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0. Introduction

In [10], S.-T. Yau proved that if M is a compact complex manifold with
negative first Chern class, then there is a unique Kahler-Einstein metric with
negative Ricci curvature up to a constant multiple. The condition “with
negative first Chern class” is, by definition, to assume that there is a negative
definite real closed (1,1)-form in the de Rham cohomology class of the first
Chern class ¢;(M). By the fact that for a holomorphic line bundle E on a com-
pact complex manifold M, any real closed (1,1)-form on M belonging to the
first Chern class ¢,(E) is the curvature form of a Hermitian metric for E multi-
plied by 1/2% (See [6], pp. 148-150.), it is equivalent to assuming the existence
of a volume form on M with negative definite Ricci form. Therefore, it is
natural to suspect that in the non-compact version of Yau’s theorem, the con-
dition “with negative first Chern class” should be replaced by the existence
of a volume form with negative Ricci form o with some additional conditions
to control the behavior of w at infinity: for example, —» defines a complete
Kihler metric with bounded curvature on noncompact manifold under con-
sideration. (In this paper, a Kihler metric is identified with its Kahler form.)
In fact, in [2], S.-Y. Cheng and Yau proved that if Q is a smooth bounded
strongly pseudoconvex domain in C”, then there is a complete Kihler-Einstein
metric with negative Ricci curvature, which is invariant under biholomorphisms
of Q; the strong pseudoconvexity of Q implies the existence of a volume form
with the above properties. In this case, a model of such manifolds is the unit
ball B" in C" with Poincaré-Bergman metric:

VvV —163log(1—|21?).
The purpose of this paper is to prove the existence of a complete Kihler-
Einstein metric with negative Ricci curvature on the complement of hyper-

surfaces of projective algebraic manifolds. In fact, we prove the following
theorem.

Theorem 1. Let M be a complex projective algebraic manifold and D an
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effective divisor with only simple normal crossings. If KzQ®[D] is ample, then there
is a unique (up to constant multiple) complete Kdhler-Einstein metric with negative
Ricci curvature on M=M—D, where Ky and [D] denote the canonical bundle
of M and the line bundle associated to D, respectively.

The ampleness of Kz®[D] assures the existence of a volume form on M
with the properties stated above. In the proof of the theorem, we use the
method of deformation of a Kihler metric developed in [2] and [10]. The
starting metric of the deformation is the Carlson-Griffiths Kihler metric con-
structed in [5], and the ending metric is the required complete Kihler-Einstein
metric. In this case, a “model” of such metrics is the pictured disk with Poin-
caré metric:

(1) 2V —1dzAdz/|z|%(log|=|?)? = —V/ —108dlog{| z|%(log|2|%)% .

The complete Kihler-Einstein manifold obtained here has the following
properties:

(i) with negative Ricci curvature,

(ii) with finite volume,

(iif) the curvature tensor and its covariant derivatives have bounded
length.
The characterization of such manifolds will be an interesting problem in this
field.

As an application of Theorem 1, we obtain the following theorem.

Theorem 2. Let M and D be as in Theorem 1, and n=dim M=2. Let
D=3Y%_.D; be the decomposition into irreducible components. Then the following
inequality holds.

2(n+1) (—e,+-8)"2(c,— e, 8+ 27182423 1 8%) =n(—c, +-8)",

where c;, 8 and §; denote the i-th Chern class of M, the cohomology class of D,
and that of D,, respectively.

If D=¢, this inequality reduces to the Chen-Ogiue-Miyaoka-Yau in-
equality for compact Kihler manifolds with ample canonical bundle.

After finishing this work, the author learned that Yau obtained an existence
theorem of a complete Kihler-Einstein metric for a broader class of manifolds
containing those in Theorem 1.

Finally, the author would like to express his thanks to Professors M. Take-
uchi, H. Ozeki and Y. Sakane for their valuable suggestions.

1. Singular volume form with negative Ricci curvature

Let M be a compact complex manifold with dim M=# and E a holomor-
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phic line bundle on M. Let M= U 4c,U, be a covering of M by local trivializ-
ing neighborhoods for E, and {g,s}, pe4 transition functions for E. Let & be
a Hermitian metric for E, i.e., the collection of positive functions {%,}4c, such
that A,=|gus|%g for any o, B€A. Then \/—100log h, is well defined real
closed (1, 1)-form on M and is called the curvature form of (E, h). The de
Rham cohomology class of the curvature form multiplied by 1/2z is inde-
pendent of the choice of %, and is the first Chern class of E. In particular,
a volume form ¥ of M may by regarded as a Hermitian metric for the anti-
canonical bundle of M. The curvature form of W is called the Ricci form
of ¥ and denoted by Ric ¥. In the following, we assume that M is compact.
A holomorphic line bundle E is called ample iff its first Chern class contains
a positive definite real closed (1, 1)-form. By the fact mentioned in the intro-
duction, E is ample iff £ has a Hermitian metric with positive definite curvature
form. Let D be an effective divisor on M with only simple normal crossings.
(i.e., If D=3..D; is the decomposition into irreducible components, then
each D; is nonsingular and at any x& M, there is a coordinate polydisk where
all of D;’s through x are coordinate hyperplanes.) Let M=M—D. Through-
out in this and the next sections we assume Kz®[D] is ample. These spaces
M and M are treated in equidimensional Nevanlinna theory [5]. Although
the following lemma is proved in [5], we give a proof for later purposes.

