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Introduction

By a cohomology theory we understand throughout the present work,
a general reduced cohomology theory defined on the category of finite CW-
complexes with base vertices (cf. [10]).

In this paper we consider the stable operations in mod p cohomology theories,
where the stable operation means the natural linear operation which commutes
with the suspension isomorphism.

Maunder [6] considered the stable operations in the mod p JRΓ-theory, by
making use of a duality map ω: SMΛ.SM-+S5, where M is a .co-Moore space
of type (Zp, 2). We shall also use this map. For the completeness we sum-
marize some known results on duality maps which owe to Spanier [7, 8] in sec-
tion 1.

In section 2, we construct a natural transformation

Γ(ω): A*( ;EΛM)-+ h*( E mod p)

for any spectrum E, which is of degree 1, stable and isomorphic. This trans-
formation is an essential tool in the present work.

And in section 3, we consider the relation between O*(E), the algebra of
the stable operations in the cohomology theory h*( E), and O*(E\ Zp), the
one in the mod p cohomology theory associated with A*( E). As an appli-
cation, we shall study the stable operations in the mod p £7-cobordism theory, by
making use of Landweber's result [5].

Throughout this paper we shall use the terms "space", "CW-complex" and
"map" to refer to space with a base point, CW-complex with a base vertex and
continuous map preserving base points.

1. Known results on duality maps

In this section we summarize some basic properties of duality maps which
owe to E.H. Spanier [7, 8].
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1.1. First we shall fix some notations:

X /\ Y the reduced join of two spaces X and Y,
f Λg the reduced join of two maps / and g,
SX=X /\Sl the reduced suspension of X,
1 = 1A; A-+A an identity map of A into itself,
T= T(Ay B): A/\B-*BΛA a map switching factors,

SnA=S(Sn-1A)=AASM'l/\S1=AASH an n-fold suspension of A,
Snf=f/\ ls* an n-fold suspension of a map/,
[Xy Y] the set of homotopy classes of maps of X into Y,

{Xy Y} the stable homotopy group of X into Y,
p: S1-*Sl for any integer p to denote a map of degree p given by

p{t}={pt} for {t mod IJeS1.

1.2. Let Xy X' be finite CW-complexes and u: X/\X'-*Sn be a map.
Such a map induces a homomorphism

δ - Sz(u)w: {Zy W/\X] - {ZΛ-Y', W/\Sn] ,

by the relation δ({/})={(lΛtt)(/Λl)} for any spaces Z and W.
A map w: X /\X' -> Sn is called a semi-duality map provided δ*(u)w are

isomorphisms for W=S° and Z=Sky k=ly 2, 3, •••. If z/ is a duality map in the
Spanier sense, then u is a semi-duality map ([7], Lemma 5.8).

From the definition of semi-duality map, we obtain the following results.

(1.2.1) Let u: X/\X'^Sn and v: Y Λ Y'-»Sn be maps, and let /: Y-+X
and g: X'-*Y' be maps such that

{«(/Λl)} = MlΛ^)} in {YΛX', S"} .

Then the following diagram is commutative for any spaces Z and W:

{Z, WA Y} > {ZA Y', WAS"}

|/* j I**
{Z, WAX} " {ZAX', WAS"}.

(1.2.2) Let u: XAX'-*S" be a semi-duality map.
Then the homomorphism δ*(u)w is an isomorphism for any finite CW-complexes
Z and W.

(1.2.3) Let M: X AX'^S" be a semi-duality map.
Then two maps

Mθjl: XASX' = XAXΆS1

M l_ 0: SXAX' =
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are also semi-duality maps.

1.3. Let X, X'y Y and Ύ1 be finite CW-complexes and let u: Xf\X'-*Sn,
v: Y Λ y'-^S", /: Y-*X and g: X'-+Y' be maps such that / and g are cellular
and w(/Λl) and v(l/\g) are homotopic maps from Y /\Xf into Sn.

