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Introduction

By a cohomology theory we understand throughout the present work,
a general reduced cohomology theory defined on the category of finite CW-
complexes with base vertices (cf. [10]).

In this paper we consider the stable operations in mod p cohomology theories,
where the stable operation means the natural linear operation which commutes
with the suspension isomorphism.

Maunder [6] considered the stable operations in the mod p K-theory, by
making use of a duality map w: SM A SM — S°®, where M is a co-Moore space
of type (Z,, 2). We shall also use this map. For the completeness we sum-
marize some known results on duality maps which owe to Spanier [7, 8] in sec-
tion 1.

In section 2, we construct a natural transformation

I(w): k*( ; EAM) — k*( ; E mod p)

for any spectrum E, which is of degree 1, stable and isomorphic. This trans-
formation is an essential tool in the present work.

And in section 3, we consider the relation between O*(E), the algebra of
the stable operations in the cohomology theory A*( ; E), and O*(E; Z,), the
one in the mod p cohomology theory associated with A*( ; E). As an appli-
cation, we shall study the stable operations in the mod p U-cobordism theory, by
making use of Landweber’s result [5].

Throughout this paper we shall use the terms “space”, “CW-complex” and
“map” to refer to space with a base point, CW-complex with a base vertex and
continuous map preserving base points.

1. Known results on duality maps

In this section we summarize some basic properties of duality maps which
owe to E.H. Spanier [7, 8].
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1.1. First we shall fix some notations:

XNY the reduced join of two spaces X and Y,
fNg the reduced join of two maps f and g,
SX=XAS the reduced suspension of X,
1=1,; A—A4 an identity map of 4 into itself,

T=T(4, B): ANB—-BAA a map switching factors,
S"A=8(S""A)=ANS"'ANS'=ANS" an n-fold suspension of A4,
S*f=f Algn an n-fold suspension of a map f,

[X, Y] the set of homotopy classes of maps of X into Y,

{X, Y} the stable homotopy group of X into Y,

p: St—= 8" for any integer p to denote a map of degree p given by

p{t}={pt} for {t mod 1} S".

1.2. Let X, X' be finite CW-complexes and u: X AX'—S" be a map.
Such a map induces a homomorphism

8= 8(),: {Z, WAX} > {ZANX', WAS™},
by the relation 8({f})={(1 Au)(f A1)} for any spaces Z and W.

A map u: X ANX'— 8" is called a semi-duality map provided &*(u),, are
isomorphisms for W=.S° and Z=S¥% k=1,2,3, ---. If u is a duality map in the
Spanier sense, then # is a semi-duality map ([7], Lemma 5.8).

From the definition of semi-duality map, we obtain the following results.

(1.2.1) Letu: XAX'—S"and v: Y AY'—S” be maps, and let f: Y—>X
and g: X'—Y’ be maps such that

w(f A} = {o(1Ag)} in {YAX', S"}.

Then the following diagram is commutative for any spaces Z and W:

8
(Z, WAY}—> {ZAY', WAS"}

S+ 5 1&’*
{(Z, WAX} —{ZANX', WAS™}.

(1.2.2) Let u: X AX'—S" be a semi-duality map.
Then the homomorphism §%(),, is an isomorphism for any finite CW-complexes

Zand W.

(1.2.3) Let u: X AX'—S" be a semi-duality map.
Then two maps

uNnl
Uy XASX' = XAX'ANS' —— S"AS' = §™,

IANT uNl
U SXAX = XAS'ANX —— XAX'ANS —— 5™
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are also semi-duality maps.

1.3. Let X, X', Y and Y’ be finite CW-complexes and let u: X AX'—S",
v: YAY'-S" f: Y—>X and g: X' Y’ be maps such that f and g are cellular
and u(f A1) and v(1 Ag) are homotopic maps from ¥ A X’ into S”.