Lemma 1. Under the above situation, there is a singular volume form ¥
on M with the following properties:

(1) —Ric ¥ is positive definite on M, and (M, — Ric W) is a complete Kihler
manifeld with finite volume,

(ii) there is a positive constant C such that

C'<¥/(—Ric ¥)"<Con M.

Proof. Let o; be a holomorphic section of [D;] such that D,={xEM;
ai(x)=0}. The norm with respect to a Hermitian metric for [D;] and also
the product norm on [D]=®}%.,[D;] are denoted by ||-||. By the previous
remark, there is a volume form Q on M such that

—Ric Q—2>3.,v/—103log||oI?
is positive definite on M, because Kz®[D] is ample. We define a volume
form ¥ on M by
¥ = QL illolP(logllo| %) -
Direct computation shows
(2) —Ric ¥ = —Ric Q—>Y.,\/—100log||c;|?
—23%.1(V/—100logl|a|*)/loglla|*
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+2231 .1/ —1(dlog]|o|*ABlog]|o;|*)/(log]le: ) .
Taking an appropriate constant multiple of ||«||, we can sasume that
—Ric Q—37_1v/—180log]|o|[*— 223 i(v/ — 180 log]lo/|[*) logllo; |
defined on M is bounded from below by
27(Ric Q—23 -1/ —10601logllo;|?) ,

therefore, —Ric ¥ is positive definite on M. Now we show that —Ric ¥ is
a complete Kihler metric on M. Let xD,n -+ ND,—D,. U - UD,.
There exists an n-polydisk A" centered at x such that DNA"= U™, {zEA";
z'=0}. Then A"NM=(A¥*)"X A" ™, where A* denotes the punctured disk.
In this polydisk, ||o;|[>=|2*|?/h; where A; is a smooth positive function on A"
Around x, the last term in (2), which is positive definite, is

3) 22/ —1(dF NdF+ | 2| %)/ | 2| X (log | 2 | *—log h;)?

+ positive semidefinite smooth term,
where

a; = —(dz' \dlog h;)|z*—(dlog h; \d%')|z'+dlog h; \dlog h; .
Therefore, by comparing (3) with (1), and from the completeness of Poincaré
metric of A* at the origin, we know that the length of a curve approaching to D

measured by —Ric ¥ is infinity, which means the completeness of —Ric .
The finiteness of the volume of (M, —Ric ¥) follows immediately from

V_ldsnde _ . 1
SO<|zl<clz|2(log|z|2)2— rflog c<<oo if 0<e<].

The second assertion of Lemma 1 follows from (2), (3) and the definition
of . Thus the proof is completed.

Remarx. In the above proof, it is essential that the Poincaré metric is
a complete metric with negative constant Gaussian curvature.

2. Nice coordinate system on (M, —Ric ¥)

In this section, we introduce a nice coordinate system at infinity of M.
Let xeD,N - ND,—D,4,U -+ UD,. Let A" be a coordinate polydisc cen-
tered at x such that
A'ND; = {zeA"; 2" =0} (1=<i<m),
A"NM = (A¥)"X A" ™.

Define the universal covering map A™ X A" "— (A¥)" X A"™™, (@', -+, w", w™*},
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” mn 1 n
..-,w)H(zl’ e, X ’z’”+, ...’z)by

2 =exp(w'+1)/(w'—1) if 1=<i<m,
2=’ if m+1<j<n.
A fundamental domain of the universal covering map A— A*, wi— z=exp(w+1)/

(w—1), is as the figure 1 (i.e., the domain bounded by two geodesics tending
to 1).

fig. 1.

By this map, each sequence in A tending to 1 is mapped to a sequence in A*
tending to 0. Now we can introduce a nice coordinate system similar to that
of [2]. Firstly, we introduce a coordinate system on an open set in A close to
1 as follows. Let 5 be a real number close to 1 in A, and @, a biholomorphism
of A sending 7 to 0 defined by

@,(w) = (w—n)/(1—7w).