We consider the following sequences:

(1.3.1)
Sg Q j £

SY' «-Ξ- SX' ^— Cg ^— Y' *2— X' ,

where Cy and Cg are mapping cones of/ and g respectively. Then there exists
a map ω: Cf/\Cg-+Sn+l such that the following diagrams are homotopy com-
mutative ([7], §6):

(1.3.2)

With an application of the "five lemma/' we obtain the following result from
(1.2.1), (1.2.3), (1.3.1) and (1.3.2).

(1.3.3) Let u: Xf\X'-^Sn and v: FΛ Y'-*S* be semi-duality maps, and
let /: Y-*X and g: X'-*Y' be cellular maps such that w(/Λl) and v(l/\g)
are homotopic. Then the above map ω: Cf/\Cg^Sn+l is a semi-duality map.

Γ1 Λ V ί Γ1 Λ /^ V Λ / ^ ^ V Λ C VCyΛ-ί >Cf/\Ce Λ /\Le ^ A Λ o A

J^>Λ1

SFΛF' —

1 1i ω |z'Λ1

-* Sn+l CfΛCg —

!«...
-> S"+1

1.4. Let u: S2/\S2^S* be a canonical identification, and let Sp: S2-*S2

be a suspension of the map p: S1^S\ Then u(Sp/\l) and z/(lΛ*Sp) are
homotopic and u is a semi-duality map. Thus we obtain a semi-duality map

ω:

where Mp=Sl U £2 is a co-Moore space of type (Zpy 2).

2. Stable natural transformation Γ(ω)

By a spectrum E={Ek, εk\k^Z}, we shall mean a sequence of CϊF-
complexes Ek and maps 6Λ: SEk->Ek+l for any integer /ί.

Throughout this section, let M, N be fixed finite CPF- complexes.

2.1. For any finite CPF-complex X, and any integers /, k, we have
homomorphisms

[S*X/\N,
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σ\: [S*(SX)ΛN, Ek+ί/\M] — * [Sk+1X/\N, Ek+l/\M] ,

where S=S(M, N) is defined by the suspension, (^+/)#=6Aj+/(M, JV)# is an
induced homomorphism and σ\=σι(M, N) is induced from the identification

Sk+1X=XΛS*+l=XΛS1ΛS*=S*(SX).
Let h'(X\ E/\MmodN)=limk dir {[S*X ΛN, Ek+l/\M], (€k+ί\S}. and σ=

σ(M, N): h'(SX\ E/\M mod N)—>hl-\X\ E/\M mod N) be the direct limit
of maps {σί}. ~

Then, {A*( E/\M mod N), σ(M, N)} becomes a cohomology theory [10].
In particular, we define

A*( ',EΛM) = h*( EΛM mod S°), σM = σ(M, 5°) ,

A*( # /wo </ ΛO = A*( EΆ 5° JIKM/ N), σN = σ(S°, N) ,

A*( ;JB') = A*( EΛS° mod S°), σ = σ(5°, 5°) ,

and A*( ^ mo ί />) = Afe+2( J5J moέί M^), σ^ - σ(S°, M^) ,

where Mp=Sl U ^2 be a co-Moore space of type (Zp, 2), then the third cohomology

theory is just one defined by G. W. Whitehead [10], and the last is just a mod p
cohomology theory associated with A*( E) defined by A. Dold [3] and considered
by S. Araki and H. Toda [1].

2.2. Let (A?, σ J and {Af, erj be cohomology theories and

t: h{ -> A£+5 for any integer k ,

be a linear natural transformation of degree s. If <r2t=( — Tftσ^ then we call
t is a stable natural transformation of degree s. In particular, if (A?, σj=

{A*, <r2}> then we call £ is a stable operation of degree s.

2.3. Let ω: M /\N->Sn be a map, then ω induces a homomorphism

by the relation γ(ω) ([/])=[(! Λω) (/Λl)] for any spectrum E={Eky £k} and

any finite CW-complex X.

