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1. Introduction

In [11], Donsker and Varadhan applied their celebrated large deviation theory for
general Markov processes to the symmetric stable process X (t) on R* of index o, 0 <
a < 2, and, by making use of the scaling property of X (t), they proved that the
accumulation points of scale changed occupation time distributions

t 1/
(1.1) Li(w,) = %/0 X ((bgi"gt) x(s)> ds

as t — oo in the space M of subprobability measures on R' endowed with the vague
topology coincide almost surely with its subspace

(12) C={BeM:I(B) <1},

where I((3) denotes the I-function in the large deviation principle.
From this, they deduced, among other things, the “other” law of the iterated loga-

rithm

1/a
(1.3) litminf (logiogt) sup |X(s)| = £a(>0) a.s.

-0 0<s<t

and a LIL for the local time (in case d = 1,1 < a < 2),

1/a
. t
1.4) lim sup (m) n sgp b(w,y) = dy a.s.

t—o00

extending the older results for the Brownian motion (the case that o = 2) due to Chung
[4], Jain and Pruitt [21], and Kesten [22]. As compared to the ordinary law of the

*This work was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Reserch (C), 09640271, 1997-1999.
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itereted logarithm, “the other” LIL (1.3) singles out those parts of the typical sample
path sticking around the origin and moving much slower than the average size t!/°.
Just as the Strassen law [28] covers the ordinary LIL, Donsker-Varadhan’s identification
of the limit points of (1.1) in the space of M covers the laws (1.3) and (1.4). We note
that limit theorems of the type (1.3) have been demonstrated by other means for more
general Lévy processes starting with the work of Taylor [32]. See Bertoin [3] and
references therein in this connection. We also note that lim inf counterpart of (1.4) was
shown by Griffin [20] for symmetric stable processes and by Wee [33] for more general
Lévy processes.

We now turn to looking at the Brownian motion M = (X;, P,) on a general
unbounded nested fractal E' studied by Lindstrgm [26], Kusuoka [8], Fukushima [15],
Kumagai [25], Fitzsimmons,Hambly,Kumagai [13] and others. We consider a bounded
nested fractal £ C R? decided by N number of a-similitudes (a > 1). We assume
that one of its boundary points is located at the origin and its diameter equals 1. Then
the unbounded nested fractal E is defined by E = UX_oE(™) for E‘™ = o™E. M is
associated with a Dirichlet form (€, F) on L2(E; i), where p is the Hausdorff measure
on E of Hausdorff dimension d; = log N/loga such that u(E) = 1. This Dirichlet
form involves a parameter c related to a returning probability of the approximating
random walk on the pre-fractal (0 < ¢ < 1). We let

_log N —log(1—c¢) 1 2dy

log (>ds), v=—= ds = —(<2).

L. du
(1.5) i .

dy, and ds are known as the walk dimension and the spectral dimension of M respec-
tively.

Since M is p-symmetric with a well behaved transition function satisfying con-
ditions being formulated in [10] and in §6 in general contexts, it admits all required
uniform estimates in the large deviation principle for the occupation time distributions
as we shall state in §2. The principle involves the I-function which is defined on the
space M of subprobability measures on E in terms of the Dirichlet form as

1.6)  Is(8) :{ g(\/f‘,\/?) B =<, VT €Ffor f=dB/du

otherwise

B € M.

We shall also see in §2 that M enjoys the scaling property (a semi-stable property)
1.7 X (nt) under P, ~ n” X(t) under P, -+,

holding for restricted values

N m
(1.8) n= (1—2) , sothat n” =™, m=0,%1,£2,---.
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Accordingly, we are able to prove in this paper the counterparts of the stated results of
Donsker-Varadhan in [11] by replacing the index « for the stable process with d,, for
the present process M.

More specifically, we define a sequence {¢,,, m =1,2,---} of times by

N m
(1.9) b = .
loglogt,, l1-c
and set
. 1 [ftm
L (w,) = —/ I{a™ X;)ds.
tm Jo

In §3, we shall show that

(1.10) AU Li,(w,)=C P, -ae.w, z€E,
N m>N

where C is the subspace of M defined as (1.2) by the present I-function (1.6).
From (1.10) and a proposition leading to it, we shall derive in §4 the identity

(1.11) liminfa™ sup |Xs|=a9 P, -ae. w, z€E,
m— o0 0<5<tm

for a finite positive value

(1.12) ap =inf{a > 0: K, <1},

where «, is the smallest eigenvalue of the part of the Dirichlet form £ on the domain
G, = {z € E : |z| < a}. As an immediate consequence of a recent work [1] by
Barlow and Bass on the 0 — 1 law for the tail o-fields, we then get

loglogt\”
ogtog ) sup |Xs| =agp P -ae. w, z€E,

(1.13) lim inf (
t—oo 0<s<t

for a positive constant ago satisfying
(1.14) a"lag < ago < ao.

We do not know yet if ago = ao.
In a similar way, we shall derive in §4 from (1.10) that, for any 6 > 0,

(loglog t)%7

t
Py / |X,°ds = Ay P, -ae. w, z€E,
0

(1.15) litm inf
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where Aj is a constant satisfying
(1.16) a 7w Ay < A < aFFdw 4y

for the value
Ag = inf{ /E 2l 2 f € FLE(FL 1) < 1, (Fy Dzacm = 1}

which will be shown to be strictly positive and to be a constant appearing in (1.15) if
we replace t by ¢,,.

Since each one point set of £ has a positive capacity, M admits a local time
¢4(w, y) which is actually jointly continuous in ¢,y and satisfies

t
(117) / to(w, y)uldy) = / I(X.(w))ds BcC R
B 0
We let

R 1
b, (w,y) =N "‘t—ftm (w,a™y)

and denote by A the space of subprobability density functions on E (with respect to
1) which are uniformly continuous. The space A is endowed with the topology of the
uniform convergence on each compact set. It will be seen in §5 that Z;, (w,y) is a
member of this space almost surely and furthermore in accordance with (1.10)

(1.18) ﬂwm={fe«4:\/fef, EWVT,VF) <1}

P,—ae w, x € E,
where the closure on the left hand side is taken in the space .A.

We shall derive from this the identity

ds/2
(1.19) lim sup _Im —4;, (w,0) =by P, -ae. w, z€E,
m—oo \loglogt,, tm,

for the value

(1.20) bo = sup{f(0): f € A,\/f € F,ENF, V) <1},

which will be shown to be bounded by using capacities as 1/¢y0 < by < 2/co. By the
0 — 1 law again,

t \™/?1
(1.21) lim sup (m) —l(w,0) =bgy P, -ae. w, z€E,

t—o0 t
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where b is a constant satisfying

bo.

(1.22) by < boo < lN

In the final section (§6), we shall present the Donsker-Varadhan large deviation
principles in specific forms being used in §3 but in a more general context of sym-
metric Markov processes with smooth transition functions. In particluar, we need a
lower estimate holding locally uniformly with respect to the space variable, which was
first demonstrated in Theorem 8.1 of [10] for a general Markov process by using a
Markov chain approximation. We shall give yet another proof of it by making use of a
supermartingale transformation as was utilized in [9],[18],[30],[31].

2. Dirichlet forms and Brownian motions on unbounded nested fractals

For o > 1, a mapping ¥ from R to R? is said to be an o-similitude if Uz =
a~ WUz + B, z € R?, for some unitary map U and 3 € R%. Given a collection
¥ = {U;,V,,---, Uy} of a-similitudes, there exists a unique compact set ECR?
such that £ = vazl U;(E). The pair (¥, E) is called a self similar fractal.

For A C R? and integer n > 1, we let

Aiyi, =W 000, (A) 1<idy, -, in <N

in

AW = ) Ay, A=A
1<iy, ,in <N
We denote by F the set of all essential fixed points of ¥ ([26]). §F < N. Lindstrgm
[26] calls a self similar fractal (¥, E) a nested fractal if three axioms(axiom of con-
nectivity,symmetry and nesting) and the open set condition are fulfilled and {F° > 2.
We refer the readers to [26] for details but we note that the nesting axiom requires

Ejt'l..lin n Ejl"‘jn = F; .4, N Fjl“‘jn (il .- Zn) 75 (.71 . ]n),

which says that E is finitely ramified, namely, it can be disconnected by removing cer-
tain finite number of points. Thus the family of nested fractals contains the Sierpinski
gaskets on R? and the snowfrake on R? but excludes the Sierpinski carpets [1].