Fix a positive number R with 27'<R<1. Around 7, consider the open
set ®;1(B(0, R)), where B(0, R)={2=C; |2|<R}. On ®;'(B(0, R)), define a
coordinate function ®;*(B(0, R))— B(0, R), w+ v, by

v = @y(w) = (w—2)/(1—nw).

Secondly, let = (A*)" X A*™™ be a point close to D, so that s (1=i=m) are
close to 0. By the universal covering map defined above, we can find in A"
a point (@', -+, 2™) that is projected on (g, -:+, 2™). Since w'’s (1=i=m) are
close to 1, we can introduce the coordinates constructed above by

v = @' —x)/(1—7'w),

by choosing suitable real numbers 7"’s in A close to 1. In fact, if »' ranges real
numbers close to 1 in A, the set U,®;"(B(0, R)) covers the open subsets (shaded
portion in figure 2) of fundamental domains of A—A*.
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fig. 2.
This fact is proved as follows. Relations v=(w—z)/(1—nw) and v=Re" ™
imply

Re(®) = {n(1-+R)-+(1+7)R cos 6} [{1+R+ 2R cos6} ,
Im(w) = (1—%%)R sin 0/ {14+%*R*+2yR cos 6} ,
and if §=7, then
Re(w) = n(1+R?)/(14+-7"R*) =7,
Im(w) = R(1—7)/(1+7R) 25 (1—7) .

Therefore, U,®;'(B(0, R)) is as figure 3, and the assertion follows.

fig. 3.

We define a “coordinate function” o around a point of (A*)" X A" close
to D, by

o' = (w'—7)[(1—y'w) (1=i=m),
where z'=exp(w'+1)/(w'—1), »* is a real number close to 1,
vi=w =2 (m+1=<j=<n).
Although this “coordinate function” is not a coordinate function in the usual

sense, it has a meaning to take components with respect to v"’s of a tensor field
on (A*)"X A"™™ by lifting it to a tensor field on A”. To examine the behavior
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of a function defined on a neighborhood of D is equivalent to examine the be-
havior of the (locally) lifted function in a neighborhood of (1, ---, 1, *) in A"
using the coordinates v*’s and the components of the lifted metric with respect
to v”’s. So, we introduce the follgwing notion.

DEerFINITION. Let V' be an open set in C". A holomorphic map from
V into a complex manifold M of dimension # is called a quasi-coordinate map
iff it is of maximal rank everywhere in V. (V; Euclidean coordinates of C”)
is called a local quasi-coordinate of M.

Then our map V=B(0, R)" X A" "— (A*)" X A" "< M, defined by (o*, ---,
0", e, ") (oo, exp(Dy TN () D) (D H(0F) — 1), oo, o™ -ee ") where 157 m,
is a quasi-coordinate map.

Lemma 2. There exists a family of local quasi-coordinates = {(V'; o', -++,
9"} of M=M—D with the following properties.
(1) M is covered by the images of (V; o', -+, v")’s.
(if) The complement of some open neighborhood of D is covered by a finite
number of (V5 v, -+, v")’s which are local coordinates in the usual sense.
(iii) Each V, as an open subset of the complex Euclidean space C”", contains

a ball of radius -;« .

(iv) There exist positive constants ¢ and A, (k=0, 1, 2, --+) independent of
V’s such that at each (V'; v', -++, v"), the inequalities

1

" (8:)<(g:7)<¢(3:5) »

(181419 /30290 g5 | < Aipi+1q1, for any multiindices p and q,
hold, where g;; denote the components of — Ric ¥ with respect to v"’s.

Proof. Cover an open neighborhood U of D by ourlocal quasi-coordinates
(V; o', -+, 9") and then cover M—U by a finite number of unit balls of C”.
Then assertion (i), (ii), (iii) are clear. Assertion (iv) is proved by the local
expression of —Ric ¥ with respect to v”’s as follows. From

&z = exp(w'+1)/(w'—1) = exp((1+7’) (v'+1)[(1—7') (2'—1))
(1=i=m),
we have
dz' Ndz'[| % |¥(log| 2t |*—log k;)?
= 4dv' Ndv'[{2(|v*|*—1)—(1—2) (log k;) |v*—1|*[1+47}?,
(ds/3) ABlog hy/| (log| #' |*—log )
= —2(1—»") (1+x")dv’ ABlog k[ {2(1+7') (1*|*—1)/|v'—1|*—(1—7’)
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log 4;}%(v'—1), 8/0v*
= — {2(1+7)exp((1+7) (o'+1)/(1—7) (v'—1)8/0’} [(1—7') (v'—1)*,
log|2*|?
= 2(1—7) (19" I*=D/(A—7) (Iv'—11?).
Substituting these into (3), we obtain (iv), making use of the fact l)g} e *x?=0

for any real number p.

RemMARK. In the above proof, the invariance of Poincaré metric under
biholomorphisms is essential.

