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8;~CONTINUOUS MODULES

Mamoru KUTAMI

(Received June 8, 1982)

Generalizing the notion of right 8,-continuous regular rings (see [2], [3])
we define that of quasi-Ry- and R,-continuous modules and mainly study the
directly finiteness of nonsingular R,-continuous modules over (von Neumann)
regular rings.

Let R be a regular ring. By & we denote the family of all essentially
8,-generated essential right ideals of R. It is shown that & becomes a right
Gabriel topology on R (Proposition 5). From this fact the divisible hull Eg(M)
of a given right R-module M is considered. Our main purpose of this note
is to prove that a nonsingular R;-continuous R-module M is directly finite
if and only if so is Eg(M). This is a generalization of a result due to Goodearl
[3].

Throughout this paper R is a ring with identity and all R-modules con-
sidered are unitary right R-modules.

For a given R-module M, we denote its injective hull by E(M) and the
family of all submodules of M by _L(M).

For Ne_L(M) N <,M means that N is an essential submodule of M and
(N: x), for x€ M, denotes the right ideal {reR|xrN}.

Let M be an R-module. An S-closed submodule of M is a submodule
B such that M/B is nonsingular. For any submodule 4 of M there exists the
smallest S-closed submodule C of M containing 4, which is called the S-
closure of 4 in M (see [1]). We note that, when M is nonsingular, the S-
closure C of 4 in M is uniquely determined as a submodule C such that 4=,
C and C is S-closed in M.

Lemma 1. Let M be an R-module, and let A and B be submodules of M
such that A<,B. Then B is contained in the S-closure of A in M. In addition

if M is nonsingular and B is a direct summand of M, then B coincides with the
S-closure of A in M.

Proof. Let C be the S-closure of A in M. Since (B4-C)/C is an epi-
morphic image of a singular module B/A4, we see that (B4 C)/C is singular.
On the other hand, (B+C)/C is a submodule of a nonsingular module M/C,
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whence (B+4C)/C is nonsingular. As a result, we have that (B4C)/C=0,
and so B C as desired.

Let M be an R-module. We consider a subfamily 4 of -L(M) which is
closed under isomorphic images and essential extensions. For such an  f the
following conditions are studied in [5]:

(C,) For any A=A there exists a direct summand A* of M such that
A=< A%

(C,) If A=A is a direct summand of M, then any exact sequence 0—4
—M splits.

(Cy) If Ae A, Ne_L(M) and both of them are direct summands of M
with 4 N N=0, then A@N is also a direct summand of M.

Note that if M is nonsingular and . satisfies the condition (C,), then,
for each A=, A* coincides with the S-closure of 4 in M.

Following [5] we call M _A-continuous (resp. .A-quasi-continuous) if M
satisfies the conditions (C,) and (C,) (resp. (C,) and (C;)). Especially if M is
L(M)-continuous (resp. _-L(M)-quasi-continuous) we simply call M continuous
(resp. quasi-continuous). It follows from [5] that (A-continuous modules are
JA-quasi-continuous, quasi-injective modules are continuous and that M is
A-quasi-continuous if and only if M satisfies (C,) and the condition:

(*) For any Ae A and Ne_L(M) such that N is a direct summand of
M and ANN=0, every homomorphism from 4 to N can be extended to a
homomorphism from M to N.

We now introduce the notion of quasi-®,-continuous modules and 8-
continuous modules. Let M be an R-module and consider the family A(M)
of all submodules 4 of M such that 4 contains a countably generated essential
submodule. Then A(M) is closed under isomorphic images and essential
extensions. We say that M is R -continuous (resp. quasi-R,-continuous) if
M is A(M)-continuous (resp. A(M)-quasi-continuous).

An R-module M is directly finite provided that A is not isomorphic to
any proper direct summand of itself. If M is not directly finite, then M is
said to be directly infinite. It is well-known that M is directly finite if and
only if for all f, g€ End (M), fg=1 implies gf=1.

Theorem 2. For a given monsingular Ny-continuous R-module M, the
following conditions are equivalent:

(a) M is directly finite.