We consider a nested fractal (P, E) on R%. We assume that the origin of R? is
an essentially fixed point, ¥1z = o~ !z, x € R?, and that the diameter of E equals 1.
The countable set

F(o) — G £

n=0
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is called a nested pre-fractal because E = F (),
Let 5y, z,y € F, be Lindstrgm’s invariant transition probability on F'. It enjoys
the following properties [26],[8]:

ﬂxy = 7I'I/y/ whenever |Z' - yl = |$, - yl|7

Tea =0T EF; mpy >02,y € F,x#v; szy=lm€F.
yeEF

7 induces random walks not only on F but also on F() in a natural way. Let c be the
probability that the random walk on F(!) starting at O returns to 0 before it hits other
points of F'. Then 0 < ¢ < 1 and the quadratic form

é(n)(u, u) = %(1 - 2151'1,..-,1'"51\1 Zx,yep(u(‘l’il o---0W; 7)

—u(¥;, 0+ 0 U )1y

Q.1

turns out to be non-decreasing in n for any real-valued function u on F(°°), If we put

(2.2) F= {u: lim c‘:'(")(u, u) < 0o},

n—00

then any function on F(°) belonging to the space F can be extended to a continuous
function on E. Thus we ragard F as a subspace of the space C(E) of continuous
functions on E. For u,v € F, we put

E(u,v) = lim £M™(u,v).

n—00

We next let

E{™ = o™E, m=0,4+1,42,---,

o0
E=J E™
m=0

and call the set E the unbounded nested fractal. Denote by p the Hausdorff measure
on E with y(E) = 1. A regular local Dirichlet form on L2(E; ) can then be defined
from the above mentioned space (€, F) in the following manner [15].

Define a map o, sending a function on E to a function on E by

2.3) omu(z) = u(@™z)(=uo ¥y™(z)), z € E, m =0,+£1,+2,---.
Then o, sends the space C(E‘™) onto C(E) and we let

(2.4) Frm = (om)t- F
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2.5) Epimy (U, 0) = (1 = )™ E(Omity 0 V), U, v € Fr(my.

It is easy to see that

Epw (UIE(‘!),UlE‘(f)) < Egim (u, u), £<m, u€ Fgim.

Accordingly we may set, denoting by C'(E) the space of continuous functions on F,
Q6 F= {u € C(E): Hm Egim (Ul gimy,ulgom) < oo} N L2(E; p)
m—00

Q.7 &(u, v) = lim Egim (u| gom) ,’U|E(m)) , u,v € F.
m— 00

Denoting by ( , ) the inner product of L2(E;p), we further put
Ep(u,v) = E(u,v) + B(u,v) u,v€F, §>0.

Proposition 2.1 ([15]). (i) (€, F) is a regular local Dirichlet form on L?(E; ).
Each one point of E has a positive capacity with respect to this Dirichlet form.

(ii) £ enjoys the scaling property
2.8) E(u,v) = (1 — ¢)€(o1u,01v) u,v € F.

(iii) The Hilbert space (F,Eg) admits a positive continuous reproducing kernel
95(z,y)-

In accordance with a general theory [16], there exists a diffusion process M =
(X¢, Py) on E associated with the reguler local Dirichlet form (£, F) which we call
a Brownian motion on E. Since each one point set has a positive capacity, the law
P, is uniquely decided by the Dirichlet form £ for each x € E. M is known to be
point recurrent ([15]). Denote by p;, G, the transition function and the resolvent of
the process M;

pef(z) = Ex(f(Xy), Gpf(z)= /000 e Ptp,f dt.

Gg(z,-) has gg(z,y) in the above proposition as its density function with respect to

the measure (.
We now collect some properties of the Brownian motion M. We sometimes write

its sample path X; as X (¢).
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Lemma 2.1 (semistable property of M). For any Borel set B of C([0,00) — E),

2.9) Pan(X() € B) = Pz(aX(lj:[C~) €B), zcE.
Proof. We first show that
N
(2.10) Ul(Gﬁf) = 1—_EG%ﬂ(0’1f)

Note that the Hausdorff measure p has the property

@.11) /fdu=N/ o1 f dp,
E E

since this reduces to u(G) = Nu(a™'G), G C E for f = xg. This combined with
the scaling property (2.8) of £ implies

£ p(0n(Gaf)ow) = (1= 0)€(Gaf0) + T BN (Gafv) =
(1-¢)"*&3(Gsf,v) = (1 —¢) Hf,v)=N1-c) Y orf,01v) vEF,

from which follows (2.10).
(2.10) means that

(2.12) 01(pef) = Pizey(01f)

or

Bow (f(X0) = B (f (aX15e,))

We can now use (2.12) and the Markov property to get a desired identity
Eaalf1(X0) -+ fa(Xe)) = Bz (fi(@X zey,) - fa(@X1ze,,) )
holding for 0 < t; < -+ < tp,. O

Corollary 2.1. The scaling property (1.7) holds for

(2.13) n=(%) , m=0,+1,42, ...
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The occupation time distribution L; for M is defined by

¢
(2.14) Li(w,B) = %/ xB(Xs(w))ds, BCE
0

For each w, L(w, -) is an element of the space M of subprobability measures on E.
Corollary 2.2. For any n of (2.13)
(2.15) Li(w,a™-) under P, ~ L,-1,(w,) under Py-mg.

Proof. For any Borel set B C E,

Liw,7B) = ¢ [ xrp(X(e)ds = ¢ [ xp(r X (9)ds,

%/0 xB(X(n™'s))ds = Ly-1,(w, B).

Since

n~7X(-) under P, ~ X(n~'-) under P+,
by (1.7), we get (2.15) by noting 7 = a™. O

The one point set {y} for each y € F has a positive capacity by Proposition 2.1,
and accordingly there exists a positive continuous additive functional ¢;(w,y) of M
with Revuz measure dy,) the delta measure concentrated on {y} ([16]). In the case
of the Sierpinski gasket on the plane, Barlow and Perkins [2] constructed a version of
4i(w,y) jointly continuous in ¢, y, by employing a Garsia’ s type of lemma which is
still valid in the present nested fractal case (see Lemma 5.4 of §5). Hence we may
assume that it is jointly contiuous in ¢, y, in the present case as well ([25]) and we
call it the local time. It is then characterized by the relation (1.17). We let

1
(2.16) l(w,y) = th(w,y),
so that £;(w,y) is the density function of the occupation time distribution L; of (2.14).
Corollary 2.3.  /;(w,y) enjoys the following scaling property: for any 1 of (2.13)

2.17) ¢(w,y) under P, ~ N™™¢ 1, (w,a”™y) under Pg-m,.
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Proof. By virtue of (2.11),

Lu(w,a™B) = /B € (w,a™y)u(a™ dy) = N™ /B € (w, a™y)u(dy).

Therefore, (2.17) follows from (2.15). O

In what follows, c21, a2, - -, Will be some positive constants.

Lemma 2.2. (i) pi(z,-) is absolutely continuous with respect to . and moreover
Pt(Coo(F)) C Cxo(E)) and pi(By(E)) C Co(E) where Coo(E) denotes the space of
continuous functions on E vanishing at infinity and the subscript b indicates ‘bounded’.
(ii) For any § > 0,

sup P,( sup | X, —z| > 9) < cart, ¥Vt > 0.
z€E 0<s<t

(ii) follows from a stronger estimate of kumagai [25,(3.7)]. The first statement
in (i) is a consequence of the y-symmetry of p; and the absolute continuity of the
resolvent. For the second statement however, we invoke a heat kernel upper bound

due to Fitzsimmons-Hambly-Kumagai [13]: p;(z,-) admits a jointly continuous density
pe(z,y) with respect to u such that

(2.18) pe(z,y) < coat™%/?exp (—Czs(d(x,y)dwt_l)l/(‘iw_l)) )
where d(z,y) is the intrinsic metric on E satisfiying
(2.19) d(a™z,a™y) = £md(x, y)

for some constant £ > 1 and d,, denotes the walk dimension with restect to this metric.
In [13], a lower bound

(2.20) cast ™2 exp (—eas(d(a, y) ™) D) < pi(a,y),
was also derived.

We prepare one more lemma for later use. For an open set G C E, we set
(2.21) Fo={ueF:ulx)=0Vz € E—-G}.