Now we define the Holder space of C**-functions on M=M—D by using
the quasi-coordinate system of Lemma 2. For a nonnegative integer &, AE
(0, 1), and u= C*M), we define

llelli,n = sup {sup( (814 [90*00%)u(2) |)
el ze 1 1bl1+19sk

+ sup ( E Iz__zll—xl(alplﬂql/avpa‘vq)u(z)
2,2 I pirTl=k
— (8119 /30200 u(z") | )} .
The function space C** M) is, by definition,
C*"NM) = {usCHM); |lullp<oo} ,

which is a Banach space with respect to the norm ||« ,.
The quasi coordinate system of Lemma 2 is useful in the Schauder estimate
on M. In the interior Schauder estimate

”“”c"-"(v')éc(sgp || +[|Lul|ct-27(y)), where V'C CV CR",

(See Chapter 6 of [4].) for a linear elliptic operator L, the constant C is deter-
mined by m, k, ellipticity of L, C*2*-norms of coefficients of L, and the dis-
tance between V' and 0V. Therefore, the interior Schauder estimate on M
is reduced to that on a bounded domain in Euclidean space, because of (iii)
and (iv) in Lemma 2.

3. The existence of a complete Kiihler-Einstein metric on M

In this section, Theorem 1 is proved. The complete Kihler metric —Ric
® on M can be approximated by Poincaré metrics of punctured disks trans-
versal to D. Therefore, it is suspected that —Ric ¥ should be deformed into
a complete Kihler-Einstein metric.

Set w=—Ric ¥. The deformation of  is defined by

o o++\/—100u,
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where u is a smooth function on M. We want to find u such that w-++/—1080u
is a complete Kihler-Einstein metric on M. Suppose u satisfies the following
equation.

{ (0++/—100u)" = (exp u)¥

4 S
® w-++/—100u is positive definite on M.

The Ricci form of w-++/—100u is Ric ¥ —+/—100u=—(w++/—109u), hence
u++/—100u is a Kahler-Einstein metric with negative Ricci curvature. To
get a complete one, we define an open subset U in C** M) by

U= {usC**(M); i<co—{—co\/—_16514<ao, for some positive constant c}.
¢

If u satisfies (4) and belongs to U, w-++/—100u is a complete Kiahler-Einstein
metric of M. The procedure to find a solution of (4) in U is the same as [2],
[10]. Here, we give a brief review of it. We consider a C’-map ®: C*YM)
— C* 2N M) defined by

D:u e ot/ —100u)"o" .
We claim that for any F e C* **M) (k=6), there is a solution of
(5) D(u) = exp(F), ucU.
Define C, a subset of the interval [0, 1], by
C = {t<]0, 1]; there is a solution u€ U of ®(u) = €'F} .

Since 0 belongs to C, to prove 1<(, it is sufficient to show that C is open and
closed.

Openness follows from the inverse mapping theorem. The Fréchet deri-
vative, ®'(u): C*NM)— C* 23 M), of ® at uc U is given by

hi eF(Rh—h),

where A denotes the Laplacian with respect to the Kahler metric o++/—100u.
The openness of C comes from the openness of @ at u. It suffices to show
that @’(x) has a C’-inverse, i.e., for any veC*>3M), there is a unique solu-
tion e C*Y M) of the equation

Ah—h=v,

with an estimate ||A],,=c|v|ls-2, Where ¢ is a constant independent of the
choice of v&C*2NM). The equation on a relatively compact domain Q
in M:
{ Ah—h =9 inQ
h=0 on 9Q)
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has a unique solution. See for example [4], Theorem 6.13. To prove the
convergence of {#;} obtained in [2], p. 521 (k; is a unique solution for the above
Dirichlet problem, for Q=Q;, where {Q;} is a exhustion of M), as well as
the above estimate, we use the interior Schauder estimate with respect to our
local quasi-coordinate (V'; 9, -+, 9"). See for example [4], Corollary 6.3.

Main tools in the proof of closedness of C are the a priori estimate of the
equation (5) and the interior Schauder estimate of the linealized equation of (5).
The former estimate goes exactly as in [2] using our quasi-coordinate system.
In the latter estimate, Lemma 2 plays an essential role. Here, we restrict
ourselves only to give a proof simpler than [2] of the C’-estimate of (5). Let
uw€ U be a solution of (5). Then

u+F = log{det(g:5+u:7)} —log {det(g:7)}

1
= [ 1og{det(giy+tuip)yat
odt
1 -
== S (g+tu)iu;;dt ,
0
where (g-4-2u)” denotes the inverse matrics of (g;5+tu:;) and o=+/—1>g:;d%’
AdZ. At a point x&M, we may assume g;;=39;; and u;;=35;u:7, hence

Uii

1+ tui;

= > <ui?— #Zﬁ)éxuﬁ = Au

(g+tw)iug =3

_ Uiz (1—tyut; >sv Wi X
2(1+ui7 +(1+uii)(1+mi?))=21+ui7 A

if 0<t<1. Hence u+F=Au and u+F=Au. Here, A denotes the Laplacian
with respect to . Since u belongs to U, u is a bounded C?-function and both
o and w--+/—100u define complete Riemannian metric with bounded curva-
ture (in particular, with Ricci curvature bounded from below). Hence, apply-
ing Yau’s maximum principle (Theorem 1 of [9]), it follows

sup #=sup|F| and inf u=—sup|F| .