We consider the following sequences:

; S
v ox o, sy Y, sx,

S .
sy X sx Ao, Lyl
where Crand C, are mapping cones of f and g respectively. Then there exists
a map w: C,AC,—S""" such that the following diagrams are homotopy com-
mutative ([7], §6):

(1.3.1)

Y’ X',

1A ] 1A
c, Y onc,  xac,Lixasx
(13.2) lp/\l j o li/\l 1 "
SYAY —> S C,AC, —> S™
7)1’0 w

With an application of the “five lemma,” we obtain the following result from

(1.2.1), (1.2.3), (1.3.1) and (1.3.2).

(1.3.3) Letu: XAX'—>S"and v: YA Y'—S” be semi-duality maps, and
let f: Y—=X and g: X'—>Y’ be cellular maps such that u(f A1) and v(1Ag)
are homotopic. Then the above map w: C;AC,—S™"" is a semi-duality map.

1.4. Let u: S2AS>—>S* be a canonical identification, and let Sp: S*—>S*
be a suspension of the map p: S'—=S'. Then u(SpA1l) and u(1ASp) are
homotopic and u is a semi-duality map. Thus we obtain a semi-duality map

w: SM,ASM,— S°,
where M ,=S"U ¢’ is a co-Moore space of type (Z,, 2).
»

2. Stable natural transformation T'(w)

By a spectrum E={E,, & |ksZ}, we shall mean a sequence of CW-
complexes E, and maps &,: SE,—E,., for any integer k.
Throughout this section, let M, N be fixed finite CW-complexes.

2.1. For any finite CW-complex X, and any integers /, k, we have
homomorphisms

S 3
[SkX/\N, E.., /\M] — [Sk'HX/\N, SEkH/\M] ( k+1)#

[Sk“X/\N, Ek+1+1/\M] H



96 F. Ucuipa
ot: [SXSX)AN, Byt AM]— [S*"X AN, E4iy AM],

where S=S(M, N) is defined by the suspension, (&,:/)y=&:+/(M, N); is an
induced homomorphism and o}=c}(M, N) is induced from the identification
SEIX=X NS*'=X AS'A S*=S¥SX).

Let #/(X; EAM mod N)=lim, dir {{S* X AN, Ep.; AM], (4+1)sS} and o=
a(M, N): B(SX; EAM mod N)—h'7(X; EANM mod N) be the direct limit
of maps {c}. ~

Then, {h*( ; EAM mod N), o(M, N)} becomes a cohomology theory [10].
In particular, we define

h*( ; EAM) = h*( ; EAM mod S°), o™ = o(M, S°),
h*( 5 Emod N) = h*( ; EAS° mod N), oy = o(S° N),
h*( 5 E)=h*( ; EAS° mod S°), o= o(S° S°),
and k*( 5 E mod p) = h***( ; Emod M,), o,= o(S°, M,),
where M,—=S" U ¢’ be a co-Moore space of type (Z,, 2), then the third cohomology
»

theory is just one defined by G.W. Whitehead [10], and the last is just 2 mod p
cohomology theory associated with 4*( ; E) defined by A. Dold [3] and considered
by S. Araki and H. Toda [1].

2.2. Let {h¥, o,} and {h¥, o,} be cohomology theories and
t: ht — bt for any integer k&,

be a linear natural transformation of degree s. If o,t=(—1)’tc,, then we call
t is a stable natural transformation of degree s. In particular, if {Af, o=
{h¥, o,}, then we call ¢ is a stable operation of degree s.

2.3. Let w: M AN—S" be a map, then » induces a homomorphism
y(@)!: [S*X, Eprs AM] — [SEX AN, E4i AS™,

by the relation v(w) ([f])=[(1 Aw) (f A1)] for any spectrum E={E,, &} and
any finite CW-complex X.