The restriction of the form £ to the space F is called the part of £ on the set G and is
denoted by (£, F2). It is a regular local Dirichlet form on L?(G; ) and is associated
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with the part of M on the set G, namely the process M being killed upon the leavmg
time 7 from G. Let E; and E< be the interior of £ and E{™) respectively; Eq =
E—F, E{™ = E(™ — a™F. The space F% for G = Ey and for G = E{™ will be
designated by F° and f?m) respectively for simplicity. They are related by

f?m) = (o'm)—_l - FO

just as (2.4).
k > 0 is called an eigenvalue of (£, F2) if there exists a function (called an

eigenfunction) f € F2 such that

E(f.9) = k(f, 912Gy V9 € Fo.

Lemma 2.3. (i) Suppose G is a bounded connected open set. (€,F2) then admits
a positive smallest ezgenvalue with an associated ezgenfunctton being strictly positive
on G. Further (Ex,F2) has a reproducing kernel g)\ (:v y) which is continuous and
strictly positive on G x G.
(ii) & is an eigenvalue for (€, F°) if and only if so is ()™ & for (€, (m)) m =
0,41,42,--.

Proof. (i) From Kusuoka’s estimate [8,(4.14)]

(2.22) sup_[u(z) —u(y)| < cos\/ E(u,u), ueF

z,ye€E

and (2.5),(2,7), we can derive a bound

(2.23) sup lu()| < carv/Ex(u,u), u€ Fg, A >0,
z€G

together with a Poincaré inequality
2.24) (u, u)p2(Gip) < c28€(u,u), u € F2.

(2.24) implies that the smallest eigenvalue of (€, F2) is not less than c;g > 0. Observe
that the Dirichlet form (£, F2) on L?(G,p) is irreducible because of the inclusion
F& C C(G) ([16, Lemma 4.6.2]). Hence the smallest eigenvalue admits a correspond-
ing eigenfunction which is strictly positive on G ([6,Theorem 1.4.3]).

(2.23) implies the existence of the reproducing kernel gg’G(x, y) for (Ex, FQ). Its
joint continuity and strict positivity can be shown in exactly the same way as the proof
of [15,Theorem 2.3] except that the positivity of

g)O\,G(x’ y)/gg‘G(y7 ZJ) =FE; (e—Aa{y) 30 {y} < TG')
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for z,y € G can now be derived from [16,Theorem 4.6.6 (i)].
(i) This scaling property of eigenvalues can be shown in the same way as [15,Corollary

3.2]. U

We are now in a position to formulate the large deviation principle in the present
context. The occupation time distribution (2.14) is, for each ¢ > 0, an M-valued
random variable. We denote its distribution with respect to P, by Q; 4:

Qt I(A) (Lt(w7 ) € A), ACM.

M is endowed with the vague topology. We also consider the space M; of all prob-
ability measures on E endowed with the weak topology. The I-function I¢ is defined
by (1.6).

Theorem 2.1. (i) For any closed subset K of M,

1
(2.25) lim sup ri sup log Q: -(K) < — 1nf I:(B).

t—oo

(ii) Let 3 be a probability measure on E with 3(G) = 1 for a bounded connected open
set G C E. Let O be a neighbourhood of 3 in M1 and G' be a bounded connected
open set with G' O G. Then

(2.26) hmmf log mf P, (Li(w,") € O,t < 1g/) > —Ig(B).

Proof. In view of the heat kernal bounds (2.18) and (2.20), conditions A;, Ay,
Aj of §6 are fulfilled and hence Theorem 2.1 follows from Theorem 6.1, Theorem 6.2
together with Proposition 6.2. Here we give a more direct proof using the preceding
lemmas.
(i) follows from Lemma 2.2 (i) and Theorem 6.1.
(ii). It suffices to check hypotheses H;,~, Hs in Theorem 8.1 of Donsker-Varadhan
[10] for the part M2, of the process M on the set G’. Since the resolvent of M2,
possesses the reproducing kernel g?\’G' (z,y) appearing in Lemma 2.3 as its density
with respect to p, both H4 and Hj are fulfilled. The absolute continuity of 1ts transtlon
function pt (hypoth51s H,) also holds because of the symmetry. Since pt sends
L?(G'; p) into F2 (C Coo(G")), it makes the space Co,(G") invariant and accordingly
give rise to a strongly continuous semigroup on this space. Hence H; is satisfied by
Bgo = C(G"). Hs is clear since Coo(G') C Bo. O

Finally we quote a powerful 0 — 1 law from [1,Theorem 8.4 and Remark 8.5].

Theorem 2.2. (Barlow and Bass [1]) Suppose T is a tail event: T' € (), 0{Xu,u
> t}. Then either Py(T') is O for all = or else it is 1 for all x.
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3. Limit points of scale changed occupation time distributions

From now on, we work with the Brownian motion M = (X, P;) on the un-
bounded nested fractal E associated with the regular local Dirichlet form (€, F) of
Proposition 2.1. Let L;(w, B), B € B(FE), be the occupation time distribution defined
by (2.14) and put

@3.1) Ly, (w,B) = Ly, (w,a™B), B e B(E),
where t,, is the solution of equation (1.9).

We define by (1.6) the functional I¢ on the space M of subprobability measures
on E endowed with the vague topology and we set

C = {BeM: (B <1}
(= {dB=F-dueM:\feF WiV <1})

Proposition 3.1. For P,-a.e w

(3.2) N U (L, w,)}cC

N m>N
for each x € E.
Proof. We can follow the arguments in the proof of Theorem 2.8 of [11]. Take
any open set N C M such that C C N and let § = infgene Ig(B). Since Ig is
lower semicontinuous function on M on account of the equation (6.5) in §6 and N°

is compact, we have that § > 1. Take €' such that § > ¢’ > 1. Then, by virtue of
Theorem 2.1, we have for sufficiently large m

. 1
(3.3) Qioglog tm, a-mz(N®) < exp(—(loglogtm)d’) = Toaty”

On the other hand, we see from (1.9)

tm K
34 “= <log log tm)

which, together with Corollary 2.2, implies

3.5) P, (-i’tm (wa ) € Nc) = Qlog log tm, a""z(NC)'
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Since log t,, > mlog (—1%), we get from (3.3) and (3.5)

ZPE (ﬁtm(w,-) € NC) < Z; < 0.

m (m log %)61

Borel-Cantelli’s lemma implies that L, (w,-) € N from some m on for P,-a.e. w.

O

Lemma 3.1. (i) There exist positive c,, with lim,, .o ¢y, = 1 such that

N m
tm=c¢cm | —— | logm.
1-c¢

(ii) For any k > 1, there is an increasing sequence {m,}5%, of positive integers such
that

3.6) loglogt,, ~k log n asn — oo
3.7 tmn [ty < exp(—C31nk_1) for some c3; > 0.
Proof. In what follows, 71,4, - -, N4m denote some numbers tending to 0 as m —
0.
(i) Since

+ 1og(3) tm = m(1 + N1m) log

N
logt,, = mlog 1

—c 1-¢’
we have
(3.8) log@ t,, = (1 + n2m) logm, 10g® t,, = log® m + n3m,
and hence
(3.9) log tm = mlog +log® m + 3.

1—-c
(ii) Let m, = [n*] the integer part of n*. Then logm, ~ klogn, and (3.6) follows
from (3.8). Since (n + 1)k — n* > kn*~1, we have from (3.9)

10g tm,, — logtm,,, < —kn*!log

1 + Nam.-
—c 0
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Proposition 3.2. Consider a probability measure 3 satisfying I¢(8) < 1 and

B(G) = 1 for a bounded open set G containing the origin. Let O be a neighbour-
hood of 8 in My and G’ be a bounded open set with G' > G. We put

Ji, ={w: Ly, (w,") €0, Tam.gr >t}
Then

(3.10) w € Jy,, for infinitely often m
for P,-a.e. w for each x € E.
Proof. We can proceed along the same line as in the proof of Theorem 2.15 of

[11]. We take a neighbourhood O; of 3 in the space M; such that 3 € O; C O; C O.
By the assumption # = I¢(3) < 1. Choose k > 1 such that

1
3.11) 0’=(2k—1)-§(1+0)<1.
Take a sequence m; < mg < -+ < m, < --- satisfying conditions of Lemma 3.1 (ii)

for this k.
Put

~ 1 tmn
Bt it @ B) = —— [ Lamnn(X,) ds.
Mp—1 Jit

tm” - Mp—1
Then the total variation
”Etmn_l itmn (U.), ‘) - ‘t/tmn (w’ .)“

is not greater than 2t,,_ _,/t.,., which tends to zero as n — oo by Lemma 3.1. Con-
sequently, for the proof of Proposition 3.2, it suffices to prove that

