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1. Introduction

In [11], Donsker and Varadhan applied their celebrated large deviation theory for

general Markov processes to the symmetric stable process X(t) onR1 of index α, 0 <

a < 2, and, by making use of the scaling property of X(t), they proved that the

accumulation points of scale changed occupation time distributions

„.„
as t —> oo in the space M of subprobability measures on R1 endowed with the vague

topology coincide almost surely with its subspace

(1.2) C = {βeM:I(β)<l},

where I(β) denotes the /-function in the large deviation principle.

From this, they deduced, among other things, the "other" law of the iterated loga-

rithm

(1.3) liminf f 1 ^ 1 0 ^ sup \X(s)\ = ίa{> 0) a.s.
t-*oo \ t J 0<s<t

and a LIL for the local time (in case d = 1,1 < a < 2),

/ t \l/ίΛ 1
(1.4) limsup -—-—- - sup£t(ω,y) = da a.s.

1/α

extending the older results for the Brownian motion (the case that a = 2) due to Chung

[4], Jain and Pruitt [21], and Kesten [22]. As compared to the ordinary law of the

*This work was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid
for Scientific Reserch (C), 09640271, 1997-1999.
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itereted logarithm, "the other" LIL (1.3) singles out those parts of the typical sample

path sticking around the origin and moving much slower than the average size t1^.

Just as the Strassen law [28] covers the ordinary LIL, Donsker-Varadhan's identification

of the limit points of (1.1) in the space of M covers the laws (1.3) and (1.4). We note

that limit theorems of the type (1.3) have been demonstrated by other means for more

general Levy processes starting with the work of Taylor [32]. See Bertoin [3] and

references therein in this connection. We also note that liminf counterpart of (1.4) was

shown by Griffin [20] for symmetric stable processes and by Wee [33] for more general

Levy processes.

We now turn to looking at the Brownian motion M = (Xt,Px) on a general

unbounded nested fractal E studied by Lindstr0m [26], Kusuoka [8], Fukushima [15],

Kumagai [25], Fitzsimmons,Hambly,Kumagai [13] and others. We consider a bounded

nested fractal E C Rd decided by N number of α-similitudes (a > 1). We assume

that one of its boundary points is located at the origin and its diameter equals 1. Then

the unbounded nested fractal E is defined by E = U ^ = 0 £ < m > for £ < m ) = amE. M is

associated with a Dirichlet form (£, T) on L2(E; μ), where μ is the Hausdorff measure

on E of Hausdorff dimension df = log N/ log a such that μ{E) = 1. This Dirichlet

form involves a parameter c related to a returning probability of the approximating

random walk on the pre-fractal (0 < c < 1). We let

(1.5) dw = — (> df), 7 = — , ds = — (< 2).
log a aw aw

dw and ds are known as the walk dimension and the spectral dimension of M respec-

tively.

Since M is μ-symmetric with a well behaved transition function satisfying con-

ditions being formulated in [10] and in §6 in general contexts, it admits all required

uniform estimates in the large deviation principle for the occupation time distributions

as we shall state in §2. The principle involves the /-function which is defined on the

space M of subprobability measures on E in terms of the Dirichlet form as

(1.6)

We shall also see in §2 that M enjoys the scaling property (a semi-stable property)

(1.7) X(ηt) under Px ~ ηΊ X(t) under Pη-Ίχ,

holding for restricted values

/ N \ m

(1.8) η = , so that ηΊ = aπι, m = 0, ±1, ±2, .
V 1 - cj
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Accordingly, we are able to prove in this paper the counterparts of the stated results of

Donsker-Varadhan in [11] by replacing the index a for the stable process with dw for

the present process M.

More

(1.9)

and set

In §3, we

(1.10)

specifically, we

L

shall show that

nι

define a sequence

tm
log log tm

'tm{ ' } tmjo

J Ltm{ω,.) = C

{tm,

( N

m

Px

m = 1

\ 771

c) •

y-mXε

-a.e. ω,

,2,

,)ds.

•} of times by

E,
N m>N

where C is the subspace of λi defined as (1.2) by the present /-function (1.6).

From (1.10) and a proposition leading to it, we shall derive in §4 the identity

(1.11) liminf a~m sup \XS\ = a0 Px -a.e. ω, x G E,
m->oo 0<s<ίm

for a finite positive value

(1.12) a0 = inf{α > 0 : κa < 1},

where κa is the smallest eigenvalue of the part of the Dirichlet form £ on the domain

Ga = {x G E : \x\ < a}. As an immediate consequence of a recent work [1] by

Barlow and Bass on the 0 — 1 law for the tail σ-fields, we then get

(1.13) liminf ( l θ g ^ Q g M sup \XS\ = α 0 0 Px -a.e. ω, x G E,
t^oo \ t J 0<s<t

for a positive constant αOo satisfying

(1.14) a~xao < a00 < α 0 .

We do not know yet if αoo = ^o-

In a similar way, we shall derive in §4 from (1.10) that, for any θ > 0,

(1.15) liminf ^ l ^ J* \X8\
θds = A'e Px -a.e. ω, x G E,
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where Af

θ is a constant satisfying

(1.16) a~θ~dwAθ < A'θ < aθ+du}Aθ

for the value

Aβ = inf{ / \x\θfdμ : / e f,S(f,f) < 1, (f,f)L2(E;μ) = 1}
J E

which will be shown to be strictly positive and to be a constant appearing in (1.15) if

we replace t by £ m .

Since each one point set of E has a positive capacity, M admits a local time

tt{ω,y) which is actually jointly continuous in ί, y and satisfies

(1.17) f et(ω,y)μ(dy) = f IB(X.(ω))da B C Rd.
JB JO

We let

and denote by A the space of subprobability density functions on E (with respect to

μ) which are uniformly continuous. The space A is endowed with the topology of the

uniform convergence on each compact set. It will be seen in §5 that £ίm(α;,t/) is a

member of this space almost surely and furthermore in accordance with (1.10)

(1 18) ^N Um>iv ̂ m (^5 *) — {/ £ "4 : v 7 G J7, £(V7> Λ/7) <
Px—a.e. ω, x G .

where the closure on the left hand side is taken in the space A.

We shall derive from this the identity

in, ^ 1
(1.19) limsup " —£tm(ω,0) = 60 Px -a.e. w . i e E ,

m^oo V log log tT Oy *m

for the value

(1.20) 60 = sup{/(0) : / € Λ V 7 e ^ , 5 ( V 7 , V7/) < 1},

which will be shown to be bounded by using capacities as 1/Q > 0 <bo< 2/c0. By the

0 — 1 law again,

/ t \d'/2l
(1.21) limsup - — - — - Ίit(ω,0) = b00 Px -a.e. ω, x € E,
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where 6Oo *s a constant satisfying

(1.22) bo < boo < zr^—bo.
1 — c

In the final section (§6), we shall present the Donsker-Varadhan large deviation

principles in specific forms being used in §3 but in a more general context of sym-

metric Markov processes with smooth transition functions. In particluar, we need a

lower estimate holding locally uniformly with respect to the space variable, which was

first demonstrated in Theorem 8.1 of [10] for a general Markov process by using a

Markov chain approximation. We shall give yet another proof of it by making use of a

supermartingale transformation as was utilized in [9],[18],[30],[31].

2. Dirichlet forms and Brownian motions on unbounded nested fractals

For a > 1, a mapping Φ from Rd to Rd is said to be an a-similitude if Φa; =

a~λUx + /?, x e Rd, for some unitary map U and β e Rd. Given a collection

Φ = {Φi, Φ 2 , , ̂ N} of α-similitudes, there exists a unique compact set E c Rd

such that E = (JUi Φi(^) τ h e pair (Φ, -B) is called a self similar fractal

For A c /?d and integer n > 1, we let

A^...^ = Φ<]L o •.. o Φ i n (A) l<iw',in<N

We denote by F the set of all essential fixed points of Φ ([26]). jJF < TV. Lindstr0m

[26] calls a self similar fractal (Φ,2£) a nested fractal if three axioms(axiom of con-

nectivity,symmetry and nesting) and the open set condition are fulfilled and |)F > 2.

