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1. Introduction

Let (M, §) be a Riemannian manifold (n = dim M > 2), M a relatively compact
domain in M, and g := §|as. In this paper, we study the following elliptic singular
boundary value problem:

Aszu=F(z,u
g (z,u) on M
(*) oo u>0
u — +00 as rgyp — 0,

where A, is the Laplacian of g (ie. Ay := ¢¥/V,;), F(z,t) a nonnegative locally
Holder continuous function on M X [0, +00) satisfying certain conditions, and raas
is the distance function to the boundary M.

In this decade, many authors investigated existence, behavior, uniqueness and
nonexistence of solutions of this problem from the viewpoints of differential equa-
tion, conformal geometry, and probability theory. In this paper, we consider mainly
the uniqueness of solutions of the problem (x).,. For instance, in the most typical
case when F(z,t) = h(z)t? (¢ > 1), we show the following:

Theorem 1. Let M be a relatively compact domain in M with (n — 1)-
dimensional C*-boundary, g := §|rr, h a nonnegative locally Hoélder continuous
function on M, and q a number larger than 1. If h satisfies h ~ rap* near M for
some number £ > —2, then the problem

Agu = hu? M
on
(%) 0o u>0
u — 400 as raopm — 0,

possesses a unique solution.

Here and throughout this paper, we use the notation “h ~ h” to mean that h/iz
is bounded between two positive constants (i.e. Ch < h < C’h for some C > 0 and
C’' > 0).



280 S. KaTo

The assertion of Theorem | was known in the special cases when (1) h = 1
on M in R™ ([10, Theorem 4], [4, Theorem 1]); (2) h ~ 1 on M in R", and
h is continuous on M ([9, Corollary], [2, Theorem 2.7], [14, Theorem 1.1]); (3)
h(z) ~ rop® on M = B;(0) the unit ball in R™, and h/rap’ is continuous on
M for some number ¢ > —2 ([13, Theorem 7.1 (11)]). Also in a certain general
case including F(z,t) = h(z)t?, the uniqueness was shown under the assumption
of continuity similar to the above ones ([2, Theorems 2.4 and 2.7]). In these works,
the uniqueness was given as a consequence of discribing the exact behaviors of
the solutions by using the assumption on continuity on the boundary essentially.
However, we emphasize here that we need only rough estimates for the solutions
of the problem (*), to show the uniqueness if F(z,t) has polynomial order with
respect to t. To see this, we improve, in Lemma 2.1, the uniqueness result of the
previous paper [6]. This lemma plays a crucial role in this paper.

When M = B;(0) in (R™, go), Ratto-Rigoli-Veron [ 13, Theorem 7.1 (I)] showed
that, if F(x,t) = h(z)t(»+2/("=2) and h is radially nonincreasing with respect to a
point in M, then the problem (*)., has at most one solution. For the proof, they
used a method similar to Iscoe [4, Proposition 3.15] which is valid so long as (M, g)
is a star-shaped domain in (R",go). By means of Lemma 2.1, we can show that,
even if h is not radially nonincreasing, the uniqueness holds when h ~ h, near the
boundary for some radially nonincreasing hy, and moreover, it is also true for some
more general non-star-shaped domains, e.g. annulus domains (see Theorem 3.6).

As we observed in [6], the equation

(%) on M

u>0

{ Agu = F(z,u)

often possesses a solution with mixed behavior, i.e. which is neither maximal nor
asymptotic to any harmonic function. In some cases, such a solution can be regarded
as a maximal solution of a Dirichlet problem with partially singular boundary value.
Lemma 2.1 can be modified to be applicable to such solutions (see Lemma 4.1). As
an application of this, we give a structure theorem of the scalar curvature equation
on a compact Riemannian manifold punctured by a finite number of points.