(3.12) we Jyp infinitely often P,—a.e. w, x €

for the event

G13) Jo={w:Li,  tn (@) €O Tamn.G > tm,_,, Tamn.Gr > tm, }-
We let

Frn-1=0{Xs;0<s<tm, .}, Bno1 ={w: Tamn.G¢ > tm,_,}
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and we further put £, = t,,, — t;,,_, and

/ " Lamn (X,) ds € 01> .
0

-

gn(z) = P, <‘ramn.G/ > tn,

Then, by virtue of the Markov property

(3.14) Pz(jnlfn_l) >Ig,_,(w)- inf gn(z) Pr—ae. w.

z€a™n -G’

On the other hand, if we let

(3.15) M = < N ) y Sn = t—n,

we find from (1.7) that

. g i
gn(@™z) = Pamngy (a"m"Xs € G' Vs € [0,t,), 5—/ IL(a™™"X,)ds € 01>
n JO
.1 [t
= P (X, €G Vs 0,i], 7/ L(X..)ds € Oy
n t 0 Mn S

n

= P, (Xs€G Vs€|0,s,], Ls, (w,-) € Gy) .
and consequently

(3.16) inf  gu(z) = 122 P, (t¢' > $n, Ls,(w,*) € O1).

z€a™n -G

On account of (1.9),(3.15) and Lemma 3.1,

Sp = —t_r—n—’l‘—l -loglogtm,, ~ k log n, n — oo.

Hence, in virtue of Theorem 2.1 (ii), we see that, for sufficiently large n, the right hand
side of (3.16) is not less than

exp(—sp, - %(1 +0))) > exp{—(2k- 1)%(1 + 6)log n}
1

Q7 .

= exp(—6’ log n) 3

In view of (3.14) and (3.16), there exists /N such that

oo

= s I
(3.17) S P(JnlFar) 2 Y. 22t Pi-ae w.
n=N n=N n
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Suppose that

o0
(3.18) P, (Bf) < oo.
n=1
Then, by Borel-Cantelli’s lemma, the right hand side of (3.17) diverges for P,-a.e. w,
and accordingly we can get to the desired conclusion (3.12) owing to the Borel-Cantelli
type lemma [11,Lemma 2.14].
It only remains to show (3.18). Using the scaling property (1.7) again,

P,(Bi) = P,(a ™+ X, &G for some s € (0,t,,])
= Pmn, (Xﬂ"ils & G for some s € (0, tmn])

= Pa—mn+1z (TG S n;—il-ltmn) :

Let £ be an integer such that E¢) ¢ G. By Lemma 2.2, we have, for sufficiently large
n such that o~™n+1z € E{9),

_ t
Py(B;) < Czlﬂniltmn = Ca13 =2 Joglogtm,,, -

Mnp41

The sum of the right hand side is finite by Lemma 3.1. O

Lemma 3.2. Let D be the set of probability measures (3 on E with compact
support and I¢(8) < 1. Then

(3.19) C CcD,

where the closure is taken in the space M.
Proof. We first show that
(3.20) VB e C, Iy, € My, Ie(va) <1, nh_{%O Y = B vaguely.
Take A\, 71 and put 3, = A, 8. Then
Ie(Bn) = Ale(B) < Any @n = Bn(E) < A < 1.

We -next take v = ¢? - u € M; with non-negative bounded ¢ and I¢(v) < oo and we
set
1

Vpp, = W(ﬁ(a—m,)zﬂ.
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Then, by the scaling property of L,
E)= — “mr)u(de) = | ¢Pdu=1
vm(B) = v [ $la"ma)u(de) = [ $Pdu=
E E
and for any compact K C
vm(K) < N™™|¢ll54(K) — 0, m — oo.
Namely

Vm € M1 n}gnoo Vpm = 0 vaguely.

Furthermore, by (2.8),

Iewm) = wmE(Ba™),6(a™))

- (I;,C)msw,gﬁ):(I;,C)ng(u).

We let

Yn,m = ,Bn + (1 - an)Vm(e Ml)
Then

IS(’Yn,m) < Ig(ﬂn) + (1 - an)IE(Vm) S >\n + (lj;c>m Ig(ll),

which can be made to be less than 1 for a large m, say m,. Now v, = ¥, m, has the
required property (3.20).

Next take any v = f2.pu € M; with £(f,f) = A < 1. Since the Dirichlet
form (€, F) is regular, there exist f, € F, n =1,2,.--, which are non-negative, with
compact support and satisfying, for A < X' < 1,

nllvngogl(f _fnvf- fn) =0 g(fmfn) <.

Let v, = (fn/bn)? - p where b, is the L2(E;pu)-norm of f,. Then, v, € My,
lim,, o0 ¥, = v weakly and

limsup I¢(v,) = limsup b;2€(fn,fn) <\MN<«i1l,

n—oo

which means that v,, € D for large n. O
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Theorem 3.1.  The identity (1.10) is valid.

In fact, the inclusion C is proven by Proposition 3.1. The left hand side of (1.10)
includes the space D according to Proposition 3.2, and hence the space C by virtue of
Lemma 3.2, proving the other inclusion D. Theorem 3.1 implies the following ([11]):

Theorem 3.2. If ® is a functional on M which is lower semicontinuous in the
vague topology, then, for P;-a.e. w,

(3.21) lim sup ®(L;, (w,-)) > sup ®(06),
m—o00 BeC

and if ® is a funtional on M which is upper semicontinuous in the vague topology,
then, for Pi-a.e. w,

(3.22) limsup ®(Ly,, (w,-)) < sup ®(8).

m—oo BeC

4. Other laws of the iterated logarithm

In order to derive the identity (1.11) from Theorem 3.2 and Proposition 3.2, we
consider the functionals ®, on M defined by

4.1) ®.(8) = B(Ga) ®,(8) =B(Ga), a>0,

where

Go={z€E:|z|<a}, a>0.

G, is bounded open and connected because of the relation
j|* =< d(0,)

for the shortest path distance (intrisic metric) d and a chemical exponent d. ([13,Re-
mark 3.7]). Since the measure p is o-finite, there exists a countable dense subset D of
[0, 00) such that

w(Ga\ Go) =0 Vae€ D.
All elements of C is absolutely continuous with respect to the measure x4 and accord-

ingly

4.2) sup ®,(8) = sup ®/,(8) a€ D.
BecC BeC
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Furthermore ®, (resp.®)) is upper (resp. lower) semicontinuous and we have from
Theorem 3.2 that

4.3) lim sup i/t,,, (w,Gg) =rq Py—ae. a€D.

m-—00

Here we denote by r, the common value in (4.2). Obviously 0 < r, < 1.

Lemmad4.1. For a € D, r, = 1 if and only if there exists a function u € F
vanishing on E \ G, such that

(u, u)L2(E;/.L) =1 &(u,u) <1

Proof. We see from (1.6) that
ro =sup{B(G,) : = v2dg, vEF,(v,0)p2mp <1, E(v,v) <1}

Suppose r, = 1. We can find v,, € F such that

(Vn,vn) <1, lim v2du =1, E(vn,v,) < 1.

n—00 G
a

Then there exists a subsequence {v;} of {v,} such that v,2c u vaguely converges to v €
M and v(G,) > limsupy,_, fGa vidp = 1. Moreover, by the lower semicontinuity of
Ig, I¢(v) < liminfg_, o0 (v, vk) < 1 and thus v can be written as v = u?u, u € F.
Since u is continuous, it vanishes on E \ G, identically. The ‘if* part is clear. J

Let £, be the smallest eigenvalue of the Dirichlet form (£, Fg ) the part of £ on
the open set G,. Since

ke = inf{E(u,u) :u € F, u=0o0n E\ Gq, (u,u) 25, = 1},
we get from the above lemma that
Corollary4.1. r, =1 ifand only if K, < 1.
On account of Lemma 2.3, we see that k, is strictly smaller(resp. greater) than
1 if @ > 0 is large(resp. small). So the value ag defined by (1.12) is finite, strictly

positive and

4.4) ap =inf{a € D : k, < 1}.
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Lemma 4.2. The identity (1.11) is valid.