We refer the readers to [26] for details but we note that the nesting axiom requires

Eh...in r\Eh...jrι =Fil...innFjl...jn (h-'in) ^ (ji jn),

which says that E is finitely ramified, namely, it can be disconnected by removing cer-

tain finite number of points. Thus the family of nested fractals contains the Sierpinski

gaskets on Rd and the snowfrake on R2 but excludes the Sierpinski carpets [1].

We consider a nested fractal (Φ,l£) on Rd. We assume that the origin of Rd is

an essentially fixed point, Φi# = a~1x, x G Rd, and that the diameter of E equals 1.

The countable set

oo

= I I
n=0
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is called a nested pre-fractal because E = F(°°).

Let π x y , x,y G F, be Lindstr0m's invariant transition probability on F. It enjoys

the following properties [26],[8]:

πxy = πx/y/ whenever |a: — j / | = \x' — y'\,

πxx = 0 x G F; πxy > 0 x,y e F,x ^ y; ^ π ^ = 1 x £ F.

π induces random walks not only on F but also on F^1^ in a natural way. Let c be the

probability that the random walk on F^ starting at 0 returns to 0 before it hits other

points of F. Then 0 < c < 1 and the quadratic form

£<»>(u, U) = i ( l - C)-" Σ Σ K * * )

turns out to be non-decreasing in n for any real-valued function u on F^°°\ If we put

(2.2) J" = {M : lim έ(n){u,u) < oo},
n-^ oo

then any function on i^ 0 0 ) belonging to the space f can be extended to a continuous

function on E. Thus we ragard T as a subspace of the space C(E) of continuous

functions on E. For u, v G ̂ , we put

f ( u , v ) = lim έ ( n )(w,ί;).
n—^CXD

We next let

E(m) = amg^ m = 0, ± 1 , ±2, ,

ra=0

and call the set E the unbounded nested fractal. Denote by μ the Hausdorff measure

on E with μ(E) = 1. A regular local Dirichlet form on L2(E\ μ) can then be defined

from the above mentioned space {S,T) in the following manner [15].

Define a map σ m sending a function on E to a function on ϋ? by

(2.3) σmu(x) = u(amx)(= u o ^^(x)), x G E, ra = 0, ± 1 , ±2, • •.

Then σ m sends the space C{E^rn)) onto C(£7) and we let

(2.4) J ^ < m > = ( σ m ) " 1 ^
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(2.5) εE(m) (ίx, υ) = (1 - c)m£(σmiz, σmυ), u, υ G

It is easy to see that

W > u\E(t)) < SE{m) (w, u), t < m, u

Accordingly we may set, denoting by C(E) the space of continuous functions on E,

(2.6) T = \u e C{E) : lim £E<m){u\E{m),u\E<™>) < oo\ ΠL2{E;μ)

(2.7) £{u,v)= lim εE{m) {u\E{m),v\E{m)), u.υeJ7.
m—>^oo

Denoting by ( , ) the inner product of L2(E;μ), we further put

, v) = ε(u, v) + β(u, v) u, v e T, β > 0.

Proposition 2.1 ([15]). (i) ( ί ,^ 7 ) is a regular local Dirichlet form on L2(E;μ).

Each one point of E has a positive capacity with respect to this Dirichlet form.

(ii) ε enjoys the scaling property

(2.8) ε(u, υ) = (l- c)ε{σχu, axv) u, υ e T.

(iii) The Hubert space [T^β) admits a positive continuous reproducing kernel

In accordance with a general theory [16], there exists a diffusion process M =

(Xt,Px) on E associated with the reguler local Dirichlet form (ε.J7) which we call

a Brownian motion on E. Since each one point set has a positive capacity, the law

Px is uniquely decided by the Dirichlet form ε for each x e E. M is known to be

point recurrent ([15]). Denote by pt, Ga the transition function and the resolvent of

the process M;

/•OO

ptf(x) = Ex(f(Xt)), Gβf(x) = / e-^ptf dt.
Jo

Gβ(x, •) has gβ(x,y) in the above proposition as its density function with respect to

the measure μ.

We now collect some properties of the Brownian motion M. We sometimes write

its sample path Xt as X(t).
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Lemma 2.1 (semistable property of M). For any Borel set B ofC([0,00) —» E),

(2.9) P«x(X(') eB) = Px(aX(±j^.) eB), xe E.

Proof. We first show that

(2.10) σ1(Gβf) = JL.G^_β(σif).

Note that the Hausdorff measure μ has the property

(2.11) ί fdμ = N ί σifdμ,
J E J E

since this reduces to μ(G) = Nμ(a~λG), G C E for / = \Q. This combined with

the scaling property (2.8) of E implies

, σlV) = (1 - c)~ιε(Gβf, υ) + Jί-βN-\GβS, υ)

) = (l-c)-1(f,υ) = N(l-c)-1(σ1f,σ1v) »

from which follows (2.10).

(2.10) means that

(2.12)

or

We can now use (2.12) and the Markov property to get a desired identity

holding for 0 < tλ < < tn. Π

Corollary 2.1. The scaling property (1.7) holds for

JV m

(2.13)
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The occupation time distribution Lt for M is defined by

(2.14) Lt(ω,B) = - ( χB{Xs{ω))ds, BcE
1 Jo

For each ω, Lt{ω, ) is an element of the space Λ4 of subprobability measures on E.

Corollary 2.2. For any η of (2.13)

(2.15) Lt(ω, am-) under Px ~ Lη-H(ω, •) under Pa-mx.

Proof. For any Borel set B c E,

Lt{ωrfB) = \ ί χη,B{X{s))ds=- ί χB(η-^X(s))ds,
1 Jo ι Jo

- fχB{X{η-ιs))ds = LrH{ω,B).
1 Jo

Since

η~ΊX{-) under Px - X(η~λ') under Pη-Ίχ,

by (1.7), we get (2.15) by noting ηΊ = a171. •

The one point set {y} for each y e E has a positive capacity by Proposition 2.1,

and accordingly there exists a positive continuous additive functional £t(cϋ,y) of M

with Revuz measure 6{yy the delta measure concentrated on {y} ([16]). In the case

of the Sierpinski gasket on the plane, Barlow and Perkins [2] constructed a version of

£t(ω,y) jointly continuous in t, y, by employing a Garsia' s type of lemma which is

still valid in the present nested fractal case (see Lemma 5.4 of §5). Hence we may

assume that it is jointly contiuous in t, y, in the present case as well ([25]) and we

call it the local time. It is then characterized by the relation (1.17). We let

(2.16) t't(ω,y) = -ttt{ω,y),

so that i't{ω,y) is the density function of the occupation time distribution Lt of (2.14).

Corollary 2.3. £f

t(ω,y) enjoys the following scaling property: for any η of (2.13)

(2.17) t\ω, y) under Px - ΛT" 1 ^- i t (ω, α " m y ) under Pa-mχ.
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Proof. By virtue of (2.11),

Lt(ω,*mB) = / 4(ω,αmy)μ(αm dy) = N™ [ £'t(ω,a™y)μ(dy).
JB J B

Therefore, (2.17) follows from (2.15). •

In what follows, c2i, C22, , will be some positive constants.

Lemma 2.2. (i) pt(x, •) is absolutely continuous with respect to μ and moreover

Pt(Coo(E)) C Coo(E)) and pt(Bb(E)) C Ch{E) where C^E) denotes the space of

continuous functions on E vanishing at infinity and the subscript b indicates 'bounded'.

(ii) For any δ > 0,

sup Px( sup \XS -x\> δ) < c 2 i t , Vί > 0.
xEE 0<s<t

(ii) follows from a stronger estimate of kumagai [25,(3.7)]. The first statement

in (i) is a consequence of the μ-symmetry of pt and the absolute continuity of the

resolvent. For the second statement however, we invoke a heat kernel upper bound

due to Fitzsimmons-Hambly-Kumagai [13]: Pt(x, •) admits a jointly continuous density

Pt(x, y) with respect to μ such that

(2.18) pt(x, y) < c22t-
d°/2 exp (-c2S(d(x, y^Γ 1 ) 1 /*" 1 ) ) ,

where d(x, y) is the intrinsic metric on E satisfiying

(2.19) dioTx, amy) = ξ^dix, y)

for some constant ξ > 1 and dw denotes the walk dimension with restect to this metric.