(b) M contains no infinite direct sums of nomzero pairwise isomorphic sub-

modules.
(c) Any submodule of M is directly finite.

Proof. (a)=(b): Assume that M is directly finite. It suffices to show
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that if {4, 4, -} is an independent sequence of pairwise isomorphic cyclic
submodules of M, then 4,=0. Set B;= é/.lg,,,ﬁ for i=1, 2, 3. Then éA,,
n=0 n=1

=B, ®B,PB; and B,=B; and B,®B,=B,. By the condition (C,), there
exists a direct summand B;* of M such that B;<,B;* for each ;. Using the
condition (*) we have a homomorphism f: B,*— B;* which is an extension of
the isomorphism B,=~B;. Then f is a monomorphism, because B,<,B,*.
Also, using the condition (C,) we see that f(B,*) is a direct summand of M
containing Bj; hence by the uniqueness of the S-closure f(B,*)=B;*. Thus
B,* is isomorphic to By*. Similarly, (B,® B,)* is isomorphic to B;*. By
the condition (C;), B* @ B,* is the S-closure of B,@ B, in M. Therefore
(Bi®By)*=B*®B,*, and so B*PB,*=~B,*. As M is directly finite, B*P
B,* is also directly finite, from which B*=0. Thus we see that 4,=0 as
desired.

(b)=>(c): Let N be a submodule of M, and let N=N,PN, with an iso-
morphism f: N=N,. Then,

N = N®N,
= fIN) B fIN,) BN,
= fANY)D fAN,) D f(N) DN,

It follows that {N,, f(IV,), fA(NN,), -} is an independent sequence of pairwise
isomorphic submodules of M. By assumption N,=0 and so N is directly
finite.

(c)=>(a) is clear.

The following lemma is well-known and, as is easily seen, the same con-
clusion is valid for sums of infinite many submodules.

Lemma 3. Let A, B, C and D be submodules of a nonsingular module M
such that A< B and C<,D. Then (A+C)=,/(B+D).

Lemma 4 ([2, Lemma 14.10]). Let M be a projective module over a regular
ring R, and let _L denote the collection of all countably generated submodules of M.

(a) If], KeL, then JNKeEL.

(b) IfJ, Ke_L and feHomy(J, M), then f(K)={xe ]| f(x)eK} L.

Now, let & be the collection of all countably generated essential right ideals
of a ring R and let & be the collection of all right ideals which contain a mem-
ber of £&. Then we have the following proposition.

Proposition 5. If R is a regular ring, then F is a right Gabriel topology,
i.e., F is not empty and satisfies the following conditions:
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(Ty) IfI€S and acR, then (I: a)EZ.
(T,) If I is a right ideal and there exists JEF such that (I: a)€F for
every a< |, then I€ <.

Proof. Suppose that I€F and a=R. Then there exists J&& such
that J<I. Noting that (I: a)=(J: a), we may show that (J: a)&. J=.R
implies that (J: @)<,R and by Lemma 4 (J: a) is countably generated. There-
fore (J: a)e&. Now suppose that I is a right ideal and that there exists J
€Y such that (I: a)€S for each acJ. Then there exists K& with K

=<J. Put Kzni a,R. Then by the assumption, there exists [,€& with
(I: a,)=1, for ea:h n. The mapping f: éR»K given by f((r,))=>)a,r, is
an epimorphism. Note that f(ﬂél,,)gK ﬂl— 1and f(”E“EI,,) is countably generated.
Since f induces an epimorphism_”éR/” éI”AK/f(”E_B},,) and ,é.?R/,, 5;91,, is singular
by Lemma 3, K/f(’énal,,) is also _;ing_ular. Hen(—:é f(néEI,,)éZK :gl,_,R and so f
(E?II,,)ES. Thus I&F as desired. )

For a given module M over a regular ring R, we put

Ea(M) — {x€ E(M)|(M: x)eF}
= {x€EM)|xI <M for some I€E} .

Eg(M) is called the F-injective hull or F-divisible hull of M (cf. [7, p. 30]).

Lemma 6. Let R be a regular ring and let M be an R-module.