Proposition 2.3. For any spectrum E={E,, &}, a map o: M AN—S"
induces a stable natural transformation

v(w): B*( ; EAM)— h*( ; ENS” mod N)
of degree 0, where y(w) is the direct limit of homomorphisms {7y(w)}}.
Proof. For any integers /, &,

Erd(S™, N)S(S™, N)y(@)t = (@)t 6pi(M, S S(M, 57,
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so we can define a natural transformation v(w) of degree 0. Moreover, for
any integers /, k,

ai(S", N)v(w); = v(w)itici(M, S°),
thus
o(S", N)y(w) = v(w)o(M, S).

Therefore vy(w) is stable. q.e.d.

2.4. From some switching map 7, we can define the following homo-
morphisms:

[S*X AN, E; e ASM] ——— 1M, 5, 3 [SEX AN, SE o AM],

[S*X ASN, E,. AM]

T(N,
,(—.) [Sk+1X/\N El+k/\M]

for any spectrum E={E,, &} and any finite CIW-complex X.

Proposition 2.4. For any spectrum E={E,, &}, T induces stable natural
transformations

Ty: k*( ; EANSM mod N) — h*( ; EAM mod N),

T*: k*( ; EAM mod SN) — h*( ; EAM mod N),
such that degree T,—1 and degree T*=—1, where Ty is the direct limit of
homomorphisms {(—1)*&,,(M, N),T(M, S"),} and T* is the direct limit of
homomorphisms {(—1)¥T(N, S")¥}. Moreover, for any finite CW-complex X and
any integer 1,

Ty: K(X; EANSM mod N) — h**(X; EAM mod N),

and T*: h(X; EAM mod SN)— h'~'(X; EAM mod N)

are isomorphisms.
Proof. For any integers /, k,

Eprr(M, N)yS(M, N)&..(M, N),T(M, S*),

= —&rin(M, N),T(M, S")3&+:.(SM, N), S(SM, N),
and aii(M, N)&.o(M, N),T(M, S*),

= &pri(M, N)T(M, S*)yai(SM, N),
so we can define a stable natural transformation T of degree 1 induced from
the sequence {(—1)¥&.,(M, N),T(M, S*);}. Similarly, we can define a stable

natural transformation 7% of degree —1 induced from the sequence {(—1)*T'(V,
SY¥. Since T(N, S')* is an isomorphism, T* is an isomorphism.
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Next we consider the following homomorphism
(S, M)}

~

S
[S*X AN, E; (. AM]—> [S*"' X AN, SE; ., AM]
[S¥'X AN, Ei.xASM],
then the sequence {(—1)**'T(S", M),S} induces a stable natural transformation
S«: B*( ; EAM mod N) — h*( ; EASM mod N)

of degree —1 and clearly Sy is the inverse transformation of Tx. Therefore Ty
is an isomorphism. q.e.d.

2.5. Let w: S MASN—->S"***% be a map. For any spectrum E, we
obtain a stable natural transformation

T(w): B*( ; EAM) — h*( ; E mod N)
of degree n, which is defined by T'(w)=(T*)*(T )" * 0 y(w)(Tx)"“.

Theorem 2.5. If w: S"MAS°N—S"** is a semi-duality map. Then,
for any spectrum E, the stable natural transformation

I'(0): k5 X; EAM) — h***(X; E mod N)
is an isomorphism for any integer k and any finite CW-complex X.

Proof. It is sufficient to prove that y(w) is an isomorphism, by Proposition
2.4. For any finite CW-complex X, there exists a canonical isomorphism

«(A4, B): k(X; ENA mod B) — lim dir {{S’X AB, Exs1 AA}, {Ecri}s}
!
induced from canonical homomorphisms
[S‘XAB, Epri NA) = {S'XA\B, E¢.i N4},

where A, B are any finite CW'-complexes.
From (1.2.2), the semi-duality map o: S*?MAS°N—S"+**? induces an
isomorphism

S(w)i: {S'X, Epii ANS°M} — {S’X ANS®N, Ep i A\ S22}
and the sequence {8(w)i} defines an isomorphism
(w): limldir {S’X, Epri ANS°M}, {Epsi)s}
— limldir {S' XA SN, E\iy AS™F8}, {€xss)a} -

Since the relation ¢(S°, S’N)v(w)=38(w)¢(S*M, S°) holds, the homomorphism
7(w) is an isomorphism. And therefore I'(») is an isomorphism. q.e.d.
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Remark. Let X=S° in Theorem 2.5. Since 2~ %(S°; EAM)=h(M; E),
a reduced homology group of M, and h*(S°; E mod N)=h*(N; E), we obtain
a duality isomorphism

T(w): hy(M; E) — h*¥N; E),

whenever w: S*MAS°N—S""**% is a semi-duality map.