In [13], a lower bound

(2.20) c24*-d*/2exp ( - ^ ( d t ^ ^ Γ 1 ) 1 / ^ " 1 ) ) < pt(x,y),

was also derived.

We prepare one more lemma for later use. For an open set G C E, we set

(2.21) T% = {u e T : u(x) = 0WxeE-G}.

The restriction of the form S to the space T% is called the part of £ on the set G and is

denoted by ( 5 , ^ ) . It is a regular local Dirichlet form on L2(G]μ) and is associated
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with the part of M on the set G, namely the process M being killed upon the leaving

time TQ from G. Let EQ and EQ be the interior of E and i£<m> respectively; EQ =

E-F, E{

o

m) = £<m> - amF. The space T% for G = Eo and for G = £ ^ m > will be

designated by β° and JΓ?mv respectively for simplicity. They are related by

just as (2.4).

Λ > 0 is called an eigenvalue of (S,J°Q) if there exists a function (called an

eigenfunctioή) f G ̂  such that

Lemma 2.3. (i) Suppose G is a bounded connected open set. (8, TQ) then admits

a positive smallest eigenvalue with an associated eigenfunction being strictly positive

on G. Further (S\^!FQ) has a reproducing kernel g^G(x,y) which is continuous and

strictly positive on G x G.

(ii) K is an eigenvalue for (ε,β°) if and only if so is (^£)m K for {ε^T9Λy m =

0 , ± l , ± 2 , .

Proof, (i) From Kusuoka's estimate [8,(4.14)]

(2.22) sup \u(x) - u(y)\ < c26\Jέ{u,u), u G f

and (2.5),(2,7), we can derive a bound

(2.23) sup \u(x)\ < C27^JS\(u,u), u e T%, λ > 0,
xeG

together with a Poincare inequality

(2.24) (iz, u)L2{G.μ) < c28S(u,u), ueT%.

(2.24) implies that the smallest eigenvalue of (£, TQ) is not less than c^ > 0. Observe

that the Dirichlet form {8,TQ) on L2(G,μ) is irreducible because of the inclusion

T% C C(G) ([16, Lemma 4.6.2]). Hence the smallest eigenvalue admits a correspond-

ing eigenfunction which is strictly positive on G ([6,Theorem 1.4.3]).

(2.23) implies the existence of the reproducing kernel g^G(x,y) for {£\,TQ). Its

joint continuity and strict positivity can be shown in exactly the same way as the proof

of [15,Theorem 2.3] except that the positivity of

90f{x, y)/9ΪG(y, y) = £χ(e- λ σ « ; σ M < rG)
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for x,y G G can now be derived from [16,Theorem 4.6.6 (i)].

(ii) This scaling property of eigenvalues can be shown in the same way as [15,Corollary

3.2]. •

We are now in a position to formulate the large deviation principle in the present

context. The occupation time distribution (2.14) is, for each t > 0, an M-valued

random variable. We denote its distribution with respect to Px by Qt,x>

Qt,x(A) = Px{Lt(ω, •) G A), Ac M.

M is endowed with the vague topology. We also consider the space Mi of all prob-

ability measures on E endowed with the weak topology. The /-function Iε is defined

by (1.6).

Theorem 2.1. (i) For any closed subset K of M,

(2.25) limsupi sup log Qt,x(K) < - inf Iε(β).

t—>oo t β^κ

(ii) Let β be a probability measure on E with β(G) = 1 for a bounded connected open

set G C E. Let O be a neighbourhood of β in M\ and G' be a bounded connected

open set with Gf D G. Then

(2.26) l iminf \ log inf Px (Lt(ω, -)eθ,t< τ G , ) > -Iε(β).
t-+oo t xeG

Proof. In view of the heat kernal bounds (2.18) and (2.20), conditions Ai, A 2 ,

A 3 of §6 are fulfilled and hence Theorem 2.1 follows from Theorem 6.1, Theorem 6.2

together with Proposition 6.2. Here we give a more direct proof using the preceding

lemmas.

(i) follows from Lemma 2.2 (i) and Theorem 6.1.

(ii). It suffices to check hypotheses ϋ i , ~ , i / 5 in Theorem 8.1 of Donsker-Varadhan

[10] for the part M^, of the process M on the set G1. Since the resolvent of M^,

possesses the reproducing kernel gλ' (x, y) appearing in Lemma 2.3 as its density

with respect to μ, both i7 4 and H5 are fulfilled. The absolute continuity of its transtion

function pt' (hypothsis Hi) also holds because of the symmetry. Since pt' sends

L2{G'\μ) into ^ / ( c COO(G/)), it makes the space C^G') invariant and accordingly

give rise to a strongly continuous semigroup on this space. Hence H2 is satisfied by

£00 = Coo(G'). H3 is clear since CΌo(G') C Bo. D

Finally we quote a powerful 0 — 1 law from [1,Theorem 8.4 and Remark 8.5].

Theorem 2.2. (Barlow and Bass [1]) Suppose Γ is a tail event: Γ G p\tσ{Xu,u

> t}. Then either PX(T) is 0 for all x or else it is 1 for all x.
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3. Limit points of scale changed occupation time distributions

From now on, we work with the Brownian motion M = (XUPX) on the un-

bounded nested fractal E associated with the regular local Dirichlet form (E,T) of

Proposition 2.1. Let Lt(ω,B), Be B(E), be the occupation time distribution defined

by (2.14) and put

(3.1) Ltm (ω, B) = Ltm(ω, a™B), B e B(E),

where tm is the solution of equation (1.9).

We define by (1.6) the functional Iε on the space M of subprobability measures

on E endowed with the vague topology and we set

C = {βeλi:Iε(β)<l}

Proposition 3.1. For Px-a.e. ω

(3-2) Π {J{L^(^-)}CC
N m>N

for each x G E.

Proof. We can follow the arguments in the proof of Theorem 2.8 of [11]. Take

any open set TV C M such that C C N and let θ = i n f ^ ^ c Iε(β) Since Iε is

lower semicontinuous function on M on account of the equation (6.5) in §6 and Nc

is compact, we have that θ > 1. Take θr such that θ > θf > 1. Then, by virtue of

Theorem 2.1, we have for sufficiently large m

(3.3) <2iogiogtm, a-mX(NC) < exp(-( loglogί m )^) =

On the other hand, we see from (1.9)

(3.4) oT --

which, together with Corollary 2.2, implies

(3.5) Px (Ltm(ω, •) € Nή = Ql
o g l o g t m , α -
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Since logt m > mlog ( Ϊ Z ^ ) , we get from (3.3) and (3.5)

<2^- r ^ 7 < o o .
m

Borel-Cantelli's lemma implies that Ltrn (CJ, •) G N from some m on for Px-a.e. ω.

D

Lemma 3.1. (i) There exist positive cm with limm_,o o c m = 1 swc/i

l - c

(ii) For any k > 1, f/iere w an increasing sequence {mn}™=1 of positive integers such

that

(3.6) loglogίm n ~ k log n as n —• oo

(3.7) tmn/tmn+1 < expi-csxn^1) for some c3i > 0.

Proof. In what follows, τ?im, , η±m denote some numbers tending to 0 as m —+

00.

(i) Since

log£m = mlog h log ( 3 ) tm = m(l + ηιm) log ,
1 — c 1 — c

we have

(3.8) log ( 2 ) tm = (1 + 772m) logm, log (3) tm = log ( 2 ) m + r/3m,

and hence

(3.9) log tm=m log h log ( 2 ) m -f r/3m.
1 — c

(ii) Let m n = [nk] the integer part of nk. Then logm n ~ klogn, and (3.6) follows

from (3.8). Since (n + l) f c - nfc > /cn^"1, we have from (3.9)

TV
n - logt m n < -kn^1 log h 774m.