Proof. k, can be seen to be strictly decreasing in a because a corresponding
eigenfunction is striclty positive on G, by virtue of Lemma 2.3. Take any a’ > a > ag.
Then k, < 1 and accordingly there exists a function u € F vanishing on E \ G, such
that

(ww)r2gw =1, E(u,u) <1

Hence the measure 3 = u? - y satisfies conditions in Proposition 3.2 for G = G, and
in particular

Tam.G,, > tm infnitely often, P;—a.e. w, z € E,

in other words

liminfa™™ sup |X,|<ad P,-ae w, z€E.

m—00 OSSStm

On the other hand, for any a < ag, kK, > 1 and hence r, < 1 — ¢ for some § > 0
by Corollary 4.1. By virtue of (4.3), there exists a positive integer Ny such that

1
Z—meas{s €0,tm]: Xs €a™-Go} <1-6, Ym > Ny, P,—a.e.,
m

which means

a”™ sup |Xs|>a, Vm > Ny, P,—ae.

0<s<tm
Therefore
liminfa™™ sup |X,| > a. O
m—00 0<5<t

Theorem 4.1.  The identity (1.13) holds for a positive constant agg satisfying
(1.14).

Proof. The random variable appearing in the left hand side of (1.13) is measur-
able with respect to the tail o-field Nyo{X,;u > t}. Owing to Theorem 2.2, it is a
constant agp Py-a.e. for any z € E. If t € (t,—1,tm] and ¢ is large, then

sup lel < ——= sup X,

log log t) 7
t 0<s<t QT 0<s<ty,

i sup IXSIS(

O™ 0<s<tm—1
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which, combined with the preceding lemma, leads us to the bound (1.14) of the con-
stant agg. OJ

Let V(z) be a continuous function on E with V(z) — oo as ¢ — oo. As in [11],
one can use Theorem 3.2 to get asymptotics of additive functionals of type

t
At = / V(Xs)ds.
0
We prepare a lemma. Denoting by || - ||2 the norm in L?(E; 1), we set

A={feF:&(f )<L, |fla=1} and
Ao ={f € FNCo(E): E(f, f) <1, |Ifll =1}

Lemma 4.3.

inf [ V¢?d ='f/V2d.

ol [ v = jng [ Vit

Proof. Let v be a function in Ag. Then, for any ¢ € Aand 0 < e < 1,
Ie (1 — 09 + ev®) p) < (1 - )Ie(P?p) + elg (V) < 1

and

lim [ V((1-€)¢? + ep?) duz/ Vérdu.
=0 /g E

Hence, we obtain

. 2 : 2
[ veus w Ve
E(9)<1

Since (£, F) is recurrent, there exists a sequence {f,}52,; C FNCy(E) such that
0< fn<1,&(fn, fn) — 0and f, — 1 py-ae. as n — oo ([16,Theorem 1.6.5]). By se-
lecting a subsequence if necessary, we may assume that lim,,_, o, n2E(fy, fn) = 0. For
any ¢ € A with £(ip, ) < 1, let ™ = ((=n) V ) An and 9, = o™ f,,/my, (M, =
(™ full2). Then, by Theorem 1.4.2 (ii) in [16]

) . 1 n n
lim sup € (¢, ¥n)'/? = lim sup — E(P™ fr, o™ fr)1/2
n—oo n

n— oo

< limsupi (nS(fn,fn)1/2 +8(%(p)1/2) <1.

n—oo Mp
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Noting that limp, o [ V¥2du = [, Vp?dp, we obtain the lemma. O

Using Proposition 3.2 and Lemma 4.3, we obtain, by the same argument as in
Example 2 of [11],

1 tm Y
(4.5) liminf — [ V (Xs (loglit'") )ds = inf / V f2du.
0 feA E

Let us consider a special case when V (z) = |z|°.

Lemma4.4. For 8 >0,
inf o f2dy > 0.
Jof, /E ||” f*du
Proof. Suppose that infsc 4 [, |z|® f2dp = 0. Then there exists a sequence {f,}
C A such that lim, .o [ |2|°f2dp — 0 and f, — 0 p-ae. as n — oo. Let K =

{lz| < R} N E (R > 0). We then see from Lemma 4.5 below that f2 converges to 0
in L' (K; p) and thus lim, o [, f2dp = 1. Therefore,

0= lim / |z|° f2dpu > RP lim f2du=RY,
n—o /o n—oo Jie
which is contradictory. |

Lemma 4.5. For any compact set K C E, {f*};ca is uniformly integrable on
K.

Proof. Since p;(x,y) < caot~%/2 by (2.18),
Ipelloo2 < €M@, M(t) = (1/2)logcaz — (ds/4) logt,

by Lemma 2.1.2 in [6], and for any f € F and € > 0
1
3 /Ef2 log fdu < e€(f, f) + (M(e/4) + 2)|IF15 + | f1I3 log || £l

by virtue of Theorem 2.2.4 in [6], where ||p;||co,2 denotes the norm of the operator p;
from L?(E;u) to L=(E;u). In particular,

Sup/ f?log, f2du < 2e+2M(e/4) +4 < co.
feEAJE

Hence, Theorem 22 in [7] leads us to this lemma. O
We now obtain the next theorem.
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Theorem 4.2. For any 6§ > 0, it holds that
.. . (loglog)®” P ,
htmlnf |X [°ds = Aj.

for a constant A} satisfying (1.16).

Proof. Put

Ag = inf 9 f2dpu.
9 flgA/EIxI frdu
We then see from (4.5) that

liminf L,, = Ay P,-ae.Vz € E,

m—00

where

loglogt,)"? [i™
L, = (“tTe)fo |, |°ds.

If t € (tm—1,tm] and ¢ is large, then

L

tm— (loglogt)”
—olm-1 g g 0
o KLm S t1+'70 / IX | ds <

and, by lemma 3.1 (i),

—g— .. . (loglogt)
a=® deGSIIE.g}f(_—%HE—G_/ |X,|%ds < a®tw Ay,

which leads us to the bound (1.16) of the constant A} on accounts of Theorem 2.2 and
Lemma 4.4. O

5. Law of the iterated logarithm for local times

In this section, we aim at establishing (1.19) by showing ,just as in [11], the equi-
uniform continuity of IZtm (w,+) as m tends to infinity. We need to prepare a series of
lemmas to this end. d,, (resp. d ¢) will denote the walk (resp. Hausdorff) dimension
with respect to the intrinsic metric d ([13]). we also let ¥ =1/ dy.

Lemma 5.1. Let ¢(x) be a function on E with a compact support, and 2h a
diameter of the support. We further suppose [, ¢dp =0 and [, |¢|dp = e < co. Fix
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C > 0and 6 € (0,dw(1 — ds/2) A dy/(dw — 1)). Then, for every positive integer n,
we have

2 1B" Ontn
sup Ex(([ o dsyn) < CRST
we[0,C] I'(1+n7)
z€FE

where T = 2 — 40 — dg, and B is a constant depending only on e and 0.
Proof. We first note that 0 < dy, (1 — dy/2) A dy/(dy — 1) since dy < 2, dy, > 1

([151,[13]). Let E(z) = c22 exp(—023|x|‘§w/(‘iw_1)). At (2.18), we have already noted
that t=%/2Z(d(x, y)/t7) bounds the transition density function from above. Thus, we

have
([ oexas) 2"]

< (2n)!/ / dsy - - dsgpu(dzy) - - - p(dzay)
0<51<-<sap<u J E2n

2n
H xz) H { ( $21+1,$2j) ) —- ( d($2j+27-'1:2j+1)~> . 32(0)}
i=1 (85— 8i—1)%/? j (82j+1 — 825)7 (s2j+2 — S2j+1)7 ’

where sy = 0 and o = z, and we used the assumption || g ®dp = 0. We note that
|2(z)| < ca2, and |Z(z) — E(0)| < (c22 V c22¢23)|z|®. Hence, we have

((d(ﬂfzﬂlvx?j)_) = ( d(x2j+2’x2j+1)~) - 52(0)‘
}

S2j41 — 825)7 (82j+2 — $25+1)7
(/ o (Xs) ds) } < (2n)!(€2022(2h)0K)n/ dsy -+ - dsap

[1]

d(z2jt2,T2j+1)
(s2j42 — 32J+1)

d(x2;+1, T2;)
(82541 — 825)7

< K {
where K = cgp3 V cg2c23. Using this and hypotheses, we obtain that
0<851 < <82 <C

1 { 1 1
i -+ ot
o 152641 — 32k|d /2 |sopy2 — Sok+1|%/2 Usapgr — s2k|®7  |Sak42 — S2k41/07

From this, through the same computation as [11], we arrive at the desired estimate.

|

Lemma 5.2. Let ¢, 0 and C be as in Lemma 5.1. Then there exists a positive
constant cs1 = cs1(e, C, 0) such that
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Yo

sup FE, {exp {051
u€[0,C)
z€EE

1 u
W/o #(Xs)ds

where p =2/(2 — 7).