3. Stable operations
Throughout this section, let p be a fixed prime, and let M=S"U¢* be the
»

co-Moore space of type (Z,, 2). Denote by i: S'—>M and »: M—S?, the canoni-
cal inclusion and the map collapsing S* to a point.

3.1. Let {h*, o} be a cohomology theory. The mod p cohomology theory
(cf. [1]), {h*( ; Z,), o,} is defined by

W(X; Z,) = h**(XAM) forall k,
and the suspension isomorphism
o, WN(SX; Z,) > h*(X;Z,) forall k,

is defined as the composition

IAT)*
( /\ )_) hk+2(X/\M/\Sl)

WH(SX; Z,) = KX AS'AM)
s X AM) = B (X5 Z,),
where T=T(S*, M). If {h*, o} is defined by a spectrum E, then {h*( ; Z,), o}

is equivalent to the cohomology theory defined in section 2.
Making use of maps ¢: S*—M and »: M—S? we put

2 *
h"(X)«-——h"”(X/\SZ)( ) KX AM) = h4(X; Z,)
A . k+2 ( /\) k+2 1
and s .h(X,Z) RE(X A M) ——> BE(X A SY)
ke o LA
— WYX NS?) 5 B (X AM) = W(X; Z,),

which are natural and called as the reduction “mod p”’ and the “mod p”’ Bockstein
homomorphism. The following relations are easily seen.

3.1 O pPp= Pp0; 0,0, = —38,0,,8,p,=0 and §,86,=0.

In particular, the Bockstein homomorphism &, is a stable operation of
degree 1 in mod p cohomology theory.
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3.2. Let 6 be a stable operation of degree n in the cohomology theory
{h*, o}, i.e., c0=(—1)"9s. We put

0
0,: KN(X; Z,) = h**( X AM) —> h¥* "X AM) = h**"(X; Z,)
for all k&,

which is a stable operation of degree n in the mod p cohomology theory
{h*( 5 Z,), o,), ie, 0,0,=(—1)"0,0,, and called as the “mod p” reduction
of . From the definitions of p,, 8, 0, and a stable operation of degree =,
we obtain the following relations.

(3.2) 8,0,=(—1)"6,8, and 0,p,=p,0.

ReMARK. In the “mod 2” singular cohomology theory. Since §,=.S; and
Si18¥=8"+'+£82"S; for any n=1, 2, 3, .-, S¥ (n=1, 2, 3, --+) are not the
“mod 2” reduction of any stable operations in the integral cohomology theory.

3.3. Let {h* o} be a cohomology theory. Let X be a CW-complex with
a base vertex x,, and let {X,} be the family of all finite subcomplexes with base
vertex x,. Then {#*(X,)} becomes an inverse system with respect to the
homomorphisms induced from the inclusion maps, and we can define

F*(X) = lim inv A*(X,) .

3.4. Inthe rest of this paper, we consider a fixed spectrum E={E,, &} and
denote by {h*, o}, the cohomology theory {h*( ; E), o} associated with E.
And we consider a fixed semi-duality map «o: SMASM—S°®.