1 - c D
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Proposition 3.2. Consider a probability measure β satisfying Iε{β) < 1 and

β(G) = 1 for a bounded open set G containing the origin. Let O be a neighbour-

hood of β in M\ and Gf be a bounded open set with G' D G. We put

Jtm = W : Ltm(ω, •) G O, τaτn.G, > tm}.

Then

(3.10) ω e Jtrn for infinitely often m

for Px-a.e. ω for each x G E.

Proof. We can proceed along the same line as in the proof of Theorem 2.15 of

[11]. We take a neighbourhood Oι of β in the space M\ such that β e Oλ G~O[dO.

By the assumption θ = Iε(β) < l Choose k > 1 such that

(3.11) θ'= ( 2 f c - l ) . ^ ( l + 0) < 1.

Take a sequence πi\ < πi2 < < mn < satisfying conditions of Lemma 3.1 (ii)

for this k.

Put

> , ) ^ I U β ( I s ) da.
tmn

 τrnn-1 Jtrrin_1

Then the total variation

is not greater than 2trnn_1/trrirι, which tends to zero as n —• oo by Lemma 3.1. Con-

sequently, for the proof of Proposition 3.2, it suffices to prove that

(3.12) ω G Jn infinitely often Px—a.e. ω, x E E

for the event

(3.13) Jn = {ω : Ltrnn_iitmn(ω,>) e Ou ταmn.G > ίmn_15 ταmn.G, > tmn}.

We let

Tn-\ = σ{Xs;0 <s< tmn_x}, Bn-ι = {ω : T^^.Q > im n_x}
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and we further put tn = trrlrι — tπin_1 and

1 ήn

ni ~f~ I -lotmn-\
t n JO

qn(x) = Px I τaτnn.G, >tn, — / Iamn.(Xs)

Then, by virtue of the Markov property

(3.14) Px(Jn\Γn-i) > iBnΛω) - inf qn(x) Px-a.e. ω.
xearnn.Qf

On the other hand, if we let

(3.15) η n ) , n

we find from (1.7) that

ί G'Vse [0,tn], i Λ /.(α"m-
tn Jo

^Xs e

= P*U^i β eGfv β €[θ,ί n ], j-JQ i.(xη-ls)dseθ1\

and consequently

(3.16) inf qn{x) — inf Px {jc > s n , LSn(ω, •) E O i ) .

On account of (1.9),(3.15) and Lemma 3.1,

sn = mn πin~1 ' loglogί m n ~ k log n, n -* oo.

Hence, in virtue of Theorem 2.1 (ii), we see that, for sufficiently large n, the right hand

side of (3.16) is not less than

exp(—sn - ( 1 + #))) > exp{—(2k — 1)-(1 -f θ) log n}

= exp(—θ' log n) = —p .
Ill

In view of (3.14) and (3.16), there exists N such that

(3.17)
n=N
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Suppose that

(3.18) JTPx(Bc

n)< oo.
n=l

Then, by Borel-Cantelli's lemma, the right hand side of (3.17) diverges for Px-a.e. ω,

and accordingly we can get to the desired conclusion (3.12) owing to the Borel-Cantelli

type lemma [11,Lemma 2.14].

It only remains to show (3.18). Using the scaling property (1.7) again,

Px{Bc

n) = Px(a-m^Xs?G for some s e (O,tmJ)

= p

a-^+ίχ(xη-iiS^Gΐoτsomc βe(0,ίm j)

= P

a-
mn+ix (TG < )

Let t be an integer such that E^ c G. By Lemma 2.2, we have, for sufficiently large

n such that a~"ln+1x G

The sum of the right hand side is finite by Lemma 3.1. •

Lemma 3.2. Let T> be the set of probability measures β on E with compact

support and h{β) < l Then

(3.19) CcP,

where the closure is taken in the space M.

Proof. We first show that

(3.20) V/? G C, 3 7 n G Mu h{ln) < 1," lim Ίn = β vaguely.
n—>OD

Take λ n T 1 and put βn = \nβ. Then

Iε(βn) = λnlε(β) < λn, an = βn(E) < λn < 1.

We next take v = φ2 μ G Mi with non-negative bounded φ and leiy) < oo and we

set
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Then, by the scaling property of μ,

um(E) = ^ lEΦ{a-mxγμ{dx) = j^dμ = 1

and for any compact K c E

vm{K) < N-mU\\2^(K) - 0, m - oo.

Namely

^m Ξ Λli lim i/m = 0 vaguely.
m—•oo

Furthermore, by (2.8),

We let

7n,m = i9n

Then

( 1

which can be made to be less than 1 for a large m, say mn. Now 7 n = 7n,mn has the

required property (3.20).

Next take any v = f2 μ G ΛΊi with £ ( / , / ) = λ < 1. Since the Dirichlet

form (£, J7) is regular, there exist fn e T, n = 1,2, , which are non-negative, with

compact support and satisfying, for λ < λ' < 1,

lim ε^f - fnj - fn) = 0 5(/n,/n)<V.
n—>-oo

Let z/n = (fn/bn)2 - μ where 6n is the L2(f?;μ)-norm of fn. Then, ι/n G Ati,

liπin^oo vn = v weakly and

which means that vn G P for large n. •
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Theorem 3.1. The identity (1.10) is valid.

In fact, the inclusion c is proven by Proposition 3.1. The left hand side of (1.10)

includes the space V according to Proposition 3.2, and hence the space C by virtue of

Lemma 3.2, proving the other inclusion D. Theorem 3.1 implies the following ([11]):

Theorem 3.2. If Φ is a functional on Ai which is lower semicontinuous in the

vague topology, then, for Px-a.e. ω,

(3.21) l imsupΦ(L t m (uv)) > supΦ(/3),
m—> oo βeC

and if Φ is a funtional on λΛ which is upper semicontinuous in the vague topology,

then, for Px-a.e. ω,

(3.22) l imsupΦ(L ί m (ω, •)) < sup Φ(β).
βC

4. Other laws of the iterated logarithm

In order to derive the identity (1.11) from Theorem 3.2 and Proposition 3.2, we

consider the functionals Φα on M defined by

(4.1) Φa(β) = β(Ga) Φ'a(β) = β(Ga), α > 0 ,

where

Ga = {x e E : \x\ < α}, a > 0.

Ga is bounded open and connected because of the relation

\x\dc x d ( 0 , z )

for the shortest path distance (intrisic metric) d and a chemical exponent dc ([13,Re-

mark 3.7]). Since the measure μ is σ-finite, there exists a countable dense subset D of

[0, oo) such that

μ(Ga\Ga) = 0 VaeD.

All elements of C is absolutely continuous with respect to the measure μ and accord-

ingly

(4.2) sup Φa(β) = sup Φ'a(β) aeD.
βec βec
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Furthermore Φα (resp.Φ'α) is upper (resp. lower) semicontinuous and we have from

Theorem 3.2 that

(4.3) lim sup Ltm(u;,Gα) = ra Px— a.e. a G D.
m—•oo

Here we denote by ra the common value in (4.2). Obviously 0 < ra < 1.

Lemma 4.1. For a G D, ra = 1 if and only if there exists a function u G T

vanishing on E\Ga such that

(u,u)L2{E.μ) = 1 S{u,u) < 1.

Proof. We see from (1.6) that

rα = sup{β(Ga) : β = v2dμ, v G T, (v, v)L2{E.μ) < 1, S(v, υ) < 1}.

Suppose ra = 1. We can find vn G T such that

Then there exists a subsequence {vk} of {vn} such that v\μ vaguely converges to v G

M and ι/(Gα) > limsup^.^^ JG v\dμ = 1. Moreover, by the lower semicontinuity of

Is, Iε{v) < liminffe-^oof (i fejVjb) < 1 and thus v can be written as v — u2μ, u G T.