(a) If M=A®PB for some submodules A and B, then Eg(M)=Eg(A4)
DEZ(B).

(b) Amny R-homomorphism from M to an R-module N can be extended to
an R-homomorphism from Eg(M) to Eg(N).

Proof. (a) Itis clear that E(M)=E(A)PE(B). Let meEg(M). Then
m=a-+b for some acE(4) and beE(B). Since (M: m)€F and (M: m)=
(A:a)N(B:b), (4: a)eS and acEg(A4). Likewise we have b& Eg(B). There-
fore me E4(A)@PE%(B) and hence Eg(M)=Eg(A)PEF(B).

(b) Let f: M—N be a homomorphism. Then f can be extended to an R-
homomorphism f: E(M)—E(N). Let meEg(M). Then (M:m)<(N: f(m))
€%F. Hence f(m) lies in Eg(N). Thus the restriction map f|Eg(m) of f is
the desired one.

Proposition 7. Let R be a regular ring. If M is a non-singular quasi-
Ro-continuous R-module, then so is Eq(M).

Proof. First we show that the condition (C,) holds for A(EF(M)). Let
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Le J(EF(M)). There exists a countably generated essential submodule IV of
L; say N =f} x,R. We can take I,&& such that x,I,<M for each n. Since
n=1
K=>x,I, is countably generated, there exists a direct summand K* of M
n=1

with K< ,K*. It follows that K is an essential submodule of Eg(K*) and
Eg(K*) is a direct summand of Eg(M) by Lemma 6 (a). On the other hand,
K is an essential submodule of N by Lemma 3 and hence is that of L. There-
fore from Lemma 1 we see that L=<, Eg(K¥).

Next, we prove that the condition (*) for A(EF(M)) holds. Let A=
A(E(M)) and N e _L(Eg(M)) such that N is a direct summand of EF(M) and
ANN=0, and let f: A—N be a homomorphism. Now there exists a countably

generated essential submodule B of A; say B=31x,R. Then f(B)=31f(x)R

=<.f(A)=<N. Since both x, and f(x,) are in EF(M) for each n, there exist I,
and I,” in & such that x,[,’<M and f(x,)I,<M. Then I,=I,NI," lies

in € by Lemma 4 (a), and #,[,<M and f(x,)[,<M. Putting C=3)x,], and
D:g f(x,)1,, we see that C and D are countably generated submodules of M

with C<,B and D<,f(B). There exists a direct summand D* of M such
that D<,D*. Using the condition (¥) for (M), the restriction f|;: C—D
of f can be extended to a homomorphism M—D*. This also can be extended
to a homomorphism k: Eg(M)—E%(D*) by Lemma 6 (b). Since Eg(D¥*) is
the S-closure of D in Eq(M), EF(D¥*) is contained in N. Therefore 4 is a homo-
morphism from Eg(M) to N. Since f |=Fk|; and C<,B, h=f.

At the end of this note we provide an example to show that the converse
of Proposition 7 is not true in general.

Now we are in position to prove our main theorem.

Theorem 8. Let R be a regular ring, and let M be a non-singular R,
continuous R-module. Then M is directly finite if and only if so is EF(M).

Proof. 'The “‘only if”” part. Assume that M is directly finite. If Eg(M)
is directly infinite, then there exists an independent sequence of nonzero pair-
wise isomorphic cyclic submodules of Eg(M); say {x,R};-:. Let f,: x,R—>x,4,
R be an isomorphism with f,(x,)=x,4;, #=1, 2, ---. For each n, there exists
1, & such that x,[,<M. Then A,=x,(I,N-+NI1,) and B,=x,(I;N N 1,4,)
are countably generated submodules of M such that B,<,4,<,x,R and the
restriction f,| 5, of f, to B, is an isomorphism between B, and 4,;,. By the
assumption, there exist direct summands 4,* and B,* of M with 4,<,4,*
and B,<,B,* and further f,| 5 can be extended to an isomorphism g, between
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B,* and A,.,*. Hence we have éB,,*zaBA,,ﬂ*. On the other hand, by
n=1 n=1

Lemma 1, for each n 4,<B,*. So A4,<,B,* which implies that B, *==4*.

