J. Wolf: *Spaces of Constant Curvature*, McGraw-Hill, New-York, 1967.
- [11] H. Zassenhaus: *Über endliche Fastkörper*, Abh. Math. Sem. Univ. Hamburg, **11** (1936), 187–220.