Since tλ is continuous, it vanishes on E\Ga identically. The 'if part is clear. •

Let κa be the smallest eigenvalue of the Dirichlet form (S,J°Qa) the part of E on

the open set G α . Since

κa = inf{ί (u, u) : u e f, u = 0 on E\ Gα, (ix, u)L2^E.μ^ = 1},

we get from the above lemma that

Corollary 4.1. ra = 1 if and only if κα < 1.

On account of Lemma 2.3, we see that κa is strictly smaller(resp. greater) than

1 if a > 0 is large(resp. small). So the value αo defined by (1.12) is finite, strictly

positive and

(4.4) α 0 = inf{α G D : κa < 1}.
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Lemma 4.2. The identity (1.11) is valid.

Proof. κa can be seen to be strictly decreasing in a because a corresponding

eigenfunction is striclty positive on Ga by virtue of Lemma 2.3. Take any a' > a > αo

Then κa < 1 and accordingly there exists a function u G T vanishing on E \ Ga such

that

K^)L2(£;μ) = 1, S(U,U) < 1.

Hence the measure β = u2 μ satisfies conditions in Proposition 3.2 for G = Ga and

in particular

τam.Qa, > tm infnitely often, Px—a.e. ω, x G E,

in other words

liminf a~m sup \XS < a! P x - a . e . ω, x G E.
ra-*oo 0<s<ίm

On the other hand, for any a < α0, κa > 1 and hence ra < 1 — δ for some δ > 0

by Corollary 4.1. By virtue of (4.3), there exists a positive integer No such that

- i - m e a φ G [0,ίm] : X s G α m G α } < 1 - δ, Vra > 7V0, P x - a . e . ,

which means

α ~ m sup \X8\ > α, Vm > 7V0, P x - a . e .

Therefore

liminf α ~ m sup |X 5 | > α. π

Theorem 4.1. Γ/ι̂  identity (1.13) holds for a positive constant αOo satisfying

(1.14).

Proof. The random variable appearing in the left hand side of (1.13) is measur-

able with respect to the tail σ-field nta{Xu;u > t}. Owing to Theorem 2.2, it is a

constant αOo Px-a.e. for any x G E. If t G ( ί m _ i , ίm] and ί is large, then

sup \XS\ < ( ) sup \XS\ < —Γ sup
Oί171 0<s<tm_i \ * / 0<s<ί <2m 0<s<t
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which, combined with the preceding lemma, leads us to the bound (1.14) of the con-

stant αoo D

Let V(x) be a continuous function on E with V(x) —• oo as x —• oo. AS in [11],

one can use Theorem 3.2 to get asymptotics of additive functionals of type

At = [ V(Xs)ds.
Jo

We prepare a lemma. Denoting by || ||2 the norm in L2(E] μ), we set

r) < l j II/H2 = 1} a n d

Ao = {feτn CO(E): ε(/,/) < 1, II/H2 - l}.

Lemma 4.3.

inf / V</>2dμ = inf [ Vφ2dμ.
ΦeΛjE ΦeΛoJE

Proof. Let ψ b e a function in .Ao. Then, for any φ G A and 0 < e < 1,

/£ (((1 — e)φ2 + e^2) μ) < (1 — e)Is(φ2μ) + elε(ψ2μ) < 1

and

lim / V ((1 - e)02 + e^2) dμ = ί Vφ2dμ.

Hence, we obtain

inf / Vφ2dμ = inf / Vφ2dμ.

Since (S.J7) is recurrent, there exists a sequence {/n}^=i C TίlCoiE) such that

0 < fn < 1, f (/n, /n) -»• 0 and fn -> 1 μ-a.e. as n -^ oo ([16,Theorem 1.6.5]). By se-

lecting a subsequence if necessary, we may assume that linin-.oo n2ε(fn, fn) = 0. For

any φ e A with £{φ, φ) < 1, let φ^ = ((-n) Vφ) An and ^n = ψ^ fn/mn (mn =

| |^ ( n ) /n| |2) Then, by Theorem 1.4.2 (ii) in [16]

limsup£O/,n,V>n)1/2 = l i m s u p — ^ ( ^ ( n ) / n , ^ ( n )

n—•oo n—>-oo ^ ^ n

< limsup— (nε(fn,fn)
1/2+ε(φ,φ)^2) < 1.
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Noting that liπin-.oo JE Vφ^dμ = JE Vφ2dμ, we obtain the lemma. •

Using Proposition 3.2 and Lemma 4.3, we obtain, by the same argument as in

Example 2 of [11],

(4.5) liminf — / V [ Xa I to b m ) ds = inf / Vfdμ.
m-+oo tm Jo \ \ tm J J f^A JE

Let us consider a special case when V(x) = \x\θ.

Lemma 4.4. For θ > 0,

inf

Proof. Suppose that Ίnϊf^Λ JE \%\θf2dμ — 0. Then there exists a sequence {fn}

C Λ such that limn_+oo /^ \x\θf%dμ —> 0 and / n —> 0 /x-a.e. as n -^ oo. Let K =

{|x| < i?} Π £7 (Λ > 0). We then see from Lemma 4.5 below that /^ converges to 0

in Lλ(K;μ) and thus linin^oo fRc f%dμ = 1. Therefore,

0 = lim / \x\θfldμ > Rθ lim / f*dμ = Rθ,
n^°° JE n—oo JKc

which is contradictory. •

Lemma 4.5. For any compact set K C E, {f2}feΛ is uniformly integrable on

K.

Proof. Since pt(x, y) < c22t~
ds/2 by (2.18),

HPtlloo.2 < e M ( t ) , M(t) = (l/2)logC22

by Lemma 2.1.2 in [6], and for any / G T and e > 0

i / / 2 log+ / 2 ^μ < cf (/, /) + (M(e/4)

by virtue of Theorem 2.2.4 in [6], where ||pt||oo,2 denotes the norm of the operator pt

from L2(E;μ) to L°°(E;μ). In particular,

sup / f log+ fdμ < 2e + 2M(e/4) + 4 < oo.
feΛJE

Hence, Theorem 22 in [7] leads us to this lemma. Q

We now obtain the next theorem.
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Theorem 4.2. For any θ > 0, it holds that

for a constant Af

θ satisfying (1.16).

Proof. Put

AΘ = inf f \x\θf2dμ.

We then see from (4.5) that

liminf L m = AQ Px-a.e. \/x G E,
ra—•oo

where

L V O O ^TM/ I I -xr \θ 7

m = — 1 + g — / I-X̂βl ds.

If ί G ( ί m - i , ίm] and ί is large, then

m

and, by lemma 3.1 (i),

<*-'-<-A, < liminf

which leads us to the bound (1.16) of the constant A'θ on accounts of Theorem 2.2 and

Lemma 4.4. •

5. Law of the iterated logarithm for local times

In this section, we aim at establishing (1.19) by showing just as in [11], the equi-

uniform continuity of ί*m(α;, •) as m tends to infinity. We need to prepare a series of

lemmas to this end. dw (resp. df) will denote the walk (resp. Hausdorff) dimension

with respect to the intrinsic metric d ([13]). we also let 7 = l/dw.

Lemma 5.1. Let φ{x) be a function on E with a compact support, and 2h a

diameter of the support. We further suppose fE φdμ = 0 and JE\φ\dμ = e < 00. Fix
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C > 0 and θ E (0,(2^(1 — ds/2) A dw/(dw — 1)). Then, for every positive integer n,

we have

sup Ex[{ φ(Xs)dsr] < {2nl f * ? ,
t*G[o,C7] Λ Γ(l+ nr)

where τ = 2 — ηθ — ds, and B is a constant depending only on e and θ.

