<table>
<thead>
<tr>
<th>Title</th>
<th>On the Janko's simple group of order 175560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamaki, Hiroyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 9(1) P.111-P.112</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1972</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6440</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6440</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction

Let \((11) \) be the Janko's simple group of order 175560 presented in [1] and \(\mathcal{A}_m \) be the alternating group of degree \(m \). In his papers [1], [2] Janko characterized the non-solvable group having the centralizer of an involution in the center of a Sylow 2-subgroup isomorphic to the splitting central extension of a group of order 2 by \(\mathcal{A}_4 \) or \(\mathcal{A}_5 \). His result is that such a non-solvable group containing no normal subgroup of index 2 must be isomorphic to \(PΓL(2,8) \) or \(3(11) \). The purpose of this note is to sharpen his results [1], [2]. Namely we want to prove the following theorem.

Theorem. Let \(G \) be a finite non-solvable group with the following two properties:

a) \(G \) has no normal subgroup of index 2,

b) \(G \) contains an involution \(J \) in the center of a Sylow 2-subgroup of \(G \) such that the centralizer \(CG(J) = \langle J \rangle \times \mathcal{X}_m \), where \(\mathcal{X}_m \) is isomorphic to \(\mathcal{A}_m \).

Then one of the following holds:

1) \(m=4 \) and \(G \) is isomorphic to \(PΓL(2,8) \),

2) \(m=5 \) and \(G \) is isomorphic to \(3(11) \).

Remark. Our proof depends on Janko's theorems [1], [2] and by his results it is sufficient to prove that \(m=4 \) or 5.

2. Proof of the Theorem

Put \(m=4n+r \), where \(0\leq r \leq 3 \). Assume that \(n \) is greater than 1. Then the group \(\mathcal{A}_m \) contains involutions \(\check{X}_i, \check{X}_i' \) (\(1 \leq i \leq n \)) and \(\check{Y}_j \) (\(1 \leq j \leq n-1 \)) with the cycle decompositions

\[
\begin{align*}
\check{X}_i &= (4i-3, 4i-2)(4i-1, 4i) \\
\check{X}_i' &= (4i-3, 4i-1)(4i-2, 4i) \\
\check{Y}_j &= (4j-3, 4j-2)(4j+1, 4j+2).
\end{align*}
\]

In the isomorphism from \(\mathcal{A}_m \) to \(\mathcal{X}_m \), let the images of the elements \(\check{X}_i, \check{X}_i' \) and
Let \(Y_j \) be \(X_i, X'_i \) and \(Y_j \), respectively. Put \(\mathfrak{x} = \langle X_i, X'_i | 1 \leq i, j \leq n \rangle \) and \(\mathfrak{y} = \langle Y_j | 1 \leq i \leq n-1 \rangle \). Then \(\mathfrak{x} \) and \(\mathfrak{y} \) are 2-groups and \(\mathfrak{y} \) normalizes \(\mathfrak{x} \). Hence \(\mathfrak{x} \mathfrak{y} \) is a 2-group. By the definition we have \(Y_j^{-1}X'_jY_j = X_jX'_j \) and \(Y_j^{-1}X'_j, Y_j = X_{j+1}X'_{j+1} \) and then \(\langle X_i | 1 \leq i \leq n \rangle \) is the commutator subgroup \((\mathfrak{x}\mathfrak{y})'\) of \(\mathfrak{x}\mathfrak{y} \).

Put \(C_i = X_iX_2 \cdots X_i \) for \(1 \leq i \leq n \). Then we may assume that \(\{ C_i | 1 \leq i \leq n \} \) is the set of the representatives of the conjugacy classes of involutions in \(X_m \). Let \(\mathfrak{D} \) be a Sylow 2-subgroup of \(\mathfrak{S} \) contained in \(C_0(J) \) and containing \(\langle J \rangle \times \mathfrak{x} \mathfrak{y} \). Hence the group \(\mathfrak{D}' \) contains \(C_m \) and the center \(Z(\mathfrak{D}) \) of \(\mathfrak{D} \) contains \(J \) and \(C_m \). These facts are also true if \(n = 1 \) and \(r = 2 \) or 3.

Assume by way of contradiction that \(n \) is greater than 1, or \(n = 1 \) and \(r = 2 \) or 3. For \(1 \leq i \leq n-1 \), \(C_i \) is the square of an element of order 4 in \(X_m \). Since \(\mathfrak{S} \) has no normal subgroup of index 2, it follows from a transfer lemma of Thompson [3] that \(J \) must fuse with \(C_m \) in \(\mathfrak{S} \). Note that \(J \) is not a square of an element of order 4. Therefore Burnside’s argument implies that \(J \) must fuse with \(C_m \) in the normalizer \(N_{\mathfrak{S}}(\mathfrak{D}) \) of \(\mathfrak{D} \). This is impossible because \(\mathfrak{D}' \) contains \(C_m \) but does not \(J \). Thus we get a contradiction and hence \(n = 1 \) and \(r = 0 \) or 1, that is, \(m = 4 \) or 5. Applying the results of Janko [1], [2], \(\mathfrak{S} \) is isomorphic to \(P\Gamma L(2, 8) \) or \(\mathfrak{S}(11) \), respectively.

The proof of our theorem is complete.

References