To complete the proof of Theorem 1, it suffices to show that Fy=Ilog{¥/w"}
belongs to C*2* M), because the equation (4) can be written as

4) e ™o+ —100u)"/w" = exp(F,) .

F, belongs to C*~#* M) for any &, A, because F, is a bounded smooth function
on M (Lemma 1, (ii)), and

8fovt = —2(zlog|2']) {(2'—1)/(|vf|*—1) (v'—1)} /0"
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implies the boundedness of the derivatives of F. See (2) and (3).

The uniqueness of a complete Kihler-Einstein metric with negative Ricci
curvature follows from Yau’s Schwarz lemma [9]. Thus the proof of Theorem
1 is completed.

Now we give some examples of complete Kihler-Einstein manifold ob-
tained in Theorem 1.

(i) P"—(n-+k) hyperplanes in general position (2<k&),
P"—a nonsingular hypersurface of degree n4-k (2=k),

(ii) an Abelian variety —an effective ample divisor with only simple
normal crossings,

(iii) a compact quotient of B> — a nonsingular curve; or more generally,
a compact Kihler surface of negative holomorphic bisectional curvature —a
nonsingular curve.

We prove that examples in (iii) satisfy our condition. Let M be a compact
surface with negative holomorphic bisectional curvature. Then from the
decreasing property of holomorphic bisectional curvature, any nonsingular
curve C on M admits a Kihler metric with negative Gaussian curvature, hence
its genus g(C) is greater than one. From the adjunction formula ([6], p. 471),
2¢(C)—2=KC+C?*>0, where K denotes the canonical divisor of M. Hence
(K+Cy¥=K?*+2KC+C*>K?*+KC>0, using the ampleness of K,. There-
fore, K, Q|[C] satisfies the condition of the criterion of Nakai, and K,®[C] is
ample for any nonsingular curve C.

ReMARk 1. In example (iii), the genus of C is not smaller than 14(KC
~+¢i—3c,)/4.  This follows from Theorem 2.

Remarx 2. B. Wong [8] and Yau proved that for a bounded strongly
pseudoconvex domain Q in C" with smooth boundary, the following condi-
tions are equivalent.

(a) Q is biholomorphic to B";

(b) Q is homogeneous;

(c¢) Aut(Q), the group of biholomorphisms of €, is noncompact;

(d) There is a subgroup ZCAut(Q) acting properly discontinuously on
Q such that the volume of the quotient Z\Q with respect to the canonical
complete Kihler-Einstein metric is finite.

Our complete Kihler-Einstein manifold #—D has finite volume, but
may admit an entire holomorphic curve. For example, P? minus four lines
in general position (an example in (i)) contains C*, the diagonal line minus
two points, which is a holomorphic image of C.

ReEmMARK 3. Let M be a complete Kihler manifold and  ist Kdhler form.
(M, o) is called of bounded geometry or homogeneous regular iff there is a quasi-
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coordinates €I/ which satisfies the condition (i), (ii), (iv) of Lemma 2. Let (M,
o) be a noncompact complete Kihler manifold with bounded geometry. Then
we can define the Banach space C**(M) as in section 2. Under these definitions
Theorem 1 is generalized in the following way.

Theorem 1'. Let M be a noncompact complex manifold of complex dimen-
sion n. Suppose M admits a volume form ¥ such that w=—Ric U is a complete
Kahler metric of M and (M, o) is of bounded geometry. Then for any f<C**
(M), k=3, the equation

(0+00u)" = e‘e’o"

has a solution u such that w-00u is a complete Kahler metric of M which is equiva-
lent to . In particular, if log(¥[w") is in C*NM) for any k, N, then M admits
a unique complete Kdahler-Einstein metric with negative Ricci curvature.

4. An inequality for Chern numbers

In this section, we prove Theorem 2 using our complete Kihler-Einstein
metric with negative Ricci curvature on M=M—D.