Proof. We first note that 0 < dw(l - ds/2) Λ dw/(dw - 1) since ds < 2, dw > 1

([15],[13]). Let Ξ(x) = c22exp(-c23\x\d^^du}-^). At (2.18), we have already noted

that t~ds/2Ξ(d(x,y)/t^) bounds the transition density function from above. Thus, we

have

Ex

< (2n)! /
Jθ<S1< <S2n<U JE

Π
71 φ(Xj)

(Si ~ S i λ Y s

si'" ds2nμ(dxι) μ(dx2n)
θ<S1< <S2n<U JE2n

71 φ(Xj) T-r f / d(x2j+ι,X2j) \ „

Si ~ Si.λYs/2 Π \ - \ ) - ) -

where s0 = 0 and x0 — x, and we used the assumption fE φdμ = 0. We note that

\Ξ(x)\ < c22, and \Ξ(x) - Ξ(0)| < (c22 V c22c23)\x\θ. Hence, we have

„ ί „ ( d(x2j+2,x2j+ι)
_ ,_,2

d(x2j+l,X2j)
< c22K

where K = c22 V C22C23. Using this and hypotheses, we obtain that

φ(Xs)ds < (2n)\(e2c22(2h)θK)
θK)n

dsλ ds2n
[
o<Si<~ <s2n<c

1 f 1

\ \8ohΛ.Λ -

1

Λ _ w l 5 2 ^ 1 "• 32k\ a/ \S2k+2 - S2k+l\

From this, through the same computation as [11], we arrive at the desired estimate.

D

Lemma 5.2. Let φ, θ and C be as in Lemma 5.1. Then there exists a positive

constant c5i = c5i(e, C, θ) such that
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ϋ€[O,C]
x€E

where p = 2/(2 - r) .

Proof. For k > 0,

sup Ex exp<c5i -ΓJJZ / Φ(Xs)ds \\
ue[o,c] L I n ' Jo ) J

£xίexp{

< oo,

n=0

oo

n=0

n p

np'2/p p/2

We here used Holder's inequality since 2/p > 1, which comes from the fact ds > 1

(see [23]). Consequently we get

(5.1)
~ 2-" nϊ ί Γ(l + nτ) j

Let k = k0h-pθ/2. Then, for sufficiently large n,

behaves like n~ 1/ 2(A:o JB
A ) / 22 pC p- 1r 1-^) n . Hence, for sufficiently small fc0, the series

on the right of (5.1) converges. •

In the following, we deal with ί't(ω,x) = ίt(ω,x)/t instead of the local time

£t(ω,x) (see (2.16)).

Lemma 5.3. Let θ and p be as in Lemma 5.1 and 5.2, and fix C > 1. Then there

exists c 5 2 = ̂ 52(0, C) such that, for every u £ [1, C], x G E and Px almost all ω,

/ /
J Jd(/d(yi,i/2)<i

= F(u,ω) < CXD.

- 1 μ{dy1)μ(dy2)

Furthermore, supue[1^xeE Ex[F(u,ω)] < 00
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Proof. We call the set, a^E^Γ..,im+n (m -\- n > 0), n-complex. For x G E,

let An(x) be the union of all n-complexes including x. Let F^ be the union of

amF(n+rn) o v e r t h e i n t e g e r m satisfying n + m > 0. Take p G F ( n ) arbitrary, and fix

2/i,2/2 £ Δ n (p) . We then have, by strong Markov property,

Ex exp < k

= EX γ{Tp<u}

- 1

k

tu-τp(ω)(ω',yi) -ίu-τp

' } - ' ] ] •
where τp(ω) = inf{ί > 0 : Xt(ω) € An(p)}. If rp(α;) < u, then, for almost all ω',

*-τBM(ω',l/i) = ...lim_
μ(Δ.

1 _ Γ " T p ( α

I 7/* ) J /
lΔm(»* * = 1, 2.

Let <^m(a;) = lΔ m ( l, 1)(α;)/μ(Δm(j/i)) - lΔ m ( ! / 2 )(a;)/At(Δm(y2)). Using Fatou's lemma

and the assumption, u > 1, we have

(5.2)

exp {* •}-]
< liminfm_oo ExTv(ω) exp < fc - 1 .

Since the diameter of supp(</>m) approximates to d(yι,y2) as m —> oo, by virtue of

Lemma 5.2, there exists k such that the right hand side of (5.2) is bounded by a deter-

ministic constant K\ independent of u and p. We hence conclude that

Ex exp < k u).

Let δ0 = min {d(x, y) : x,y e F, x ^ y}, and take an integer n 0 such that δoξn° x <

1 < δoξ
n°. If d(yι,y2) < 1, because of (2.19), we can find p G F^71^ such that

Δ - n o ( p ) 3 Vu 2/2- Therefore {(j/x, ^ ) G ̂ x ^ : d(j/i,^) < 1} C U p G j p ( _ n o ) Δ_ n o (p)

x Δ_ n o (p) , and we have

if Exlexplk
J Jd(yi,y2)<l L I

- 1 μ(dy1)μ{dy2)
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μ{dyι)μ{dy2)

< K2

Finally, we verify that ^2pPx(rp < C) < oo. We then complete the proof by using

Fubini's theorem.

For p e F<"), let /*(*) = Px(rp < t), and gfcx) = Ex[f*+1 l~n(p)(Xs)ds},

where Δ n (p) is union of all n-complexes intersecting with Δ n (p) . We then have

> EX[
E*lP lλn{p)(Xs)ds;τp<t]

[Γ lAn(xTp)(Xs)ds;τp<t]
Jτp

= EX[EX [f lΔn{Xo)(Xs)ds};τp<t}.

> EX

[
o

Clearly, Eχτ [JQ lAn(Xo)(Xs)ds] is bounded from below by some constant c — c(n) >

0. Hence, gp(x) > cfp(x). Furthermore, since UpAn(p) covers E finite times, we can

take a constant d > 0 such that

ί ίt+i{y)μ(dy)]

< c'Ex[f et+1(y)μ(dy)]
JE

Combining these results, we get the estimate ^ Px{τp < t) < c'(t + l)/c. Π

To prove Lemma 5.5, we introduce a version of Garsia's lemma, which is ex-

actly the same as the one presented in [2,Lemma 6.1] except that we use a closed ball

B{x,r) = {y e E : d(x,y) < r} with respect to the intrinsic metric d. The proof is

also the same since, in our case, it still holds that there exists constants cι(E), c2(E)

such that,

c i ( £ ) r J ' < μ{B{x,y)) < c2{E)r^.

Lemma 5.4. Let p be an increasing function on [0, oo) with p(0) = 0, and φ be

a non-negative symmetric convex function, with lim ψ(u) = oo. Let H be a compact
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subset in E containing a closed ball B, and let f : H —> R be a continuous function.

Suppose that

θ =

Then there exits a constant C53 depending only on E such that

1/0*0 - f(y)\ < 8 ί *" Φ'1 (^%r) p{du),
Jo \ u f J

for every (x, y) G B x B.

Lemma 5.5. Let θ and p be as in Lemma 5.1 and 5.2. Then there exist positive

constants c 5 4 and c 5 5 independent of x G E such that, for all a > 0 and 1 > δ > 0,

Px I sup \t't(ω,yι) - tf

t{ω,y2)\ > a \ <

Proof. Let n{t) be the largest integer not greater than log t/ log γ ^ ? and ζ(t) =

t/(γz^)n(t\ Then, by Corollary 2.3, the distribution of the random variable ί't(ω,y)

under Px is the same as that of iV~nW^ ( t )(<j,α~n ( t )2/) under P x / α n(t). We thus have

sup

In the following, we will estimate the right hand side.

We first note that 1 < ζ(t) < γ^. By setting ^ for C in Lemma 5.3, the

hypotheses of Lemma 5.4 is satisfied with ψ(x) = exp(c$2\x\p) — 1, p(y) — yθ^2 and

with f{x) = ίfζ,tΛω,x). Using Lemma 5.4, for every yι, y2 € E such as d(z/i, 2/2) ^

δ/ξnW, we have

4ΘD

C 5 2
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where D = (c53F(ζ(t),ω))θ^f/2df, b = c53F(ζ(t),ω){ξnV/δ)2^ and q = 1 +

Θ/Adf. Since /b°°[log0 4- l)]1^p/υqdv < (log(6 + 1) + l/(q - l))1/p/((q - l)^'1),

we conclude that

θ/2/ ~ \1/P

From this, it follows that

Pχ/an(t) < SUP

Note that Nn^Pξn^pθ'2 = (N/(1- c))n^ since

T logΛΓ-log(l-c) ~ ϊogN
dw = -,—T , at = -——.

logξ logξ

Then, we get the following estimate:

Px\ sup \e't(ω,yi)-e't(ω,y2)\ >«}
n(t)

,ω)}.