Proof. For k > 0,

E, [exp {k

1

/O " 4(X,)ds

1

n np
| |
n!

|

n np-2/p] ) P/?
n!

We here used Holder’s inequality since 2/p > 1, which comes from the fact d, > 1
(see [23]). Consequently we get

/0 " 6(X.)ds

[eS)
n=0
o)
n=0

[ oxas

5.1 E, [exp {k

[l < SE{

n=0

Let k = koh~?%/2. Then, for sufficiently large n,
k™ ((2n)!)P/2 BPr/2pPOn/2CTPn 2 | (nID (1 + )P/ )

behaves like n~'/2(koBP/22°CP~171-P)" Hence, for sufficiently small ko, the series
on the right of (5.1) converges. O

In the following, we deal with ¢;(w,z) = ¢;(w,x)/t instead of the local time
bi(w, z) (see (2.16)).

Lemma 5.3. Let 0 and p be as in Lemma 5.1 and 5.2, and fix C > 1. Then there
exists cs2 = cs52(0, C) such that, for every u € [1,C), z € E and P, almost all w,

/ / [GXP {052
d(y1,y2)<1

= F(u,w) < 00.

by (w,y1) — &, (w, y2)|”
d(yl,y2)9/2

b- 1] u(dy) ()

Furthermore, Sup,¢(1 ¢}, e g Ez[F(u,w)] < 00
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Proof. We call the set, amE‘il,...,im +n (M +mn > 0), n-complex. For z € E,
let A,(z) be the union of all n-complexes including x. Let F'(™) be the union of
a™F("tm) over the integer m satisfying n +m > 0. Take p € F(") arbitrary, and fix
Y1, Y2 € An(p). We then have, by strong Markov property,

Z;(w’yl) — e"u(way2)

p

E; [exp {k FRTE } - 1]
k
=E; [l{rp<u}(w)EX.,-p(w) [eXP {E

x KU—Tp(w) (wl’ yl) - eu—fp(w) (w/’ y2)
d(yh y2)9/2

ial!

where 7,(w) = inf{t > 0: Xy(w) € An(p)}. If 7p(w) < u, then, for almost all o/,

. 1 u—Tp(w) .
gu—rp(w)(wlvyz’) = "}gnw m/o 1Am(yi)(Xs(wl))ds, i=1, 2.

Let ¢ () = 1A, (y1)(@)/(Am(y1)) — 1A, (y2) (€)/1(Am(y2)). Using Fatou’s lemma
and the assumption, u > 1, we have
p
p-1]

Pm(Xs(w'))ds
d(y1,y2)%/2

eu—‘rp(w) (L‘), »Y1 )'—Zu—rp(w) (wl 7y2)
d(y1,y2)%/2

EXT,, () [exp {ui,,
5.2)

u—7p(w)
Q

p
} - 1] '
Since the diameter of supp(¢,,) approximates to d(yi,y2) as m — oo, by virtue of

Lemma 5.2, there exists k such that the right hand side of (5.2) is bounded by a deter-
ministic constant K; independent of u and p. We hence conclude that

E, [exp { k

Let §o = min {d(z,y) : z,y € F, = # y}, and take an integer ny such that §o&™°~1 <
1 < 6p&™. If d(y1,y2) < 1, because of (2.19), we can find p € F(=7m0) guch that
A_no(P) D Y1, yo. Therefore {(y1, y2) € EXE : d(y1,y2) < 1} C Uy p-no) A—no (P)
X A_pn(p), and we have

I ol
d(y1,92)<1

< liminf,,— EXT,, () [exp {k

%(UJ, yl) - e;(‘“: y2)
d(y1, y2)9/2

P} - 1] < K1 Py(1p < w).

e'lu(w’ yl) - e;(wa y2)
d(yla y2)0/2

p} - 1] p(dyr)p(dyz)
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’ oy p
< Z // E, [exp{k £ (w,y1) @;S;J,yz) }_ 1]
peF(=m0) A_ng(P)XA_ny(p) d(y17y2)
p(dy1)u(dyz)
< Y P(r,<0)
peF(—no)

Finally, we verify that 3° P;(m, < C) < co. We then complete the proof by using
Fubini’s theorem.
. t+1
For p € F™, let fi(z) = Py(r, < t), and gi(z) = E;[f; 13 & )

where A, (p) is union of all n-complexes intersecting with A, (p). We then have

X;)ds],

Tp+1
@ 2 Bl 1, (Xds<d

4

Tp+1
> B / Lan (o) (Xa)ds; 75 < 1
T,

P

1
= EulBx, [ 1a.r(X)ds) 7 <1l
0

Clearly, Ex, [ fol 1A, (xo)(Xs)ds] is bounded from below by some constant ¢ = ¢(n) >

0. Hence, g} (x) > cfy(z). Furthermore, since UpA,(p) covers E finite times, we can
take a constant ¢/ > 0 such that

> gi(@)

I

Eq Z / lev1(y)u(dy))

peﬁ'(") pEF(")
< B[ tnludn)
= d(t+1).
Combining these results, we get the estimate ) Py(mp, <t) < d(t+1)/c. O

To prove Lemma 5.5, we introduce a version of Garsia’s lemma, which is ex-
actly the same as the one presented in [2,Lemma 6.1] except that we use a closed ball
B(z,r) = {y € E : d(z,y) < r} with respect to the intrinsic metric d. The proof is
also the same since, in our case, it still holds that there exists constants c; (E), c2(E)
such that,

el(E)r < u(B(z,y)) < c2(E)r.

Lemma 5.4. Let p be an increasing function on [0,00) with p(0) = 0, and ) be
a non-negative symmetric convex function, with lim 1 (u) = co. Let H be a compact
u—00
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subset in E containing a closed ball B, and let f: H — R be a continuous function.

Suppose that
o gt ) i <

Then there exits a constant cs3 depending only on E such that

d(z,y)
f@=rwi<s [ v (552) plau)

for every (z,y) € B x B.

Lemma 5.5. Let 0 and p be as in Lemma 5.1 and 5.2. Then there exist positive
constants cs4 and css independent of x € E such that, for alla >0and 1 > 6 > 0,

P, sup |l (w,y1) — L (w,y2)| >ap < csate 5245 exp|[—cssta?d P72,
d(y1,y2)<6

Proof. Let n(t) be the largest integer not greater than logt/log %, and ((t) =
t/(£)"®). Then, by Corollary 2.3, the distribution of the random variable ¢,(w, y)
under P, is the same as that of N_"(t)é’g(t)(w, a~"®y) under P, w/an)- We thus have

Px{ sup Ifi(w,yl)—fi(w,yz)lza}

d(y1,y2)<9

= Fejare { Sup oy (w, 1) — f’g(t)(w»w)l > N"(t)a} )

d(y1,y2)<8/€n®)

In the following, we will estimate the right hand side.
We first note that 1 < ((¢) < 1—1_\15 By setting 1—117—6 for C in Lemma 5.3, the
hypotheses of Lemma 5.4 is satisfied with ¢(z) = exp(cs2|z|?) — 1, p(y) = y®/? and

with f(z) = €'C(t)(w,x). Using Lemma 5.4, for every y1, y2 € E such as d(y1,y2) <
5/6™®), we have

8/En (g 530 e g
[eg(t)(w,yl)—eg(t)(w,yz)] <8 /0 {—1og( € +1)} orn-tay

C52 Uu
5/¢m®) 1/p
< ?f/ {log(———~c53F( (1), w) )} u®/2=1 dy
Cszp 0 w2ds
oo 1)]1/e
_ 46D [log(v + 1)] d

1/p

v9
Cso b
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where D = (csaF'(¢(t),w))®/47 /2df, b = cssF(C(t),w)(€"9/8)%4 and ¢ = 1+
6/4dy. Since [ [log(v + 1)]*/#/vdv < (log(b+ 1) + 1/(g — 1))/*/((g — 1)b~1),
we conclude that

swp ey (,1) — gy (w02 | <8 ( o =

d(y1,y2)<6/6m®)

- 1
5 )"/2 <log(b+ 1)+ 4df/9) /e
From this, it follows that

Pz/an(t) sup
d(y1,y2)<8/En®)

E'C(t)(w,yl) - ‘elc(t)(wsy2)‘ 2 N"(t)a}

n(t) 4d. ).
< Pz/an(e) {log(b + 1) > 652Nn(t)P(£8l_)P(€T)P0/2 _ %} .