Proposition 2.3. For any spectrum E={Ek, 6k}> a map ω: M /\N->Sn

induces a stable natural transformation

γ(ω): A*( EAM) — A*( ^ΛSM mod N)

of degree 0, where γ(ω) if £Ae direct limit of homomorphisms (γ(ω)?}.

Proof. For any integers /, k,

", N)Ύ(ω)ί = γ(ω)ί+1^+/(Af, 5°
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so we can define a natural transformation γ(ω) of degree 0. Moreover, for

any integers /, k,

thus

σ(S*, N)Ύ(ω) = Ύ(ω)σ(M, S°) .

Therefore γ(ω) is stable, q.e.d.

2.4. From some switching map Γ, we can define the following homo-
morphisms :

, Ei+kΛSM] [SkX/\N, SEl+k/\M] ,

T(N S1}*V *[SkX/\SN, El+k/\M]

for any spectrum E={Ek, 8k} and any finite CW-complex ^Γ.

Proposition 2.4. For any spectrum E={Eky 8k}, T induces stable natural
transformations

T*:h*( \E/\SMmodN)-*h*( -,

Γ* : h*( E/\M mod SN) -* A*( ^ΛM morf N) ,

Γ#=l αwrf έ/ςςτ^ Γ*= — 1, n A^rβ Γ^ w ί/z^ έ/ir^ /tmώ of
homomorphίsms {(— l)*£ft+/(Λf, N\T(M, S1)^} and T* w ίAβ ώ>έ?rf /imtί o/

homomorphisms {(—l)kT(N, S1)*}. Moreover, for any finite CW-complex X and
any integer /,

T*; h'(X\ E/\SM mod N) -

and Γ* : A'(JΓ; E/\M mod SN) -» A'-1^; EΆM morf ΛO

«r^ isomorphisms.

Proof. For any integers /, k,

6k+ί+1(My N)*S(My N)6k+ί(M, N)tT(M, S1),

- -fA+/+I(M, ΛO,Γ(M, S^βf^/ίSM, N)*S(SM, N) ,

and σ?+1(M, N)8*+i(M9 N\T(M, Sl),

= 6k+l(M, N),T(My S^ai(SM9 N) ,

so we can define a stable natural transformation T* of degree 1 induced from

the sequence {(—!)* 6Λ+/(M, N\T(M, S1)^. Similarly, we can define a stable
natural transformation T* of degree — 1 induced from the sequence {( — l)kT(N,

S1)*}. Since T(N, S1)* is an isomorphism, T* is an isomorphism.
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Next we consider the following homomorphism

> [Sk+1X/\N, SEl+k/\M]

then the sequence {(— l)^1^*?1, M)$S} induces a stable natural transformation

S* : h*( E/\M mod N) ->• A*( E/\SM mod N)

of degree — 1 and clearly S* is the inverse transformation of TV Therefore T1*
is an isomorphism, q.e.d.

2.5. Let ω: SaM /\SbN-*Sn+a+b be a map. For any spectrum E, we
obtain a stable natural transformation

Γ(ω):A*( ;£ΆM) ->/**( # mod N)

of degree n, which is defined by Γ(ω)=(T*)b(T*)n+a+b<γ(ω)(T*)-a.

Theorem 2.5. // ω: SaM /\SbN-*Sn+a+b is a semi-duality map. Then,
for any spectrum E, the stable natural transformation

Γ(ω): h\X\ EΛM) -> h*+H(X; E mod N)

is an isomorphism for any integer k and any finite CW -complex X.