Therefore @B, *=B*P(PA,+,*). However, this is a contradiction, because
n=1 n=1

@B,* is directly finite by Theorem 2. Therefore Eg(M) is directly finite.

n=1

The “if” part. Assume that Eg(M) is directly finite, and consider f and
g in Endg(M) such that fg=1Eudz(M). By Lemma 6 (b), there exist f and g in
Endg(E<(M)) such that f and g are extensions of f and g respectively. Noting
that M<,Eg(M) and E<(M) is nonsingular, we obtain that fg=1Endz(E5(M)).
By the assumption 2f=1Endz(Eg(M)), from which gf=1Endr(M). Therefore M
is directly finite.

Proposition 9. Assume that M is a nonsingular Ry-continuous R-module
with the following condition:

(#) For any submodules A and B of M with ANB=0, any isomorphism
from A to B can be extended to a homomorphism of A to B, where A and B are
the S-closures of A and B in M respectively. Then, M 1is directly finite if and

only if so is E(M).

Proof. Noting that E(M) is nonsingular R -continuous, the “if”’ part is
clear by Theorem 2.

The “only if”” part. Assume that M is directly finite. If E(M) is directly
infinite, there exists an infinite and independent sequence of nonzero pairwise
isomorphic submodules of E(M); say {4,}.=:. Let f, be the isomorphism
between A4, and A,,, for each n. Set B,—=A; N M and define inductively B,
=f,(B,)NM and C,=f;'(B,s+,) for n=1, 2, .. Then, for each n, B, and
C, are submodules of 4,N M with C,<,B, and the S-closure B, of B, in M
coincides with C,, the S-closure of C, in M, by the similar way in the proof
of Theorem 8. 'The restriction map f,|¢, is an isomorphism from C, to B,,;.
Using the condition (#), f,|c, can be extended to a monomorphism f,: C,—
B,.,=C,,;. Consequently {C,, /,(C)), f(fi(C)), -} is an independent sequence
of nonzero pairwise isomorphic submodules of M, which is a contradiction by
Theorem 2. Thus the proof is completed.

Corollary 10. Let M be a nonsingular continuous R-module. Then M is
directly finite if and only if so is E(M).

Finally we show the following result.

Theorem 11. Let R be a regular ring and M a finitely generated projective
Ro-continuous R-module. If A is a projective maximal submodule of M, then
A is a direct summand of M.
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Proof. A can be written as a direct sum of cyclic submodules; say A=
GEIEBIx,,R [4]. We claim that I is a finite set. If I is an infinite set, then we have

a countable subset J of I such that /—] is an infinite set and so A=(P x,R)
asJ
GB(BEGIB_ JxﬂR). Since M is R,-continuous, we have a direct summand B* of

M such that @ x,R=<,B* and ASB*P( P xgR)=M. If A=B*P( P x4R),
peI-J Ber-r

=g

then d@Jx,,R coincides with B* and is finitely generated. If B*@®( P xgR)=
= geIl-J
M, thenfl GIBprR is finitely generated. In any case we have a contradiction.
or-
Therefore A is finitely generated and so it is a direct summand of M.

As a consequence of Theorem 11, we obtain the following which is a slight
generalization of [6, Corollary].

Corollary 12. If R is a right hereditary, 1ight R, -continuous, regular ring,
then R is a semi-simple artinian ring.

ReEMARK. In general, the converse of Proposition 7 is not true. For
example, take a field F and set R,=M,s(F) for all n=1, 2, ... Map each R,

—R,,, along the diagonal, i.e., map x+— x 0 , and set R=lIm R,. Then R is

a simple, right hereditary, not artinian, regular ring with a unique dimension
function (see [2]). Note that for a regular ring R, Ry is quasi-R,-continuous
if and only if Ry is 8,-continuous. Therefore we see that Eg(R)=E_r(Rr)(R)
=E(R) is a nonsingular quasi-R,-continuous R-module, but R is not quasi-R-
continuous by Corollary 12.
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