Denote by (*€h*(E,)=h*E,; E) and (,ch*(E,ANM; EAM), the classes
represented by the identity maps of E, and E,AM respectively. And denote
by o*€h**(E,AM; Z )=h*"'(E, AM; E mod p), the class T'(w)(c4s), where

T(w): k*( ; EAM) — h*( ; E mod p)

is an isomorphic stable natural transformation of degree 1.
We put
AT ) N1
Ee Mt S(ExN\NM) = ENMAS' —— E,NS'AM —— E, \AM,
and consider the following sequences:

&k o
hilEqss) —> WH(SE,) —— W*(E,),

8*
B*(Ey, AM; EAM) 222 h¥(S(E, A M); EAM)
L WE AM; EAM),
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8*
WX(Bps AM; Z,) Z25 (SE,AM); Z,) —2> WNE,AM; Z,),

1 Ad)*
W E,AM; Z,) UADT B s Z,) -2 hX(Ey; Z,)

2 1 *
WX (By; Z,) <2~ WEu\S7; Z,) AN e B, AM; Z).

Proposition 3.4. There are relations:

() &= oEH ), (i) by = o€ m(ehi’)
(ili) o® = —0,&Fp(o*"), (1Av)  py(f) = o (1 AD)*(w®) .

(V) 8,(0%) = —(1Am)rosp,(ch).

Proof. Relations (i) and (ii) are trivial, and (iii) is a consequence of
w*=T(w)(chs) and the fact that I'() is a stable natural transformation of degree
1, ie., o,N(0)=—T(0)o and & T (0)=T"(0)EX .

Relations (iv) and (v) follow from the diagrams below (cf. (1.3.2)), the
definition of p, and §,, and the fact that w*€h*"(E,AM; Z )=h*"(E, NMA
M; E) is represented by the composition:

] IALATAL
SHE,AMAM) = E,AMAMAS'AS' ——— > E,ASMASM

1A

—_— E‘I-z/\s'5 — Ek+5 ’

where & is the composition:

S*€, S,
E AS® = S(SE,) —5% S'Eyy, —23 S°E,,, — -

&
—> SEg, 5 Eps.

Because, by making use of the following homotopy commutative diagram:

Sind
SEASM —> SMASM
ll/\Sn' lw
S A S(S?) ——n §°

the class (1 A#)*(w®) is represented by the composition:

1IAIAZAL
SUE NS AM) = E,AS AMAS NN B ASTASEAS?

&
— EuAS* —> By .

Therefore, the class o (1 A7)*(»*) is represented by the composition:
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IANzAL €
SAExANM) = E,ANMA\S? —”——/\—+ ExNS*AS? = E,LNS® —— By .
And also this map represents p,(¢*). Thus the relation (iv) is obtained.
The relation (v) is obtained by the similar way from the following homotopy
commutative diagram:

Szl
SMAS 2705 (s As?
l 1ASi
SMASM > S°. q.e.d.

Now, we can define

F(E) = lim inv {h***(E}), (—1)’c&¥},
k
W(E; Z,) = lim inv {k***(Ey; Z,), (—1)'c,&¥},
k
F(EAM; EAM) = lim inv {k**(E,AM; EAM), (—1Yc &},
W(EAM; Z,) = lim inv {h**(E,AM; Z,), (—1)°c,&¥u},
pp =Pt W(E) > W(E; Z,),
i** = (o (1N} K(BAM; Z,) > I ™(E; Z,),
7** = {(1 An)*e;’}: B(E; Z,) > W EAM; Z,),
and we can denote

i={Meh(E), i,={p,(F)Eh(E;Z,),
in= {4 E(ENM; EAM), &= {o*}eh(ENM;Z,),
3,(®) = {8,(w®)} EW(EAM; Z,),

which are well-defined. from (3.1) and Proposition 3.4. Then we obtain the
following relations.

B4l Q) L=p0), ) I,=i@),
(iil) 8,(&) = —a**(,).

ReMARK. Making use of the cofibration
7 4
St— M —> 87,
we have the following exact sequence.

342 2B (AAmte™ B*(X \ M) dUAUN wx) =2

for any cohomology theory {h*, o} and any finite CW-complex X. But, in
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general the limit sequence of an inverse system of exact sequences need not be
exact (cf. [4], Chap. 8). So the following sequence need not be exact.