Proof. It is sufficient to prove that γ(ω) is an isomorphism, by Proposition
2.4. For any finite CW-complex X, there exists a canonical isomorphism

ε(A9 B): hk(X\ E/\A. modB) - lim dir {{S'X/\B, Ek+l/\A}y {6A+ι},}

induced from canonical homomorphisms

, Ek+l/\A] - {S'XΛB, Ek+l/\A} ,

where A, B are any finite CW-complexes.
From (1.2.2), the semi-duality map ω: SaM/\SbN^Sn+a+b induces an

isomorphism

δ(ω)i: {S'X, Ek+l^SaM] - {S'X/\S*N, Ek+l/\Sn+a+b}

and the sequence {δ(ω)j;} defines an isomorphism

δ(ω): lim^dir {{S'X, Ek+lAS"M}, fe+/}»}

- lim dir {{S'XΛS'N, £ft

Since the relation ι(S°, Sl'N)γ(ω)=δ(ω)ι(SaM, S") holds, the homomorphism
γ(ω) is an isomorphism. And therefore Γ(ω) is an isomorphism, q.e.d.
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REMARK. Let X=S° in Theorem 2.5. Since h~k(SQ\ E/\M)=hk(M; E),
a reduced homology group of M, and λ*(S°; E mod N)—hfc(N; E), we obtain
a duality isomorphism

whenever ω: SaM/\SaN-*Sn+a+b is a semi-duality map.

3. Stable operations

Throughout this section, let p be a fixed prime, and let M=S1 (Je2 be the
P

co-Moore space of type (Zp, 2). Denote by /: Sl-*M and π : M-+S2, the canoni-
cal inclusion and the map collapsing S1 to a point.

3.1. Let (A*, σ} be a cohomology theory. The mod^> cohomology theory
(cf. [1]), {λ*( Zp), σp] is defined by

h\X\ Zp) = hk+2(X/\M) for all k,

and the suspension isomorphism

σp: h\SX; Zp) -> hk~\X; Zp) for all A,

is defined as the composition

(I AT)*
hk(SX\ Zp) = hk+\Xf\Sl/\M) - - ̂  hk+\X/\M/\Sl)

where Γ= Γ(S\ M). If {A*, σ} is defined by a spectrum E, then {/z*( Zp), σp}
is equivalent to the cohomology theory defined in section 2.

Making use of maps ι: S*-+M and τr; M^ S2, we put

and S, : hh(X; Zp) = hk+\X /\M) h*+*(XΛ S1)

Λ*+1(^Γ; Zp) ,

which are natural and called as the reduction "mod/>" and the ^mod^)" Bockstein
homomorphism. The following relations are easily seen,

(3.1) <Tppp= pp<r> <rpδp= —δp<rp, δppp = Q and δ^ = 0 .

In particular, the Bockstein homomorphism δ ,̂ is a stable operation of
degree 1 in mod p cohomology theory.
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3.2. Let θ be a stable operation of degree n in the cohomology theory
{A*, σ}, i.e., σθ=(-l)*θσ. We put

Λ

0,: h*(X; Zp) = λ*+2(^ΛM) - >hk+n+2(X/\M) = hk+n(X; Zp)

for all k ,

which is a stable operation of degree n in the mod /> cohomology theory
[h*( Z^), σ ̂ }, i.e., o pθp=(—l)nθpσpί and called as the "mod />" reduction
of θ. From the definitions of ppy 8py θp and a stable operation of degree n,
we obtain the following relations.

(3.2) *pθp=(-Wθpδp and θpPp=Ppθ.

REMARK. In the "mod 2" singular cohomology theory. Since 82=Sl and

S]S2

q

n=S2

q

n+1^S2

q

nSl

q for any n=l, 2, 3, -, ST(»=1, 2, 3, •••) are not the
"mod 2" reduction of any stable operations in the integral cohomology theory.

3.3. Let {/z*, σ} be a cohomology theory. Let X be a CW-complex with
a base vertex Λ?O, and let {XΛ} be the family of all finite subcomplexes with base
vertex x0. Then {h*(Xa)} becomes an inverse system with respect to the
homomorphisms induced from the inclusion maps, and we can define

h*(X) = lim inv h*(Xa) .
α

3.4. In the rest of this paper, we consider a fixed spectrum E= {Ek, 6k} and
denote by {A*, σ}, the cohomology theory {A*( E), σ} associated with E.
And we consider a fixed semi-duality map ω: SM /\SM— >S5.