Note that N"(1)egn(t)rd/2 — (N/(1 — ¢))™®) since

= logN —log(l—¢) - logN
dy = , df = .
log ¢ log &

Then, we get the following estimate:

P:z: { sup Iélt(wv yl) - gi(%w)l 2> a}

d(y1,y2)<é
n(t) 2d.f N n(t)
< G <§ 5 ) exp {—C’ga” (1 — c) 5"’9/2} Eyjano [F(C(1),w))].

Since supy,ep,N/(1-c)),zcE Ez[F(u,w)] < oo, and (N/(1 - o))" <t < (N/(1 -
)™+ we have the lemma. O

We have defined an increasing sequence t,, — oo as a unique solution of (1.9).
Let

gtm (wa y) = Nmeém (w, amy)‘

Theorem 5.1. For each a > 0, there exists § > 0 such that

P.{limsup sup b, (w,y1) — by, (w,pp)| 2 a3 =0,
m—00 d(y1,y2)<é

for every x € E.
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Proof. On account of the Borel-Cantelli lemma, it suffices to prove

(5.3) > P, { sup {étm (@,11) =l (0,92)| > a} < oo.

d(y1,y2) <6

We can see from Corollary 2.3 that Etm (w,y) under P, has the same distribution as
lloglogt,, (Ws y) under Pyjqm. Using Lemma 5.5, we get the following estimate:

Pod e Ji o) o]
d(y1,y2)<é

< Pz/am sup Iefoglogtm (w7 yl) - Kioglog tm (w’ y2)| 2a
d(y1,y2)<8

cs4(log 10g £ )% 5291 (log t,, ) ~0s50" /972

I

Because of Lemma 3.1, logt,, = O(m) and loglogt,, = O(logm). Hence, for any
a > 0, we can find § > 0 which makes the series (5.3) converge. O

Let A be the totality of non-negative uniformly continuous functions f on F with
J, g fdp < 1. The space A is equipped with the topology of uniform convergence on
compact subsets of E. For f € A, we denote Ig(fdu) by Ig(f).

Theorem 5.2. For P;- a.e,

ﬂm={feA: Ie(f) < 1}

N m>N

Proof. Let G be a continuous one to one map from .4 into M defined by G(f)(B)
= [ fdu for any Borel set B. We note that ¢, € A, and G(4;,, (w,")) = Ly, (w,").
Because of the continuity of G, we see that

g (mNUmZN{étm (Ld, )}) - mNUmZN{-lA-/tm (w7 )}

We hence obtain NxUm>n{f:,, (w,-)} C {f € A: I¢(f) < 1} from Theorem 3.1. Let
{%} be a sequence such that a, \, 0. On account of Theorem 5.1, for each a,, we
can find §,, > 0 and a set 2, with P,(Q,) = 1 such that, for w € Q,,

limsup sup étm (w,y1) — &m (w,y2)| < an.
m—00 d(y1,y2)<én
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Therefore, for we N2, Up,> N{étm(w, -)} is uniformly bounded and equicontinuous. By
Ascoli-Arzella’s theorem, U,,>n{¥;, (w, -) }is compact, and hence G (Umz ~{be, (W, )})

D) UmZN{Jitm(w, -)}. Using Theorem 3.1, we have

G (ONUmZN{Etm(w, ) > {BeM: Ig(B) <1}

The following corollary is obvious from Theorem 5.2.
Corollary 5.1. For a lower semicontinuous functional ® on A,

lim SUPQ(étm (w> )) 2 sup (I)(f), P;- ae,
m=—00 fe{feA:Ie(f)<1}

and for an upper semicontinuous functional ® on A,

limsup ®(4,, (w,-)) < sup o(f), P;- ae..
m—00 fe{feA:Is(f)<1}

Now we show the validity of (1.19) by using Corollary 5.1. We first prepare the
following lemma.

Lemma 5.6. Let by be defined by (1.20). Denote by cq (resp. ce o) the 1-capacity
of the one point set {0} with respect to the Dirichlet form (€, F) (resp. its part on the
set Eée) , see §2). Then we have for any positive integer ¢

2

— <bp < —.
Ce,0 C

o

Proof. We first note the implication:
inf{&(f,f): f€F, f(0) 2 Va} 22=b <a.

Indeed, if by > a, there exists f € A such that £;(v/f,v/f) < 2 and 1/f(0) > \/a,
which means that inf{&(f, f): f € F, f(0) > /a} < 2. Obviously, & (f, f) > 2 for
any f € F such that f(0) > y/2/co, and hence we get that by < 2/co.

For the lower bound, consider the 1-equilibrium potential e, of the one point
set {0} relative to the part of the Dirichlet form £ on the set Eée). ero 1s contin-
uous, vanishing outside Eée> and consequently uniformly continuous on E. Further

E1(ee,0/\/Ct0,€2,0/+/Ce0) = 1. Therefore by > €4,0(0)%/ce0 = 1/cs 0. O
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Theorem 5.3. The identity (1.19) is valid. (1.21) holds for a positive constant byg
satifying (1.22).

Proof. (1.19) is obtained by applying Corollary 5.1 to the functional ®(f) = f(0)
for f € A. To prove the second assertion, we put

t %21
wi(w) = (m) th(% 0).

If t € (tm-1,tm] and t is large, then

tim—1 tm

Wt,, (LU)

Wi, _, (W) S wi(w) <
tm m—1

It then suffices to use (1.19), Lemma 3.1 and the 0 — 1 law (Theorem 2.2). ]

6. Uniform bounds in the large deviation principle

Let X be a locally compact separable metric space and m a positive Radon mea-
sure on X with full support. Let (£,F) be a regular Dirichlet space on L?(X;m)
and M = (Q, Xy, F, F;, P;, () a corresponding m-symmetric Hunt process. Here F;
is the minimum completed admissible filtration and ( is the lifetime. Let us denote by
{pt}+>0 the semi-group associated to M, i.e., p;f(z) = Ey(f(X:)). Throughout this
section, we make following assumptions for M:

A (Irreducibility) If a Borel set A is pi-invariant, i.e., p:(xaf)(z) = xap:f(z) m-
ae. x for any f € L?(X;m)NB(X) and t > 0, then A satisfies either m(A) = 0 or
m(X \ A) = 0. Here B(X) is the space of Borel functions on X.

A, (Feller property) p;(Coo(X)) C Coo(X), where Co (X) is the space of continuous
functions vanishing at infinity.

A (Strong Feller property) p:(By(X)) C Cp(X), where By(X) and Cy(X) are spaces
of bounded Borel functions and bounded continuous functions, respectively .

REMARK 6.1. (i) The symmetry of M and A3 imply the absolute continuity of
transition function, p¢(z, dy) = p:(z,y)m(dy), for each t > 0 and = € X.
(ii) By the right continuity of sample paths of M, p;f(z), f € Cx(X), converges to
f(z) for each z € X. Hence, A, implies that the semigroup p; is strongly continuous
on Coo(X) ([27).
(iii) Due to the heat kernel bounds (2.18) and (2.20), the Brownian motion on the nested
fractal satisfies A;, Ay, As. By the same reason, the diffusion processes on Sierpinski
carpets recently constructed by Barlow and Bass [1] also satisfy them.
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Lemma 6.1. For any Borel set B € B(X) with Cap(B) > 0,
P.(cp<¢) >0 foranyze€ X,
where o = inf{t > 0: X; € B}.
Proof. By A; and Theorem 4.6.6 in [16],
P,(cp<()>0 forqe. z€X.
Since a set of zero capacity is polar by Remark 6.1(i) and [16,Theorem 4.1.2],
Py(op <() = PFPo(op(fe) <()
= [ pde)Pon < Omd) >0
for any z € X. O

Let us denote the resolvent { R, }4>0 of M,

¢
Rof(z) = E; (/0 €_atf(Xt)dt> for f € Coo(X),

and define the generator A by
Au=au—f foru= R.f, f € Coo(X).
Set

DY(A)={Raf: >0, f€ CL(X)NL*(X;m), and f #0}.

Here C1 (X) denotes the set of non-negative continuous functions in Coo(X). Note
that any function in D+ (A) is strictly positive. Indeed, Let ¢ = R, f € Dt (A). Since
the set, O = {z € X : f(x) > 0}, is a non-empty open set, P,(co < ¢) > 0 for any
z € X by Lemma 6.1. Hence, R, f(z) > 0 for any z € X.