Theorem 2. Let (M,g) be a compact Riemannian manifold (n = dim M >
3) with positive scalar curvature, p,,...,py points in M, and (M,g) = (M \
{P1o- o1 G50\ (pr o pe})- S Gy (@) = G(piyz) (~ 1, (2)*7"), where G is the
Green function of the conformal Laplacian Ly := —4{(n —1)/(n —2)}Az+ Sg. Let
f be a nonpositive smooth function on M. If f satisfies f ~ —rp, % near p; for a
number £; > 2 (i = 1,...,k), then, for any v = (v1,...,7) € (0,+oc]*, the scalar
curvature equation
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-1
Lyu := —4:”;Agu + Sgu = fu("+2)/("‘2)

(f, M) on M

u>0

possesses a unique solution u., such that u,(x)/Gp,(x) = v; asz —p; (i =1,...,k)
and the metric u.,*/("~2g is complete. Conversely, any solution u of the equation
(f, M) such that u*/("=2)g is complete coincides with u., for some ~. Namely, the
space of complete conformal metrics on M with scalar curvature f is parametrized
by (0, +oo]*.

First, in Section 2, we prove our main lemma. In Section 3, we give a proof of
Theorem | with more general style, and also consider various applications.

In Section 4, we modify Lemma 2.1 and study its application, and we prove
Theorem 2 in Section 5.

2. A proof of main lemma

In this section, we first prove our main lemma. Here we call a solution U of the
equation (*) is maximal if and only if U > u holds for any solution u of ().

Lemma 2.1. Let (M,g) be an open Riemannian manifold, and F(z,t) a
nonnegative locally Holder continuous function on M x [0,+o00) satisfying the
following conditions:

(F.1) For any = € M, F(z,t) is differentiable with respect to t, OF/0t(z,t) is
continuous on M x [0,+00) and nondecreasing with respect to t;
(F.2) There exists a number q > 1 such that

8F(z,t) < F(z,6t) < 69F(z,t) for §>1,(z,t) € M x [0, +00).

Suppose the equation (x) possesses a maximal solution U. Then, for any
solution v of the equation (%), if u ~ U on M, thenuw=U on M.

Proof.  First, note that the assumptions (F.1) and (F.2) imply

F(z,t) < t%—lz(x,t) < gF(z,t) for (z,t) € M X [0,+00).
In particular, for any z € M, “F(z,t) > 0,0F/dt(z,t) > 0 for any ¢ > 0 and
F(z,0) =0” or “F(z,t) =0 for any t > 0”.

Set 3 :=sup,,(U/u), and &y := 8/(8 — 1). Then, by the assumption u ~ U, we
have 3 < 4+o00. Suppose u # U. Then 8 > 1 and, by the strong maximum principle,
it holds that u < U. Set vy := 6U and v_ := 6§(U — u), where § is a positive
number larger than §; and chosen later. Then clearly v+ > 0 and vy —v_ = éu > 0.
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Moreover, we get
Agvy = 8AU = 6F(2,U) < F(z,6U) = F(x,vy),
namely, v, is a supersolution of the equation (*). On the other hand,
Agv_ = 6(AgU — Agu) = §(F(z,U) — F(z,u)).
Now, we claim that there is a positive number § > &y such that
Agv— = 6(F(z,U) — F(z,u)) 2 F(z,6(U — u)) = F(z,v-),

namely, v_ is a subsolution of the equation ().
For any 6 > g, z € M and u > 0, set

Fi(s):=6(F(z,s) — F(z,u)) — F(z,6(s —u)).

Then

F(6) =8 (G (09) - O (s - w).

Since we assume that F/dt(x,-) is monotonically nondecreasing,

%g(x,s) > aa—f(x,é(s—u)) for s < ——u (< Bu).
(resp. <) (resp. >)
Therefore
Fy(U) > min{F\ (u), F1(8u)} = min{0, F} (Bu)}.
Set

F5(6) := F1(Bu) = 6(F(z,Bu) — F(z,u)) — F(z,6(8 — 1u).
Then, by the convexity of F(z,-), we have

F(z,Bu) — F(z,u)
Bu —u

Fy(60) = 60(F(z, Bu) — F(z,u)) — F(z, fu) > bou
> éou%—lj(:c,u) > 6o F(z,u),

and
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F5(8) — Fa(bo) = (6 = &0)(F(z,u) — F(z,u)) — (F(z,6(8 — 1)u) — F(z, fu))

> 0 (2, 6(8 - 1)u) (6(8 — u — Bu)
> g O 65— 1) - g
> - S (5 15— s

= —q6*" (B —1)7(6 ~ 80) F(z,u)
from which it follows that
F(6) > {80 — ¢677H (B — 1)%(6 — 80)} F(, ).
Remark here that
8o — g6 (B — 1)4(6 — 69) — bo(> 0) as 6 — do.