Denote by tk<=hk(Ek)=hk(Ek; E) and Lk

M^hk(Ekf\M\ E/\M\ the classes
represented by the identity maps of Ek and Ek/\M respectively. And denote

by ω*eA*+1(£AΛM; Zp)=hk+l(EkΛM'y Emodp), the class Γ(ω)(^), where

Γ(ω): A*(' E/\M) -> A*( Emodp)

is an isomorphic stable natural transformation of degree 1.
We put

£*.*: 5(^ΛM) - EkΛMΛSl — ̂  Ekf\Sl/\M -^^ Ek+1/\M ,

and consider the following sequences:

£*
h*(Ek+1AM EAM)-^ih*(S(Ekf\M); E/\M)

h*(EkΛM; EΛM) ,
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; Zp) ̂  h*(S(EkAM); Zp) - h*(Eh/\M Zp) ,

Zp) - h*(Ek/\Sl; Zp) - > h*(Ek;

h*(Ek; Zp) « = - h*(Ek/\S2; Zp) - h*(EΛ/\M; Zp) .

Proposition 3.4. There are relations:

(i) 4* = σ£*(t*
+1) , (ii) ίlί=σ£*M(^1),

(iii) ω* = -<rp£Ϊ.M(ω»+1) , (iv)

(v) S>*)=

Proof. Relations (i) and (ii) are trivial, and (iii) is a consequence of

ω

k— Γ(ω)(ck

M) and the fact that Γ(ω) is a stable natural transformation of degree
1, i.e., σpΓ(ω)= — Γ(ω)σ and ef,MT(ω)=T(ω)εf,M.

Relations (iv) and (v) follow from the diagrams below (cf. (1.3.2)), the
definition of Pp and 8 ,̂ and the fact that ωk^hk^(Ek/\M\ Zp)=hk+\Ek/\MΛ
M\ E) is represented by the composition:

1 Λ 1 Λ /71 Λ 1

where £ is the composition :

Because, by making use of the following homotopy commutative diagram:

ΓΛ

l
Si Λl

S*ΛSM - > SMASM

ω

?5

the class (lΛθ*(ω*) i§ represented by the composition:

l Λ l Λ 7 r Λ l

Therefore, the class σp(l/\i)*(ωk) is represented by the composition:
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S\EkAM) = EkAMAS3 EkAS2AS3 = EkAS5 - Ek+5 .

And also this map represents pp(ιk). Thus the relation (iv) is obtained.
The relation (v) is obtained by the similar way from the following homotopy

commutative diagram:

SM/\SM - - — > S5 . q.e.d.

Now, we can define

hs(E) = lim inv {hk+s(Ek), (-l)Vf*} ,

h*(E Zp) = lim mv {h*+*(Ek Zp), (-l)V,£j-} ,

hs(E/\M; EAM) = lim inv {hk+s(Ek/\M; E/\M), {-l)Vf*M} ,

h\E/\M; Zp) = linynv {hk+s(Ek/\M; Zp), {-iγσpεf,M} ,

PP={pp}:h*(E)-*h*(E;Zp),

i** = (<τp(l ΛO*}: hs(EAM; Zp) -> A-'^; Z,) ,

π** = {(1 Λτr)*σr} : hs(E; Zp) -> hs+2(EAM; Zp) ,

and we can denote

Z = {ί*} e h\E), lp = (p^*)} e A°(l? Z#) ,

; EAM), ω = {ωk}^h\EAM; Zp) ,

which are well-defined from (3.1) and Proposition 3.4. Then we obtain the
following relations.

(3.4.1) (i) ϊ,= p,(Σ), (ϋ) ί, = ***(δ),

(iii) 8X5)=-^**^).

REMARK. Making use of the cofibration

we have the following exact sequence.

(3.4.2) ^

for any cohomology theory {A*, cr} and any finite CW-complex X. But, in
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general the limit sequence of an inverse system of exact sequences need not be
exact (cf. [4], Chap. 8). So the following sequence need not be exact.