In [1], B.Y. Chen and K. Ogiue proved an inequality: (—1)"2(n+1)ci %,
=(—1)"nct for a compact Kihler-Einstein manifold. By [10], this inequality
holds for every projective algebraic manifold with ample canonical bundle.
This inequality can be proved easily by computing the Chern forms using the
curvature tensor of a Kihler Einstein metric. In this paper, we apply this
method to our complete Kihler-Einstein metric. From the proof of Theorem
1, such manifolds have properties (i), (ii), (ili) stated in the introduction. So,
the “Chern numbers” are computed from our complete Kihler-Einstein metric
(which is unique up to constant multiple and they are determined only by the
complex structure of M and the divisor D.

We fix the notations as follows.

M, M, D=>Y_,D,; are as in Theorem 1,

w=—Ric ¥: Carlson-Griffiths metric on M=M—D,

&=w-+\/1—00u: our complete Kahler-Einstein metric on M,

7, (resp. %;): i-th Chern form computed from the Riemannian connection

of » (resp. @) on tangent bundle T'M.

Lemma (Gaffney [3]). Let X be an m-dimentional complete Riemannian
manifold, n an (m—1) form on X. Assumes [Inlldv<< oo, andg ||dn||dv<< o,
X X

where ||+|| and dv denote Riemannian norm and Riemannian measure, respectively.

Then
Sxdn —0.
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Proposition 1. Assume n=2 and define two ‘‘Chern numbers” by
a={wn, a={ .
M M
Then
(i) (—1)c=(k+9)"
1) (—=1)"e %, =(k+8)" *(c, - k8427824271351 8),
where k denotes the first Chern class of Kz

Proof. We claim firstly that the following equalities hold.
© (—1ra=| 2o,
0 (= @reyrar,.
Since both equalities can be proved similarly, we prove here only (6).
¥, = (1/2z)Ric(8") = —(1/27)& = —(1/27)w—dd‘u ,
where d°=(\/—1/4x) (0—9d). Hence

(—1yer={ (-7
_ SM(m/Zn)”+SMd Sy (;’) (]2 <duA (ddu)*"} .

Because # is in U and vol (M, ) is finite, we can apply Lemma 3 to obtain (6).
Assertion (i) can be proved as follows. We have

wf27 = (—(Ric Q)2z—dd" S -loglle|))—dd* 3} -,log(logller )

where —(Ric Q)/2z—dd" > .log||o|[* represents k+8. Hence SM(w/Zn)” can
be written as
(37 { a 3 (7) (K + oDy

Ad(—X .1log(loglle][%)?)

Add(—23% -1log(loglla:|P)?)" 7},
where 7,(E) denotes the i-th Chern form of a complex vector bundle E over
M. Here,

d‘log(log||a;|1%)?
= \/—1(d7' |z —dlog h,—dz'|z'+log h;)[4rlog||o|?,
and
dd‘log(logl|e|I*) = —27,([D;])/logl|o|I?
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—V=1(de ANdZ+ | 2 %) [z | 2| H(log]lo |7

have bounded norms with respect to » on M. By Lemma 3, (—1)"¢} equals

(k+3)".

To prove the assertion (ii), we introduce a Hermitian metric on M and
let 5, ©=06 be the connection form and the curvature form of its Hermitian
connection, respectively. Let € and © be the connection form and the curvature
form of the Kihler metric w. By the formula giving the difference between
the Chern forms defined by two connections ([6], pp. 400-406), we have

(0/27)* 2 N7, = (Y1 +7([D])) 2 AvA T M)+d(I+II1+111)
where

I= {7(" %) (K + ([ A d(— 2 -aloglogl o)

(dd"(—23% -1log(logllo|?)))** "} Av{TH)
1T = (v(Kw)+7:([D])"* A4,

11 = 335" 72 (1K) 7 (D)) A

r
(dd*(—23% -1log(logllos|*)y" " A4,
the first row of v/ (—_10—5),’ |27
the second row of / —_1(®+é),’ A
the first row of v/ -:T(G—i—@o) I [An }
the second row of / (—_10—00) A2 |

A=2= {detl:

—}—det{

Now, we take an exhaustion of M by relatively compact domains {Q;};cn.
For example, Q;={z€M; IIi.illo(2)||>1/} (JEN). Then U;Q;=M, N (M
—Q;)=D. By Stokes’ theorem,

| aurrvom = —lims (I-+II+I11)
M oit-9))

jtre

- limg (I-IILI00) .
9Q;

oo

The argument in the proof of (i) shows lims I=0. To compute limS 1
_ jre 2Q; jree Q

+1I1I), let A"C M be a coordinate polydisk such that A” ND=A"ND,={z€A";
2'=0}. Consider the boundary {z€A”; ||oy|=]|2"|?/h=E} of the tube of
radius €>0 along D, in A", which will be abbreviated to {||o)|]|=¢&}, and let
e—0. If we set 2'=&\/Ie” ™, then dz'=+/—12'd0+Ee" ~%d~/h;, hence dz'[z!
=+/—1d0-+dlog\/h, on {||o}]|=€}. The order of (g:;) when & tends to O is
in the following.
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) O(elog€)™?) | OE(loge)™?) }1
77 oetogey | o bn—1.
i n—1

Here, g,7 denotes the (i, j)-component of » with respect to 2”’s. Thus the
inverse matrix (g'/) of (g;7) has the following order when & tends to 0.