Then, for any é enough close to §p, we have F5(6) > 0 and v_ is a subsolution of
the equation ().

By the method of supersolutions and subsolutions, the equation () possesses a
solution v satisfying vy > v > v_.

Now, by the definition of j, there exists a sequence {z;}ien of points in M
such that lim;_, o (U(z;)/u(z;)) = B. Hence we get

v(:ci)>v_(xz'):6(U(mi)_1)_)6(ﬁ_1)>g as i — 400

u(zi) — u(zs) u(z;)

from which it follows that, for any 7 large enough,

Ul(z:)

u(z;)’

v(z;)
u(z;)

> B2

namely, v(z;) > U(z;). This contradicts the assumption that U is maximal. Therefore
we have u = U. O

A typical example we can apply our lemma is of the form F(z,t) =
Zle hi(z)t% + ho(z)t (¢; > 1) with nonnegative h;’s. When k = 1, this assertion
was proved in [6, Theorem 1].

In Lemma 2.1, we assumed the existence of the maximal solution of the equation
(*). Indeed we may assume this in many cases. We state it and give a proof here

under the assumption which is suitable for our cases.

Proposition 2.2. Let (M,§) be a Riemannian manifold, M a relatively
compact domain in M with (n — 1)-dimensional C?-boundary, and g = §|u.
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Let hy(x) be a nonnegative C'-function on M which is positive near OM, h_(x)
a positive C*-function on M, and F(t) a nonnegative nondecreasing C*-function on
[0, +00) such that

+o0 s -1/2
(F.3) / (/ F(r)dr) ds < 400 for t>0.
t 0

Suppose F(z,t) is a nonnegative locally Holder continuous function on M x [0, +o0)
satisfying (F.1), (F.2) and

hi(z)F(t) < F(z,t) < h_(z)F(t) for (z,t) € M x [0,400).

If there exists a positive subsolution u_ of the equation (x), then the equation (x)
possesses a solution U which is maximal in the sense that U > u for any solution u
of the equation (x).

Proof. Let Q; be a relatively compact domain of M such that f. > 0 on
M\ @, {Q}ien a sequence of relatively compact domains of M with smooth
boundaries which satisfies Q; CC Q;4; and U;enQ; = M. Set C; := rnin—ﬁi\Ql h+
and C;j- := maxg_h_. By the same way as Keller [8, Theorem III] (cf. [12]), for
any ¢ > 1, the equation

on Qz

Agu = Cip F(u)
u>0

possesses a solution v;+ such that v;4 — 400 as rsg, — 0 and v;4 > v;—. Set
u;_ :=v;_. Then we have

Agu;—(x) = Ci— F(ui—(z)) > h_(2)F(u;—(z)) > F(z,u;—(z)) for z €,

namely, u;_ is a subsolution of the equation (x) on £2;. On the other hand, let ) be
a positive smooth function on M such that —Ag4n is bounded below by a positive
number on M (e.g. choose the first Dirichlet eigenfunction of —A, on a domain
including M). Set u;, := v;4 + B;in, where 3; := maxg (Ci+ F(viy)/|Agnl|). Then
we get

Aguit(z) = Ciy F(vig (7)) + Bidgn <0 < F(z,u;y)  for z €y,
and

Aguit(z) = Ciy F(vit(z)) + Bildgn
< hi(z2)F(v4(2)) + 0 < F(z,v34) < F(z,uiy) for ze€Q;\Q,
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namely, u;4 is a supersolution of the equation (x) on ;. Since u;y+ > u;_ > 0 on
2;, by the method of supersolutions and subsolutions, the equation (*) possesses a
solution u; on §; satisfying u; > u; > u;_.