For ¢ = R,g € D*(A), let Mt["b] denote the martingale additive functional

M = ¢(Xy) — ¢(Xo) — /O t Ap(X,)ds.

and N®¢ (e > 0) the multiplicative functional defined by

X A
(6.1) NP< = % exp (—/0 ¢f€ (Xs)ds> .




LIL’S FOR BROWNIAN MOTIONS ON FRACTALS 531

Let 7, be the first leaving time from the set F,, = {z € X : ¢(z) > 1/n}. Since,
by Itdo formula

N&e _1__—1_/tATnex (_/s Ao (X )du)dMM
tATH _¢(X0)+60 p 0¢+€ u s

we see

6.2) EL (NPt < ¢) < liminf B, (NJS ) = 1.

Let M? = (Q, X;, P?,() the transformed process of M by N%°. We then see from
Lemma 6.3.1 and Theorem 6.3.2 in [16] that M? is ¢?m-symmetric and conservative,
P2(¢ = 00) = 1 for any = € X. Moreover, we can show

Proposition 6.1. ([18],[30]) M? is ergodic in the sense that if A € F is 6;-
invariant, (0)7*(A) = A, then PJ, (A) =0 or P, (2\A) =0.

Let M be the set of positive measures £ on X with u(X) < 1. We equip M with the
vague topology. Define the function I¢ on M by

00 otherwise.

Ie(p) = {

For w € Q and 0 < t < {(w), we define the occupation distribution L;(w) by

Liw)(4) = § /0 xa(Xo(@))ds, A€ B(X).

Theorem 6.1. Assume Ao and the absolute continuity of transition function. For
any closed set K of M

1
limsup = log sup Py (L; € K,t < () < — inf Ig(p).
t—oo T zeX heEK

REMARK 6.2. This theorem holds only by assuming the Feller property A2 and
the absolute continuity of the transition function p:(z,-)with respect to m for each
t>0and z € X.

‘Proof. Let u € DT (A). By virtue of (6.2), for any € > 0

t
E. (exp (— / uﬂf‘e(xs)ds) < c) <UD e
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and thus, for any Borel set C' of M

1 A
6.3) limsup = log sup P, (L; € C,t < () < inf sup/ ks du.
t—00 zeX u;D;-()(A) pecJx ute€

Let K be a closed set of M and set

f=sup inf Au

du.
pueK vept(a) Jx U +e
€>0

Then, for any 6 > 0 and p € K, there exist u, € D*(A) and €, > 0 such that

/ A 0y <04s.
X

Uy t+ €y

. . Au
Since the function #

P—— belongs to C (X), there exists a neighbourhood N(u) of
nT €
u such that ‘

A
/X . :L_”eudu <£+2§ forany v € N(u).

Since Uuex N(p) is an open covering of K, there exist p1,...,u in K such that
K C UX_ N(u;). Put K; = N(u;). We then have for 1 < j <k

/ s gy <042
sup —ap = )
peK; Jx Up; + €yu;

and thus

A
max inf sup/ Y dp < £+ 26.
ISjSkuE’D+()(A)M€Kj x uUte

€>

Therefore, by (6.3)

1 1
limsupzlog sup P(L; € K,t <() < max limsup - logsup P,(L; € K;,t <()

t—o0 zeX 1<j<k t—oo zeX
. Au
< max inf sup du
léjskuev+0(A)ueKj x ute
€>
6.4) < £+ 26
Since
Au
6.5 — inf du =1,
(6.5) weDt(a) Jx Ut € w=Tew)

>0

by Proposition 4.1 in [30], the proof is completed. O
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Lemma 6.2. If a set E C X is of positive m-measure, then R,Ir(z) > 0 for
any x € X.

Proof. There exists a positive constant € such that m({z € X : R,Ig(z) > €}) >
0. Let 0 = inf{t > 0 : RoJg(X:) > €}. Then, for any z € X

RaIE'(a") > E; (/c e—atIE(Xt)dt) =FE; (e_aaRaIE(Xa))

> €Ey(e™®) >0

according to Lemma 6.1. O

M denotes the set of probability measures on X equipped the weak topology.

Theorem 6.2. Let F' be a compact set of X and O an open set of M. Then

— 00

1
I S _ i
(6.6) htm inf . log ;gﬂ P, (L € O,t <) > ;i[elg) Te(p).

Proof. We have only to check hypotheses H; ~ Hy in [10]. H; follows from Re-
mark 6.1(i), and H is fulfilled by taking Co.(X) as Bgg. Hj is clear since Coo (X) C
By. Besides, Lemma 6.2 and Assumption A3 imply Hy and Hjy respectively. O

Now we present another proof of Theorem 6.2 under conditions imposed in [12]:
Al For all z € X, p1(z,y) > 0 m-ae. y.
A, pi(z,-) as a mapping from X to L*(X;m) is continuous.

Al and Aj imply A; and Agj respectively. Of course, A} and A} are fulfilled
by the Brownian motions on the nested fractals and the diffusions of [1] on Sierpinski

carpets.

Proof of Theorem 6.2. Let ¢ be a function in Dt (A) such that ¢?m € O. Put
i = ¢*>m. Let U be a neighbourhood of x such that U C O. Then, by taking ¢
large enough, we have {L; € O} D {L;_2(0:) € U}. Hence,

(6.7) Py(Li € 0,1 <) 2 Po(Li—2(61) € U, t < ()

Pp(Li—2(61) € U,1 < (¢t —2 < ((01),1 <((0i—2061))
= Ez (EX1 (PXt—2(]‘ < C);Lt-2 € U’t -2< 4)11 < g)

/ p(z,dy)Py(Li—2 € U, Xy—2 € K) - W,
X

v
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where K is any compact set of X with m(K) > 0 and W = inf,cx P;(1 < () > 0.
Set

S(t,e) = {w €eN: 1/}( %(z)Lt(w,dx') - /X ¢A¢dm‘ < e}

and

Ay = S(t,e)n{L; € U}.

Since

P (L €U, X, € K)=E¢(NP") VL, e U, X, € K)
_ s [ 9(Xo) . )
> exp (t (/X PApdm e)) E? (qS(Xt)’At’Xt €K

and [, pApdm = —I¢(p), the right hand side of (6.7) is greater than

#(Xo)
#(Xt—2)

exp ((t=2(~Ie(w) = ) [ pi(z,dy)EY ( Aoz, Xos € K) W,

Noting that

X
E$ < $(Xo) Ay, Xs_g € K) > ¢(y)Pf(At~2,Xt-2 € K),

H(Xi—2) SUp,e i ()

and that, by the ergodicity of P‘me and Theorem 2 in [14]

Hm P{(At-2,Xi2€K) = Jim (P (Xi—2 € K) — PJ(A{_3, Xi—2 € K))
= u(K) p-a.e.,
we obtain
o ?(Xo) m(K)
hmlnf/E¢ A9, Xs—0 € K)d z———/ dp > 0
minf [ y(¢(Xt_2) t—2, Xt—2 € K)du(y) r—" X¢> m

and, by lemma 6.3 below,

#(Xo)

———— A 0, X4 o€ K ) >0.
¢(Xt_2) t—2 t—2 )

lim inf inf / pl(x,dy)E$<
X

t—oo xeF
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Therefore, we can conclude that

TP S
htrggjlleoggrelng(Lt €0,t<() > —I(u).

Noting that for f € FNCL(X) with f Z0

oR.f
laRafl L2

€ Dt(A) — inf asa— o

S
£ 2

and that the space F N CE(X) is dense in F T, the space of non-negative functions in
F, we arrive at the theorem. O

Lemma 6.3 ([12,Lemma 5.3]). Assume A} and Af. Let p = ¢°>m € My, ¢ €

F, and let ¢, n=1,2,... such that 0 < ¢, < 1 and

/X¢n(y)du(y) Se>0, n=l2....

Then, for any compact set F' C X, there exists co > 0 such that

inf/ baW)pr(@,dy) > €2 >0, n=1,2,....
z€F X

A connected open set D C X is called a regular domain if every boundary point

of D is a regular point of X \ D with respect to M. By Proposition 1 in [29] and
Theorem in [5], we obtain

Proposition 6.2. If D is a regular domain of X, the part of the process M on D

satisfies Aq, Ay and As.
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(3].
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(6]
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