Since supue[hN/{1_c)lxeEEx[F(u,ω)} < oo, and (7V/(1 - c))-(£) < t < (ΛΓ/(1 -

c)) n W + 1 , we have the lemma. Π

We have defined an increasing sequence ίm —> CXD as a unique solution of (1.9).

Let

Theorem 5.1. For ^αc/ι a > 0, ί/zere ĵc/5ί.s £ > 0 swc/i

Px I limsup sup \£tm (ω, yλ) - ίtm(ω, y2)\ > a \ = 0,
(̂  m-^cx) d(yi,y2)<δ J

x e E.
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Proof. On account of the Borel-Cantelli lemma, it suffices to prove
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(5.3) I SUp
{d(yuy2)<δ

> a > < oo.

We can see from Corollary 2.3 that ίtrn(ω,y) under Px has the same distribution as

£[oglogtτn(ω,y) under Px/am. Using Lemma 5.5, we get the following estimate:

Px < sup
^c?(2/i,ϊ/2)<<5

>a

sup |4giogtT O(^2/i) -4giog*T O(ω,
)<5 ••}

Because of Lemma 3.1, log£m = O(m) and log log t m = O(logra). Hence, for any

a > 0, we can find δ > 0 which makes the series (5.3) converge. Q

Let Λ be the totality of non-negative uniformly continuous functions f on E with

JE fdμ < 1. The space A is equipped with the topology of uniform convergence on

compact subsets of E. For / e A, we denote Iε(fdμ) by Iε{f)

Theorem 5.2.

n"
m>iV

Proof. Let Q be a continuous one to one map from A into Λ4 defined by Q(f)(B)

= JB fdμ for any Borel set B. We note that ltrn e A, and Q{ttrn(ω, •)) = Ltm(ω, •)•

Because of the continuity of Q, we see that

We hence obtain nNUm>N{£trn(u, -)} C {f eA: Iε(f) < 1} from Theorem 3.1. Let

{an} be a sequence such that an \ 0. On account of Theorem 5.1, for each α n , we

can find δn > 0 and a set Ωn with Px(Ωn) = 1 such that, for CJ G Ωn,

limsup sup
m->oo d(y1,y2)<δn

< an



528 M. FUKUSHIMA, T. SHIMA AND M. TAKEDA.

Therefore, for c«;GΠnΩ, Um>jv{^tm(ω, )}is uniformly bounded and equicontinuous. By

Ascoli-Arzella's theorem, Um>jv{^tm(ω, )}i s compact, and hence £(Um>jv{-έtm(ω, •)})

(^? )}• Using Theorem 3.1, we have

G (nNUm>N{έtrn(ω, )}) D{βeM: I£(β) < 1}.
D

The following corollary is obvious from Theorem 5.2.

Corollary 5.1. For a lower semicontinuous functional Φ on A,

l imsupΦ(i £ m (uv)) > sup Φ(/), Px- a.e.,
™—«> fe{feΛ:iε(f)<i}

and for an upper semicontinuous functional Φ on A,

limsupΦ(iίm(α;, )) < sup Φ(/), Px-a.e..
™^°° fe{feΛ:iε(f)<i}

Now we show the validity of (1.19) by using Corollary 5.1. We first prepare the

following lemma.

Lemma 5.6. Let b0 be defined by (1.20). Denote by Co (resp. Q ? 0 ) the 1-capacίty

of the one point set {0} with respect to the Dirichlet form (8,3-") (resp. its part on the

set EQ , see §2). Then we have for any positive integer i

b0

Q,o Co

Proof. We first note the implication:

inf {£i(/, f): feΓ, /(0) > v^} > 2 => b0 < a.

Indeed, if b0 > α, there exists f e A such that f i(V7, Vf) < 2 and y/f(O) > yβ,

which means that inf{£i(/, /) : / e T, /(0) > ̂ /a] < 2. Obviously, £i(/, /) > 2 for

any / G T such that /(0) > y/2/co, and hence we get that b0 < 2/c0.

For the lower bound, consider the 1-equilibrium potential e^o of the one point

set {0} relative to the part of the Dirichlet form E on the set EQ . e^ 0 is contin-

uous, vanishing outside EQ and consequently uniformly continuous on E. Further

) 2fl) = 1. Therefore b0 > e^ 0 (0) 2 /Q, 0 = 1/Q,O D
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Theorem 5.3. The identity (1.19) is valid. (1.21) holds for a positive constant boo

satifying (1.22).

Proof. (1.19) is obtained by applying Corollary 5.1 to the functional Φ(/) = /(0)

for / e Λ. To prove the second assertion, we put

wt(ω)=
t \ ^ / 2 l

Jog log t

Ifte (tm-i,tm] and t is large, then

It then suffices to use (1.19), Lemma 3.1 and the 0 - 1 law (Theorem 2.2). •

6. Uniform bounds in the large deviation principle

Let X be a locally compact separable metric space and m a positive Radon mea-

sure on X with full support. Let (β,T) be a regular Dirichlet space on L2(X;m)

and M = (Ω,Xί,J
Γ,.7:i,.Px,C) a corresponding m-symmetric Hunt process. Here Tt

is the minimum completed admissible filtration and ζ is the lifetime. Let us denote by

{Pt}t>o the semi-group associated to M, i.e., ptf(x) = Ex(f(Xt)). Throughout this

section, we make following assumptions for M:

Ai (Irreducibility) If a Borel set A is pt-invariant, i.e., Pt(XAf)(x) = XAPtf(x) τn~

a.e. x for any / G L2(X;m) Π B(X) and ί > 0, then A satisfies either m(A) = 0 or

m(X \ A) = 0. Here #(X) is the space of Borel functions on X.

A 2 (Feller property) pt(Coo(X)) C CΌopf), where CΌo(^) is the space of continuous

functions vanishing at infinity.

A 3 (Strong Feller property) pt(Bb(X)) C Cb(X), where β b (X) and Cfe(X) are spaces

of bounded Borel functions and bounded continuous functions, respectively .

REMARK 6.1. (i) The symmetry of M and A3 imply the absolute continuity of

transition function, pt{x, dy) — Pt{x, y)m(dy), for each t > 0 and x G l .

(ii) By the right continuity of sample paths of M, ptf(x), f £ CΌo(X), converges to

f(x) for each x £ X. Hence, A2 implies that the semigroup pt is strongly continuous

on CoopO ([27]).

(iii) Due to the heat kernel bounds (2.18) and (2.20), the Brownian motion on the nested

fractal satisfies Ai, A2, A 3. By the same reason, the diffusion processes on Sierpinski

carpets recently constructed by Barlow and Bass [1] also satisfy them.
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Lemma 6.1. For any Borel set B G B(X) with Caρ(£) > 0,

PX{CTB < C) > 0 for any x G l ,

where σB = inf {ί > 0 : Xt G B}.

Proof. By Ai and Theorem 4.6.6 in [16],

Pχ{?B < 0 > 0 for q.e. x G X.

Since a set of zero capacity is polar by Remark 6.1(i) and [16,Theorem 4.1.2],

Px(σB<0 > Px(σB(θe)<ζ)

= / pe(xJy)Py(σB < ζ)m(dy) > 0
Jx

for any x £ X. Π

Let us denote the resolvent {Ra}a>o of M,

R«f(x) = Ex Π ζ e-atf(Xt)dtj for / G Coo W ,

and define the generator A by

An = au - f foru = Raf, f e C^X).

Set

V+{A) = {Raf: α > 0 , / G C + ( X ) Π L2(X" m), and / φ 0} .