Since u; — +o00 as raq, — 0, and both u;;; and u_ are bounded above in
Q;, by the maximum principle, we get u; > wu;4+; and u; > u_ in §;, that is,
{u;}i>1 is monotonically decreasing and bounded below by u_. Therefore, if we
set U := lim;_, o u;, then U is a solution of the equation (x). By the maximum
principle again, it is clear that u; > u for any solution u of the equation (x). Hence
we see that U > u or U is the maximal solution. OJ

REMARK 2.3.  The existence of the maximal solution U of the equation (x) is
shown by Proposition 2.2 under the assumption of each theorem in Section 3. In
particular, U — +o0o as rgpr — 0. Hence, to prove the uniqueness of solutions of
the problem (*).,, we have only to show that any two solutions u and 4 satisfy
u ~ @ near OM. Indeed, if we can show this, then any solution w of the problem
(*¥)oo satisfies u ~ U near M. Since u is bounded below by a positive constant, we
get u ~ U on M. Now, by Lemma 2.1, we have u = U.

3. An elliptic singular boundary value problem

In this section, we apply our Lemma 2.1 to an elliptic singular boundary value
problem (*)s. First, we show the following result which includes the most typical
case as in Theorem 1.

Theorem 3.1. Let (M, §) be a Riemannian manifold, M a relatively compact
domain in M with (n — 1)-dimensional C?-boundary, and g := §|pr. Suppose F(z,t)
is a nonnegative locally Holder continuous function on M x [0, +o0) satisfying (F.1),
(F.2) and

Fle,) > Cy - rom(z)tte Jor (z,t) € (BrR(OM)N M) x [0, +00)
© < C_ -ron(z)bte for (z,t) € M x [0,+00)

for positive constants C, C_, R, ¢ > 1 and a number £ > —2, where Br(OM)
denotes R-neighborhood of OM. Then the problem ()., possesses a unique solution
u. Moreover v satisfies the estimate u ~ rgy; ~(¢+2)/(a=1),

Proof. Itisclear that F(t) = t? (¢ > 1) satisfies the condition (F.3). Therefore,
by Proposition 2.2 and Lemma 3.2 below, the equation (*) possesses a maximal
solution U such that U — +o0 as rgp — O.

Let u be a solution of the problem (*),. Standard calculations give a priori
upper estimate u < Cirop~t2/(@=1) near OM for a positive constant C; (see e.g.
[13, Proposition 2.3]). We may assume |A,ran| < Cz on Br(OM) for a positive
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constant Cs.

LOWER ESTIMATE IN THE CASE ¢ > 0. For this estimate, the subsolutions in
Loewner-Nirenberg [10, Theorem 4] can be generalized to be adaptable. Indeed,
let R’ be a positive number given by R’ := min{R, (o + 1)/2C,}, where o :=
(£+2)/(g—1). For any 0 < e < R/, set

Ue— :=7-{(rom + €)= (R +€)~*} on Br(dM)NM,

where v_ := (C3/C_)"(@=1) and C3 := a(a + 1 — 2R'Cy). By direct computation,
we have

Ue— " TAgU,_
1— —a-2
=_ qa(TaM + 6) @

x{a+1—(ram +€)Agrar H{(rorm + €)™ — (R +€)7*} 77

ay —9q
Z ’Y—l_thTaMe(TaM + 6)—(1—2+aq—l(a +1-— 2R/C2) {1 . (T'BM + 6) }

R +e€
>y '"9Csran".
Hence, for any 0 < ¢ < R/,
Ague_(z) > v_1"1Csrppr uc—(2)? > 4 179C3C_ " F(z,uc_(z)) = F(z,u(2)),

namely u._ is a subsolution of the equation (%) on Bgr/(OM) N M which is finite
on OM and equal to 0 on dBr/(OM) N M. Since € can be chosen arbitrarily small,
we get

u> lin+10u€_ =~_(ropr~® — R'™%) > Cyrop ~D/a—1) near OM
€E—

for a positive constant Cjy.
LOWER ESTIMATE IN THE CASE —2 < £ < 0. Let R’ be a positive number given
by R’ := min{R, |[¢{|/2C>}. For any € > 0, set

Ue_ = Y_ (7‘31\/10‘(‘1_1)/2 + e)‘z/(q_l) on Br(0M)N M,

where v_ := min{(Cs/C_)/@") muR'*}, Cs := a(a +1 — R'Cy) (> a{a+ (£ +
2)/2} > 0), mo := minps u and « is as before. By direct computation, we have

Ue— " TAgu_
— 7_1—qar8Ma(q—l)/2—2
J4
X {6 (g - TBMAgTBM) +T3Ma(q_1)/2(a +1- TaMAgraM)}
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> ’y_l_anaM(l_z)/2 {6 <|§| — R’Cz) + ’I‘aM(“_z)/z(Ot +1- R/CQ)}

>y 1y D24 ED/2( 1 — RICY)
> ~_179Csrant.