X kk )k k X
43)  Bwng; z) T EAM; 2) L iE; 2,) 25

3.5. Denote by O"(E), O"(E A\ M) and O"(E ; Z,), the modules of the stable
operations of degree 7 in the cohomology theories £*( ; E), h*( ; EAM) and
h*( ; E mod p) respectively, where the addition is defined by pointwise opera-
tion.

Let0=O™(E). Since §(:F)=0(c &F(*))=(—1)"0c EF(O(:*)) in B E,; E),
we can define 0(7)={0(:*)}h"(E; E). Similarly, we can define 0(i,)=1{0(c},)}
eh(EAM; EAM) for 0" (EAM), and 0(&)={6(w*)} €h™'(EAM; E mod p)
for 0€OE; Z,).

Theorem 3.5. The following homomorphisms are isomorphisms.

(i) ®:0"E)— h"(E)=h"(E; E) definedby o&0)=0(),
(i) Dp: O(EANM)— W (EANM; ENM) defined by Dy,(0) = 0(inr)
(i) ®,: O"E; Z,) — h""(ENM; Z,) = k" (ENM; E mod p)

defined by @ ,(0) = 0(&) .

Proof. Let a€h*(X; E) be a class represented by a map
f: S X —>E;,
then a=a’f*(:/*¥), and also « is represented by the composition:

Sf Erik

SHX — SE1+k e E1+k+1 .

Thus, for 6 0"(E),
B(a) = (o f*(11 ") = (— 1y o' F*0(u ™4

= (_ 1)(l+‘)"o-lf* o.e;k+k6(Ll+k+l)
= (1) (SFHER A0
— 0(0'1+1(Sf)*52k+k(él+k+l)) ,

since o(Sf)*=f*os. And this assures (i). (ii) is similarly proved, because 2*( ;
EA M) is the cohomology theory defined on the spectrum {E, AM, & 5.

Let 0€0™(E; Z,), then I'(w) '0T(w) EO"(EAM) and this correspondence
of 0 to I'(w) '0T'(w) induces an isomorphism of O™(E; Z,) to O"(E N\ M), because
I'(») is an isomorphic stable natural transformation. Since d=T'(w) (5), We
obtain (iii). q.e.d.

Because of the above theorem, we study A*(EAM; Z,) for the investigation
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of the graded algebra O%(E; Z,)=3)0"(E; Z,), where the multiplication is
defined by the composition. ’
We obtain the following relations from (3.2), (3.4) and (3.4.1).

(3.5.1) (1) **¢(@)=(—1)"¢(7,) and z**¢(i,)=—¢p5,(&) for O (E;Z),),
(i) **0,(@)=(—1)"p,(0(z)) and =**p(0(:))=—0,5,(&) for 6 €O™(E),
where 6, is the mod p reduction of 6.

3.6. Now, we consider some conditions on the spectrum E={E}, &} under
which the sequence (3.4.3) becomes exact.

Let {E,, &k, I=Z} be a family of finite CW-complexes E, ; and maps
&1: SE, ;—E,.,,, where the set {E, ;|/€Z} is a family of subcomplexes of E,
with the common base vertex as one of E, for any integer k, such that

() ExiCEppvn, (i) Ep= LlJEla,l

and  (iii) the following diagrams are commutative:
€
SEy; ——"—> By,
Lo
SE,————> E,.,

where the vertical arrows are inclusion maps.
Then, h*(Ey; E) = lim inv {h*(E, ;; E), .},
and h*(E; E) = limlinv {h*(Ey; E), (—1)*o &¥}
— lim iny {(#*(Euai B), (—)*o ek, )
where ¢4 ;5 By —>E} ., is an inclusion map.

From (3.4.2), the following results are easy consequence of the properties
of the inverse limit.

(3.6.1) If h*(E, ;) have no p-torsion for any ke Z.