(@(éz(logé)z) [ o) )}1
(&7) = !

o) ’ o) }n—l
— 1 T =T

Let the O(1) part of (g;7) be denoted by (H;j); ;2, and giz7=H,3. By direct
computation,

0 =3, 08"(0£15/02")dz" = —(140(1))dz"/z"+ Xanso(1)d2" ,

01f = Ep'mgji(aglz/ﬁx")dz“

= (SpH?H5-+o(1))d2' ]2+ Daz,O(6(log€) " (j22)

0} = o(1)dz'+>1,2,0(6)dz” (1=2)

0/ = o(1)dz!/2'+242,0(1)dz”  (4,7=2).
Using dz'/z*=+/—1d0+dlog\/h,, we estimate © on {||o,||=€} as follows.

6, = 2lazp(1)dO N A"+ 20z p(1)dO NdZ" 24 p20(1)dz* N2
elj = —V—1doA 5(2;@2}[ "H 15)+2mz22“(1)d ONd=”

+ 20021 O(E Y (log &) *)dO N d=®

+ 3 0220(E (log &) )d* A7 (j=2)
B! = 2022 0(E)dO N 2" +2002,0(€)dO N dZ®

+ 200 82:0(6)d2" NdZP (i=2)
B/ = 22n(1)dO Nd2"+ 20z p(1)d0 NdZ®
+Z¢_3g20(1)dzm/\déﬂ (i’ jzz) .

Therefore, on {||o||=¢&},

V10— 0) 2z V10— )27
A= ljzoidet ( VZ1(048) 4 x/——1(e+@°),.f/4n)
VZ1(O48) Y4 V—1(0+8)/ /4
+d ( V=1(0—0) 2z V—=1(0—6)/ |2 >}
+21=(i,,’),j>izz
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= (1+o(1)) (d6/22) A V —1(2};2,0,+6 ) 4=
+(d6/27) A2 {(Dp2eH?Hiz) V=16 M 4m+o(1)}
—(d0/4m) A 2oV — 16,4 127) <O p2eHPH 3)+-o(1)}
+o (%) (terms which do not contain d6).

Using the estimate of § and 8, it follows on {||o)||=¢},
II = (vy(K#)+7([D])* 2 AA'+o(1)dO Ad2 NN -+ Ndz"NdZ",
111 = 333" %) (K + (DY

r
/\(ddc(~2?=llog(10g”g'i||2)2))”—2—i/\J/
+“(1)d¢9/\d22/\ « AdZ",

where
A’ = (d)2z) N\ [\/ —_I(Ejglgji) J4r

+V =10 {20+ (22HHi5)8,)} [47] -
Here, we need two lemmas.

Lemma 4. 0=, {é,-f + (0l jing)é}} defines a connection of type
(1, 0) on the anticanonical bundle of D,—(D,U -+ U D,).

Proof. Let (U;2', 2% +++, 2") and (V; o', #? -+, w") be holomorphic local
coordinates such that D; is realized by the equations 2'=0 and »'=0, respec-
tively. Suppose UNV %=¢. Let {(3/ow', -+, 0/ow™)=G*(8/82, -+, 8/3z"), then

0z'/ow' | 207[0w!

where g = (027/0w'); =, .

02! [ow’

g

On D, Y(8/dw?, -+, 0/ow")=g"(0/02? -+, 0/02"). The components with respect
to w-coordinates will be denoted with prime “’”’. Then the direct computation
shows that on UNV N D,,

0" = 312007+ (X2, H' P H;)
— G4d{det(dz7[0w'); 25} |det(027[0w'); 2, -

This completes the proof of Lemma 4.

Lemma 5 (Mumford [7]). Let E be a holomorphic vector bundle on a
compact complex manifold M and D a divisor on M with only simple normal cross-
ings. Let 0 and © denote the connection form and the curvature form of a connec-
tion for the restriction Ey on M=M—D. Ifboth § and © are of Poincaré growth
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along D with respect to an open covering of D by polydisks, then the current defined
by the k-th Chern form 7 ,(®) represents the cohomology class of c,(E) in H*(M; C).
In particular, the Chern numbers of E is the same as those of vy(®)’s.

A complex valued C*p-form % is said to have Poincaré growth along D= M
—M if there is a set of polydisks U,C M covering D such that in each U,, an
estimate

I"](Xb Tt Xp)lzécmpw(Xl) ot Pﬁ(XIJ)

holds, where P, is the metric on U,N M=(A*)"X A" ™ which is a product
of the Poincaré metric on A*’s and tue usual flat metric on A’s.