Hence, for any € > 0,

Ag“e—($) > 'Y—I"qCSTBM(I)gue—(-T)q
> v 1TICsC_T F (@, ue () > F(z, ue_(2)),
namely u._ is a subsolution of the equation (*) on Bg/(0M) N M which is finite

on OM and satisfies ue— < y_R'™® < mg < u on dBr/(0M) N M. Since € can be
chosen arbitrarily small, we get

u > lirEOue_ =v_ -raM_(”z)/(q_l) on Bg(OM)N M.

Therefore, any solution of the problem (*) satisfies u ~ rom /(@1 Now,
by Remark 2.3, we get the assertion of the theorem. O

Lemma 3.2. Let (M,g) and F(z,t) be as in Theorem 3.1. Then there exists
a positive subsolution u_ of the equation (x) which tends to +oco as rap — 0.

Proof. It is enough to show the case when —2 < ¢ < 0. Let a be as before,
R’ := min{R, (o + 1)/2C>}, and x a nonnegative smooth function on M such that
X =1on Br/(OM)NM and x =0 on M \ Byg/(OM). By direct computation, we
have

Ag(x - Tom ™) = Ag(rapn™®) = a(a + 1 — ropr Agran)ron ™ * 2

> Cerom 72 on Bpr/(0M)N M,
where Cg := a(a+1—R’'C3). On the other hand, it is clear that A (x-ran ~*) =0 on
M\ B/ (OM). Hence there is a positive constant C7 such that Ag(x-ron~%) > —Cr
on M. Let n be as in the proof of Proposition 2.2, and set

u_ =y{x-rom *+B(6—n)},

where v = {Cs/(1 + BSR'®)IC_}/(-1) (g := min{Cs, C;R'*""'}, B =
2C7/ min_ 37 |Agn| and 6 := 2max_5; 7. Clearly u_ > 0 on M. By direct compu-
tation, we have

Agu_ = Y{Ag(rom™*) + B(—ABgn)} > ¥Ag(rors™*) > vCerom ™ 2,
u_ < y(rom~* + B8) < (1 + BSR'*)rom ™,
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and hence

’)’l_qCG(]. + ,BéR,a)_q’I‘aM_a—2+qa
Y9C(1 4 BOR' ) " Yrop = C_ -rap® on Br/(OM)N M.

—q
u_"TAgu_

I\

\%

On the other hand, we have

Agu_ = v{Ag(x-ram ™) + B(—Agn)} > v(—=C7 +2C7) > vCr,
u_ < y(R'™% 4 86) <yR' (1 + BSR'),

and hence
u_"IAu_ > y'7IC, R (1 + BSR'*) 1
> Y1790 R (1 + BSR'®) 1
= C_R*>C_-rop® on M\ Bgr(dM).
Therefore

Agu_(z) > C_ -rop(z)u_(2)? > F(z,u_(z)) for ze€ M,

namely u_ is a subsolution of the equation (x). In particular, u— — +oo as
rom — 0. 0

We note here that the assumption ¢ > —2 is essential in Lemma 3.2. Indeed, if
F(z,t) > C', -ropr~2t7 for some C’, > 0, then not only the problem () but also
the equation (*) possesses no positive (sub-)solutions even when M is not regular
(cf. [7]). )

Now, suppose n = dim M > 3. Denote the scalar curvature of g (= g|up) by
Sg. It is well known that a smooth function f on M can be realized as the scalar
curvature of some metric § conformal to g, if and only if there exists a smooth
solution u of the scalar curvature equation

~1
Lyu = —42—_—2Agu + Syu = fun2/(n=2)

u>0

(fyM) on M.