X t> 7Γ** ί** X t>

(3.4.3) — ̂ A*(^; Zp) - »λ*(#ΛM; Zp) - >h*(E; Zp)—^.

3.5. Denote by O*(E), On(E/\ M) and O*(E Zp), the modules of the stable
operations of degree n in the cohomology theories h*( E), A*( E/\M) and
A*( E mod p) respectively, where the addition is defined by pointwise opera-
tion.

Let θ(Ξθn(E). Since θ(ι*)=θ(σ€γ(ι*+ί))=(-l)*σeγ(θ(ι™)) in hn+k(Ek;E)y

we can define θ(l)= {θ(tk)}<=hn(E; E). Similarly, we can define θ(ΐM)={θ(ι*M)}
eA"(^ΛM; E/\M) for θ(Ξθn(E/\M), and θ(ω)={θ(ω*)}eh*+1(E/\M; Emodp)
forθ<Ξθn(E',Zp).

Theorem 3.5. The following homomorphisms are isomorphisms.

(i) Φ : On(E) -» h*(E) = hn(E E) defined by Φ(θ) = θ(l) ,

(ii) ΦM:On(EΛM)-*hn(EΛM]E/\M) defined by ΦM(Θ) = Θ(2M) ,

(iii) Φp:O
n(E; Zp) -> hn+l(E/\M'y Zp) = hn+l(EΛM; Emodp)

defined by Φp(θ) = θ(ω) .

Proof. Let a^hk(X\ E} be a class represented by a map

then a=σlf*(Ll+kt), and also a is represented by the composition:

Thus, for Θ<=O"(E),

θ(ά) -

since σ(Sf)*=f*σ. And this assures (i). (ii) is similarly proved, because A*(
E/\M) is the cohomology theory defined on the spectrum {Ek/\M, εktM}.

Let θ<=On(E\ Zp), then Γ(ω)~1(9Γ(ω)eOΛ(£ϊΛM) and this correspondence
of θ to Γ(ω)~1l9Γ(ω) induces an isomorphism of On(E\ Zp) to On(E/\M\ because
Γ(ω) is an isomorphic stable natural transformation. Since ώ=Γ(ω) (^M)> we

obtain (iii). q.e.d.

Because of the above theorem, we study h*(E/\M\ Zp) for the investigation
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of the graded algebra O*(E\ ZP)=J£ O*(E\ Zp), where the multiplication is
defined by the composition.

We obtain the following relations from (3.2), (3.4) and (3.4.1).

(3.5.1) (i) i^φ(ω)=(-l)nφ(lp)andπ^φ(2p)=-φ8p(ώ) for φ€Ξθ"(Z7; Z,),

(ii) i**θp(ω)=(-\)*Pp(θ(T)) and ***Pp(θ(ty=-θp5p(ω) for θtΞθ"(E),

where θp is the mod p reduction of θ.

3.6. Now, we consider some conditions on the spectrum E= {Ekί 6k} under
which the sequence (3.4.3) becomes exact.

Let {Ekhεkι\k,l^Z} be a family of finite CW-complexes Ek / and maps
εkί: SEkί->Ek+ίι, where the set {EΛ >/|/eZ} is a family of subcomplexes of Ek

with the common base vertex as one of Ek for any integer ky such that

(i) £Mc£M+1, (ii) Ek=

and (iii) the following diagrams are commutative :

'

Ek+l

where the vertical arrows are inclusion maps.

Then, h*(Ek\ E) = lim inv {h*(EΛJ; E), i

and h*(E\ E} = lim inv {h*(Ek; E), (-

= lim mv {A*(£M; E), (-l)*

where ιkj\ Ektι~*Ek ι+l is an inclusion map.

From (3.4.2), the following results are easy consequence of the properties
of the inverse limit.

(3.6.1) If h*(Ekfk) have no p-torsion for any

Then the following sequences are exact :

7Γ** i**

0 - λ*(#; Zp) - » A*(^ΛM; Zp) - > A*(^; Zp) ,

0 -> h*(E) Ά h*(E) -^ h*(E Zp) .