Then the following sequences are exact:

3k Kk

0 — IXE; Z,) = W(EAM; Z,) — h*(E; Z,),
Xp

0 — h*(E) —2> h*(E) 225 h¥(E; Z,) .

(3.6.2) If h*(E,,) are free abelian groups and the maps o&¥,c¥,, ::
h*(Egiy p+1)—>h*(Ey ) are onto for any k€Z. Then p,: h*(E)—h*(E; Z,) is
an onto homomorphism and therefore A*(E)QZ ,~h*(E; Z,).
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From (3.6.1) and (3.6.2), we obtain

(3.6.3) Under the condition of (3.6.2) on A*(E,,), if the order of &6&
K(ENM; Z,) is p, ie., p&=0. Then the following sequence is a split exact
sequence:

Tl’** l**
0 — h*(E; Z,) —> W(EAM; Z,) —> h*(E; Z,) > 0

and W*(EAM; Z,) is a free O*(E')/pO*(E)-module with generators & and 8 ,(&).

Proof. We consider a correspondence of p,(6(7)) to 0,(&). Since pa=0
and h*(E; Z,)=p *(E)~h*(E)® Z,, this correspondence is a well-defined
homomorphism of #*(E'; Z,) to h*(EAM; Z,) and this is a right inverse of #**
from (3.5.1), thus the above sequence is a split exact sequence. Since h*(E; Z,)
is a free O*(E)[pO*(E)-module with one generator 7, from (3.2), (3.6.2) and
Theorem 3.5, the final part follows from (3.5.1). q.e.d.

RemARk. If p is an odd prime, then the relation p&=0 is always true,
and if p=2, this is true under some condition connecting with the Hopf map
7: §°=S8% ([1]).

As a corollary of (3.2), (3.5.1), (3.6.3) and Theorem 3.5, we obtain

Theorem 3.6. If p&>=0, h*(E,,) are free abelian groups and the maps
o & ik wt WM (Epiy gr)—h*(EL ) are onto for any ke Z. Then, there exists an
isomorphism

O*(E; Z,)~ (0*(E)[pO*(E)) ® A 4(3,)

as graded algebras over Z,, where N,(8,) is the exterior algebra generated by the
Bockstein homomorphism &,. Moreover, O*(E)/pO*(E) is identified with the
mod p reduction of O*(E'), a subalgebra of O*(E; Z ).

3.7. Asan application of Theorem 3.6, we consider the stable operations in
mod p U-cobordism theory.

Denote by £, the canonical complex k-plane bundle over the complex
Grassmann manifold Gy, of k-planes in C**/, and denote by M(&, ;) the Thom
complex of &, ;.

Let &, ;: S?M(&, 1)—>M(E4+,,;) be a map induced from the canonical bundle
map £, DC">Exiy, and let ¢ ;0 M(E, ;) —>M(E, 1+,) be a canonical inclusion.
Then the Thom spectrum MU= {MU(k), &} is defined by

MU(K) = lim ind {M(£,,1), ca,} and & M(Ers) = s -

And U-cobordism theory is the cohomology theory associated with MU.
The family {M(E,,), & ;} satisfies the hypothesis of Theorem 3.6 (cf. [5])
and the order of GEN(MUAM; Z,) is p for any prime p (cf. [1], Th. 2.3).
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Therefore, Theorem 3.6 is applicable.
On the other hand, Landweber [5] shows that there exists an isomorphism

0*(MU) ~ Z['YU Y2 s Vs "'] ®h*(So’ MU)

as modules, where v, is the n-th U-cobordism characteristic class defined by
Conner & Floyd [2], which corresponds to a stable U-cobordism operation of
degree 2n. 'Therefore, we obtain

Theorem 3.7. There exists an isomorphism

O*(MU; Zp) =~ Z,,[')’l, Yas ***s Vs “'] ®Ap(8p)
Q (K*(S°; MU)[ph*(S°; MU))

as modules over 7 Py
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