Indeed, the metric § = u*/("~2)g has the scalar curvature S; = f.

On the other hand, if (M,J) has nonnegative scalar curvature S;, then there
exists a metric ¢’ on M (CC M) which is pointwise conformal and uniformly
equivalent to g and has vanishing scalar curvature. Therefore, by the transformation
rule of the conformal Laplacian Ly (cf. [11]), the scalar curvature equation (f, M)
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is equivalent to

n— lAg/v = fo(n+2)/(n=2)

Lyv:= _4n—2 on M,

v>0

and the condition u — 400 as rgy — 0 is equivalent to v — 400 as gy — O.
Hence Theorem 3.1 yields the following

Corollary 3.3. Let (M, ) be a Riemannian manifold (n = dim M > 3) with
nonnegative scalar curvature, M a relatively compact domain in M with (n — 1)-
dimensional C?-boundary, and g := §|p. Let f be a nonpositive smooth function
on M. If f satisfies f ~ —ranp* near OM for a nonnegative number ¢, then any
solution u of the equation (f, M) satisfies the estimate u > Cqrgpy~{+2)(n=2)/4 for
some positive constant Cy, and the metric u*/("=2g (= v¥/("=2)g) is complete. In
particular, u coincides with the maximal solution of (f, M).

In [6, Theorem 2], we gave a uniqueness result for the case when dim OM < n—2.
The result above can be regarded as a correspondent for dimdM = n — 1. In the
case f = —1, this result was shown by Andresson-Chrusciel-Friedrich [ 1, Theorem
1.2].

Next, we consider F'(z,t) of another type.

Theorem 3.4. Let (M, g) be as in Theorem 3.1, F(t) a nonnegative C* -function
on [0,+00) satisfying both of the following conditions:
(F.4) F(t) >0 and F'(t) > 0 for any t > 0, F(0) =0, and

§F(t) < F(8t)  for &6>1,t>0;
(F.5) There exist numbers ¢ > 1 and T > 0 such that
§YF(t) <F(6t) for §>1,t>T.

Suppose F(z,t) is a nonnegative locally Holder continuous function on M x [0, +00)
satisfying (F.1), (F.2) and

P > CyF(t) Jor (z,t) € (BrR(OM) N M) x [0,+00)
’ < C_F(t) for (z,t) € M x [0, +00)

for positive constants C, C_ and R. Then the problem (x)., possesses a unique
solution.

Proof. The conditions (F.4) and (F.5) imply the condition (F.3) (cf.
[2, Lemma 2.1]). By the same way as Keller [8, Theorem III], the equation
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{ Agu = C_F(u) o0 1

u >0
possesses a solution u_ such that u_ — +oo as rgp; — 0. u_ satisfies
Agu_(z) > C_F(u—(z)) > F(z,u_(z)) for z e M,

namely u_ is a subsolution of the equation (*). Hence, by Proposition 2.2, the
equation (x) possesses a maximal solution U such that U — +o00 as rgpr — 0.
Define a function ¢(r) by

¢H(t) == /t " (2 /O sF(r)dr)_l/2 ds.

Apply the proofs of Bandle-Marcus [2, Lemma 2.2 and Theorem 2.3] to an arbitrary
solution u of the problem ()., but replace the radially symmetric supersolution
V(]z — 2y|) in the proof of [2, Theorem 2.3] by ¢(B8(R? —r,,(x)?)) with a positive
number B small enough. Then, by the same way as in the proof of Theorem 3.1
and using Lemma 3.5 below, we can show that, u/¢(rsps) is bounded between two
positive constants, and we have u = U. O

Lemma 3.5. Let ¢ be as above. For any constant a > 1, there exist positive
constants C1og < 1 and R > 0 such that Cyp¢(r) < (a'/?r) < ¢(r) forr < R.

Proof. By the assumption (F.4) and (F.5), we have

s s T
/ a4 /=D F(r)dr < / F(az/(q,_l)r)dr+/ F(a®?/(~Vr)dr

0 T 0
a2/ =g
= a”z/(q’_l)/ F(r)dr
a2/(a' =17
@2/’ =1
+a~2/(q'_1)/ F(a?r)dr
0

g2/ =1

F(r)dr + Cu> for s> T,

= g~2/(d'-1) /
0

where

@2/@ =D

Cy = /0 (F(a®r) — F(r)) dr.