(3.6.2) If h*(Ektk) are free abelian groups and the maps σεftkιϊ+ίtk°
h*(Ek+ltk+1)-+h*(Elltk)'are onto for any k^Z. Then Pp: h*(E)-*h*(E Zp)is
an onto homomorphism and therefore h*(E)®Zp^h*(E '; Z^).
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From (3.6.1) and (3.6.2), we obtain

(3.6.3) Under the condition of (3.6.2) on h*(Ekk), if the order of ώ<=
hl(E/\M\ Zp) is p, i.e., pώ— 0. Then the following sequence is a split exact
sequence :

0 - h*(E Zp) - > λ*(#ΛM; Zp) - > h*(E Zp) - 0

and h*(E/\M; Zp) is a free O*(JSr)/pO*(JE
r)-module with generators ω and δ^ώ).

Proof. We consider a correspondence of pp(θ(ΐ)) to θp(ω). Since pώ=Q
and h*(E\ Z^=ρph*(E)^h*(E)®Zp, this correspondence is a well-defined
homomorphism of h*(E \ Zp) to h*(E/\M\ Zp) and this is a right inverse of /**
from (3.5.1), thus the above sequence is a split exact sequence. Since h*(E \ Zp)
is a free O*(E)/pO*(E) -module with one generator lp from (3.2), (3.6.2) and
Theorem 3.5, the final part follows from (3.5.1). q.e.d.

REMARK. If p is an odd prime, then the relation pώ=Q is always true,
and if p= 2, this is true under some condition connecting with the Hopf map

As a corollary of (3.2), (3.5.1), (3.6.3) and Theorem 3.5, we obtain

Theorem 3.6. If ^>ώ— 0, h*(Ek k) are free abelian groups and the maps
σ £**£*+!,*: h*(Ek+lk+1)-*h*(Ekk) are onto for any k^Z. Then, there exists an
isomorphism

0*(E Zp) « (0*(E)lpO*(E)} ® AP(SP)

as graded algebras over Zp, where Λp(Sp) is the exterior algebra generated by the
Bockstein homomorphism Sp. Moreover, O*(E)/pO*(E) is identified with the
mod p reduction of O*(E), a subalgebra ofO*(E; Zp).

3.7. As an application of Theorem 3.6, we consider the stable operations in
mod p Z7-cobordism theory.

Denote by ξk,ι tne canonical complex Λ-plane bundle over the complex
Grassmann manifold Gk / of /ί-planes in Cfe+/, and denote by M(ξkJ) the Thorn
complex of ξkj.

Let £Λ >/: S2M(ξk ΐ)-^M(ξk+1 /) be a map induced from the canonical bundle
map ζk,ι®Cl-*ξk+ιtι, and let *A t /: M(ξkl)-*M(ξkι+1) be a canonical inclusion.
Then the Thorn spectrum MU={MU(k), £k} is defined by

MU(k) = lim| ind (M(ξk>l), ίkfl} and ek \ M(ξkfl) - £M .

And ί/-cobordism theory is the cohomology theory associated with M U.
The family {M(ξk t\ 8kj] satisfies the hypothesis of Theorem 3.6 (cf. [5])

and the order of ώ^h\MU/\M\ Zp) is p for any prime p (cf. [1], Th. 2.3).
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Therefore, Theorem 3.6 is applicable.

On the other hand, Landweber [5] shows that there exists an isomorphism

0*(MU) « Z[Ύί, γ2, -, <γn, -] (g) A*(S°; MU)

as modules, where <γn is the n-th U-cobordism characteristic class defined by

Conner & Floyd [2], which corresponds to a stable Z7-cobordism operation of

degree 2n. Therefore, we obtain

Theorem 3.7. There exists an isomorphism

0*(MU; Zp) « Zp[Ύί, γa, ..-, 7β,

®(A*(S°; MU)/ph*(S0; MU))

as modules over Zp.
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