Here C^O(X) denotes the set of non-negative continuous functions in Coo(X). Note

that any function in V+{A) is strictly positive. Indeed, Let φ = Raf G V+{A). Since

the set, O — {x G X : /(#) > 0}, is a non-empty open set, Px{po < ζ) > 0 for any

x G X by Lemma 6.1. Hence, Raf(x) > 0 for any £ G X.

For 0 = Rag G D+(^4), let M^ denote the martingale additive functional

M\φ] = φ(Xt) - φ(X0) - ί Aφ(Xs)ds.
Jo

and iV^e (e > 0) the multiplicative functional defined by
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Let τ n be the first leaving time from the set Fn = {x G X : φ(x) > l/n}. Since,

by Itό formula

T T ^ Γ — Γ" exp (- f ^rMu)du) Mi}*,
φ{Λ0) + e Jo \ Jo φ + e J

we see

(6.2) Ex(Nte;t < C) < liminϊExiN^J = 1.

Let M^ = (Ω,Xt,P£,ζ) the transformed process of M by 7V^°. We then see from

Lemma 6.3.1 and Theorem 6.3.2 in [16] that M^ is </>2ra-symmetric and conservative,

P£(ζ = oo) = 1 for any x G X. Moreover, we can show

Proposition 6.1. ([18],[30]) M^ is ergodic in the sense that if Λ G T is θt-

invariant, ( 0 * ) - ^ ) = A, then P+2m(A) = 0 or P^ 2 m (Ω \ A) = 0.

Let M be the set of positive measures μ on X with μ(X) < 1. We equip M with the

vague topology. Define the function Is on M by

T / x J ^v v J 5 v J ) if μ — f m
 TΠ, V / £ *F

5 \ oo otherwise.

For ω G Ω and 0 < ί < C(^)» w e define the occupation distribution Lt{ω) by

Lt(o;)(i4) = - [ χA{Xs{ω))ds, A G B(X).
t Jo

Theorem 6.1. Assume A 2 and the absolute continuity of transition function. For

any closed set K of Λ4

limsup - log sup Px(Lt G K, t < ζ) < — inf Iε(μ).
t-^oo t x e χ

REMARK 6.2. This theorem holds only by assuming the Feller property A2 and

the absolute continuity of the transition function p t(x, )with respect to m for each

t > 0 and x G X.

Proof. Let u G VJr{A). By virtue of (6.2), for any e > 0
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and thus, for any Borel set C of M

1 f Au
(6.3) limsup - log sup Px(Lt G C,t < ζ) < inf sup / dμ.

ί->oo t χ£X ue-D+(Λ) μeCJx u + e

€>0

Let K b e a closed set of M and set

ί = sup inf

e>0

f Au
/ dμ.

Jx u + e

Then, for any δ > 0 and μ e K, there exist uμ e V+(A) and eμ > 0 such that

Jx u>μ + eμ

A η I

Since the function ^— belongs to CΌo(X), there exists a neighbourhood N(μ) of

such that

/ —dv <£ + 2δ for any v G N(μ).

Since Uμ£jζN(μ) is an open covering of if, there exist /xi,...,/xfc m i f s u c n

i f C Uj=1N(μj). Put ify = N(μj). We then have for 1 < j < A:

sup
7 x ^μ, + eμj

 (

and thus

Therefore, by (6.3)

f Au
max inf sup / dμ < ί + 2δ.

±<j<k ueτ>+(A) μeKi Jx U + €
e>0

limsup - log sup Px(Lt G if, t < ζ) < max limsup - log sup Px(Lt G if?-, t < ζ)

< max inf sup / dμ
i<i<fc GX>+(A) μeKj Jx u + e

€>0

(6.4) < £ + 2δ.

Since

(6.5) - inf / dμ = Iε(μ)
ue-D+(A) Jx U + €

€>0

by Proposition 4.1 in [30], the proof is completed. •
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Lemma 6.2. If a set E c X is of positive m-measure, then RaIE(x) > 0 for

any x G X.

Proof. There exists a positive constant e such that m({x G X : RaΪE(x) > e}) >

0. Let σ = mϊ{t > 0 : RaIE(Xt) > c}. Then, for any x G X

R«IE(X) > Exίje-atIE{Xt)dt\=Ex{e-("σROίIE{Xσ))

> eEx(e-aσ)>Q

according to Lemma 6.1. Π

Mi denotes the set of probability measures on X equipped the weak topology.

Theorem 6.2. Let F be a compact set of X and O an open set of Mi. Then

(6.6) liminf - log inf PJLt e O, t < ζ) > - inf Iε(μ).
t—>oo t x£F μ£θ

Proof. We have only to check hypotheses H i ~ H 5 in [10]. H i follows from Re-

mark 6.1(i), and H 2 is fulfilled by taking COO(X) as BOo H 3 is clear since Coo(X) C

Bo Besides, Lemma 6.2 and Assumption A3 imply H4 and H5 respectively. Π

Now we present another proof of Theorem 6.2 under conditions imposed in [12]:

A[ For all x G X, pi(x,y) > 0 ra-a.e. y.

A3 pι(x, -) as a mapping from X to LX(X; m) is continuous.

A[ and A3 imply Ai and A3 respectively. Of course, A;

x and A 3 are fulfilled

by the Brownian motions on the nested fractals and the diffusions of [1] on Sierpinski

carpets.

Proof of Theorem 6.2. Let φ be a function in V+(A) such that φ2m e O. Put

μ — φ2m. Let U be a neighbourhood of μ such that U C O. Then, by taking t

large enough, we have {Lt G O} D {Lt-2{θ\) G U}. Hence,

(6.7) Px(Lt eθ,t<ζ)> Px(Lt_2(θι) eU,t<ζ)

= P,(Lt_2(0i) G [ / , K ( , ί - 2 < C(βi), 1 < ζ(θt-2

= £ x (£7Xl (Pγ t_2(i < C); i*-2 e t 7 , t - 2 < c ) ; i <

> / pι(x,dy)Py(Lt-2 G t/,Xt-2 € if) • W,
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where K is any compact set of X with m(K) > 0 and W = i n f ^ ^ Px(l < ζ) > 0.
Set

S(t,e) = <ωeΩ:\ ί ^-(x)Lt(ω,ώή - ί φAφdm
I \Jx Φ Jx

and

At = S(t,e)Π{LteU}.

Since

< e

Px(Lt eU,XteK) = £#((jvf ϋ) ;** eU,Xte K)

exp (t(ί φAφdm - e J J E* ( T T S Λt, Xt € K J

and Jχ φAφdm = —Iε{μ), the right hand side of (6.7) is greater than

βxp((t - 2)(-/£(μ) - 6)) / Vι{x,dy)E* ( Φ{X°]

Jx

Noting that

y

and that, by the ergodicity of Pt2rn and Theorem 2 in [14]

= μ(K)

we obtain

liminf / E*{^Ά λt_2,χt_2 G K)dμ{y) > μ { K \ . ί φdμ > 0

and, by lemma 6.3 below,

liminf inf ί Pl(x,dy)E* ( f ( ^ o ) Λt_2,Xf_2 e
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Therefore, we can conclude that

l iminf \ log inf Px(Lt eθ,t<ζ)> -I{μ).

Noting that for / € T Π C+ (X) with / φ 0

a R a f

in A asα-oo

and that the space T'Π C+,(X) is dense in , F + , the space of non-negative functions in

J7, we arrive at the theorem. •

Lemma 6.3 ([12,Lemma 5.3]). Assume A[ and A3. Let μ = φ2m e Mi, φ G

T, and let φn> n = 1, 2, . . . SMC/Z that 0 < 0 n < 1

/ φn(y)dμ(y) > a > 0, n = 1, 2,....

Then, for any compact set F C X, there exists C2 > 0 such that

inf / φn(y)p1(x, dy) > c2 > 0, n = 1, 2 , . . . .
X^F Jx

A connected open set D C I is called a regular domain if every boundary point

of D is a regular point of X \ D with respect to M. By Proposition 1 in [29] and

Theorem in [5], we obtain

Proposition 6.2. If D is a regular domain of X, the part of the process M on D

satisfies Ai, A2 and A3.
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