Set T} := max{Cy1/(a — 1)F(1) + 1,T}. Then, for any s > T},
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a2/@’ =g a2/(a’ =1

F(r)dr 2 / r F(l)dr > F(1)(T; — 1) > ac_“l,

/

and hence

a2/@’ =1 a2/ =1

F(r)dr+Cp; < a/ F(r)dr.
0

/

Therefore, for any t > T},

+oo S , , -1/2
/ (2/ a?9'/a _I)F(r)d'r) ds
t 0
1o a2/(a’ =g
/ 9@ ~3)/(a'~1) /
t 0
—+o00 S _1/2
_ a—(q'+1)/2(Q'—1)/ (2/ F(r)dr) ds,
a2/’ —1)¢ 0

from which it holds that a=1/2¢=1(t) > ¢~1(a?/(¢~Vt). Set R := a~2/2¢~1(T}).
Note here that ¢ is monotonically decreasing. Then, for any r < R, since ¢(a1/2r) >
T,, we have

v

o(r) > ¢(a/?r) = =W D97 (¥ @ Vg(al/?r))
> o=@ Ng(a 297 (g(a'Pr))) = a9 ().
This completes the proof. U

Now, we consider the case of star-shaped domains or domains satisfying a
certain weaker geometric condition. Here we say a domain M in R" is star-shaped
with respect to a point p € M if and only if it holds that {p + t(z — p) € R"|0 <
t < 1} C M for any x € OM. We prove the following theorem by combining our
Lemma 2.1 with the idea of Iscoe [4, Proposition 3.15]. It is applicable to not only
star-shaped domains but also to a wider class of domains e.g. annulus domains as
we mentioned in Introduction.

Theorem 3.6. Let M be a relatively compact domain in (R",go) with C?-
boundary such that M = My or M = M, \ U*_,M,, where M, is a star-shaped
domain with respect to a point py € My, M; is a relatively compact subdomain of M
which is star-shaped with respect to a pointp; € M; (i =2,...,k) and M; "My =0
for any i # i (1,i' = 2,...,k). Let hi(z) be a positive continuous function on
M, such that hy(p1 + s(z — p1)) is nonincreasing with respect to s € [0,1) for any
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x € OM,, hi(x) a positive continuous function on My \ M; such that h;(p; +s(z—p;))

is nondecreasing with respect to s € (1,400) for any x € OM; (i = 2,...,k), and

F;(t) a nonnegative C'-function on [0, +00) satisfying the following condition with

Ft)=Ft) (i=1,...,k):

(F.6) F(t) > 0 and F'(t) > 0 for any t > 0, F(0) = 0, and there exists a number
q' > 1 such that

§9F(t) < F(8t)  for 6§>1,t>0.

Suppose F(z,t) is a nonnegative locally Hélder continuous function on M x [0, +00)
satisfying (F.1), (F.2) and

plon | 2 Cm@F® o (2,1) € (Br(dM;) N M) x [0, +00)
DU\ < Cih@PEB()  for (a,t) € M x [0,400)

Proof. We give a proof for the case when M = M; \U¥_,M;. When M = M;,
namely M is star-shaped, if we regard ULZM,' = (), then our proof below is valid.
Define a domain M; , by

M;, :={z € R"p; +r ' (z — p;) € M;}

for any positive number 7 (¢ = 1,...,k). There is a number R’ > 1 such that
M\M, 1/r C Br(OM1)NM and M; g\M C Br(0M;)NM (i =2,...,k). Since the
condition (F.6) implies the condition (F.3), and h; is bounded on M (i = 1,...,k),
by the same way as in the proof of Theorem 3.4, the equation (*) possesses a
maximal solution U such that U — +oco as rgps — 0. Set m, = MaxaM, |, ps U and
m; 1= maxonm, , U (i =2,.. k).