We return to the proof of (ii). The connection form & and the curvature
form ® of the anticanonical bundle of D,—(D,U --- U D,) satisfies the condition
of Lemma 5. In fact, on A” such that A"ND=U?., {zEA"; =0},

Hiz = 2(14o(1))/ | 2| "(logl o] PY? @2<ism),
Hi; = —2(3log h[87/4-o(1))/2(logllo| )2

—2(dlog h;/0z'+o(1))/z(logllo;|1%) 2=iEj=m),
H;; = —2(3log hifoz' +o(1))/z'(logllo| )  (2<i<m, m+1<j),
Hi; = O(1) | (m+1<i,j),
H¥ =271 2| {log|lo (1 +(1)) 2<i<m),
HI = #| 37 |%ogllo PO(1)+7 | #* |ogllo |PO(1)  (2<i=* j<m),
Hi = 20(1) (2<i<m, m+1<j),

HY = O(1) (m+1=i,j).
On the other hand, ‘

Hi; = gi; = O(1)—v/—1 2 .1(0log(logllo|P?)1; 2= p=m)

Hy; = O(1) (m+1=<p).
Hence

22 H?H,5; = O(1)

0(23p2:H7?Hy5) = 2i2mO(1/7 (logllos| )2 dZ 42 g 112:0(1)dZ .

Therefore, § and 84 are of Poincaré growth along D,N(D,U -+ UD,). Next,
we consider 2);20;7. Because it is the Ricci form of w,

2210, = Ric(—Ric ¥)" = Ric(¥/exp F,) = —o-+\/—100F,.

From the proof of Theorem 1, 80F, is of Poincaré growth along D,N(D,U
- UD,), when 09F, is considered as a differential form on D,. Since
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o = 2(1+0(1))dz' AdZ'/| 2| ¥(logl|e|[?)’
—2(0log h,[07/ +o(1))dz* AdZ’ [2*(log]|a||%)?
—2(9log Iuf0x'+a(1))ds A dZZlogll 17
+71(Ka)+7([D]) — v —1 22,00 log(loglla:| ),

where the last term is of Poincaré growth along D; N (D,U -+ UD,), it follows
by Lemma 5 that

lim S”a KR+ (DD) A 2n A/ =T 2@

= SDI('Yl(KMH%([D]))”'Z/\(—2'1) (7 (K+7([DD))
= —27Y(k+8)""%(kS,+85),
and

tim{ S ) 0Dy

240 r
A(dd*(—23dog(loglla|[2)))" -2~
ANdO2z AN/ —1 23210/ /4=
=0.

On the other hand, by Lemma 5
tim{ (K n(DDY A (@6]2%) A/ =180

240

=, R DDP A2 (K )

= = ouEay v (DY A2 (K + (D)
— ___2-;(k_’__ 8)”_2(k81—|—812) (by the adjunction formula)

and the remaining integral equals zero.
Summing up the above arguments, we get

limg (I+IT+111)
jte JoQy

= — DV {—27"Y(k+8)* kS, +88;)— 27} (k+8)*%(kS;+8.2)}
= (k+8)" ¥ (kS+27182+271 3% .18,
hence
(=D& %, = (k+8)" Xc, +RS+27182271 3% 187 .

We have finished the proof of Proposition 1.

Now we can prove Theorem 2. Let (INV, w) be an n-dimensional Kihler
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manifold. Let v; and v, denote the first and second Chern forms computed
from the Riemannian connection of w. Then

"2 = {(n—2)(P—2]|p|)/167% 1 ,

8
© rtAv, = {2 Aol IRIB320% 51

where R, p, 7, and ||+|| denote the curvature tensor, the Ricci tensor, the scalar
curvature and the Riemannian norm of o, respectively. If o is Kihler-Ein-
stein, then ¥,=X\w for some AER and 7°—4||p|[>=2(n—2)||p|[>. Therefore,
if A=—1/27, i.e., if p=—(metric), (8) can be written as

(=1)'n" = {=—D)llplP/2(27)"} #1,
(=D, = {(n—2)/2(n—2)lp| P+ IRIP)/(27)" - 8} 1 .

On the other hand, we have the following inequality for a general Kihler mani-
fold:

(10)  (r4-1)IIRIP=4lpl.

Combining (9) and (10), for a Kihler-Einstein manifold with negative Ricci
curvature, we get

)

2(n+1) (—1)"y," 2y, zn(—1)"r," .
This pointwise inequality holds for our complete Kihler-Einstein manifold
(M—D, &). Integrating this inequality over M=M—D, and applying Pro-
position 1, we get Theorem 2.
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