Let u be a solution of the problem (%), and set mgo := minys u(> 0). For any
number 1 < € < R/, define

Uy () = 716—2/((1/—1)[](}71 +e Nz —p1)) on M\ M, /R,

where 7, = min{(CH/Cl_)l/(ql_l),mO/ml}' Then, by direct computation, we
have

Auy () = ne T De2F(py + €z —p1), Ulpr + €z — p1)))
Y120/ @10y hyi(py + €Yz — p1)) L (U(py + €z — p1)))
e 2/ @D by (2)Fy (v e Dy ()
’716_2q//(q,_1)01+h1($)71_q/€2q,/(q/_1)Fl (uy,¢(z))

v v

Y
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= 71179 Cryhi(2) Fi (us,e(2))

> 1117 CLeC1- T F(z, u e ()
F(z,uy(x)),

I

namely u; . is a subsolution of the equation (x) on M; \ M,/ which is finite
on OM; and satisfies u; . < y1m; < mo < u on M, . p. Since € can be chosen
arbitrarily close to 1, we get u > lim¢—j uy . = 71U on My \ My 1/p.

On the other hand, for any 2 <4 < k and any number 1 < € < R/, define

Uie(z) = 1T VU (p; + e(z —pi))  on Mypye\ M,

where v; := min{(Ci+/Cz~_)1/(‘1"1),mo/miR’2/(q1_1)}. Then, by direct computa-
tion, we have

Au; o(z) = %€/ T VEF (pi + e(x — pi), U(p; + e(z — p1)))
> 720/ D Cy hi(pi + e(z — pi))Fi(U (pi + ez — pi)))
»yieZq'/(q"l)CHhi(m)Fi(7,-‘16'2/(61/'1)%,5(93))
%i€20 @Dy hi(a)y? €2 /@ VEF(u; o (z))
71 Ciyhi() Fi(ui e (@)
Y170 Ciy Cim T F (2, ui ()
= F(z,u;(x)),

(| AV V]

\Y

namely u; . is a subsolution of the equation (x) on _J\/_Ii’R//6 \ M; which is finite
on OM; and satisfies u; e < v;m; < mo < u on OM; /.. Since € can be chosen
arbitrarily close to 1, we get u > lim¢_,; u; e = v;U on M; g \ M;.

Since U is maximal, we have u < U, and hence we get u ~ U. Now, by Remark
2.3, we have u = U. O

We remark here that, even when M is the unit ball and F(z,t) =
h(x)t("+2)/(”_2), our assumption above allows a far larger class of A than that
in Ratto-Rigoli-Veron [ 13, Theorem 7.1(I)].

4. The partially singular case

In this section, we generalize our uniqueness result to non-maximal solutions.
As we mentioned in Introduction, the equation (%) often possesses solutions with
mixed behavior. For such solutions, we can modify Lemma 2.1 as follows:

Lemma 4.1. Let (M,g) and F(z,t) as in Lemma 2.1 in Introduction. Let K
be a compact hypersurface of M such that M \ K is not connected, M' a union



294 S. KaTO

of some connected components of M \ K, M" .= M \ (K UM'), and {Q;}ien a
sequence of relatively compact domains of M with smooth boundaries which satisfies
K C Q;, Q; CC Q1 and U;enSl; = M. Suppose the equation (x) possesses a
solution U’ satisfying U' > u_ for any positive subsolution u_ of the equation (x)
such that lim; _, o (SUp pr\q, (u— /U")) < 1. Then, for any solution u of the equation
(%), w=U’" on M provided thatlim;_, ,  (supymnq, |u/U'—1|) =0 andu ~ U’ on
M.

Proof.  Clearly, u satisfies lim;, y oo (SUPps1\ @, (4/U’)) = 1. Hence, by the as-
sumption on U’, we have u < U’. Suppose u # U’. Then, by the strong maximum
principle, it holds that u < U’. Set 3 := sup,,(U'/u)(> 1), éo := B/(8 — 1), and
v_ := §(U’ — u). Then, by the same calculation as in the proof of Lemma 2.1, we
can choose a number § > § such that v_ is a positive subsolution of the equation
(*). Since lim;, 1 oo (SUpp\ @, (v-/U’)) = 0 < 1, by the assumption on U’ again, we
get v_ < U’. Hence we get the following contradiction:

!’ /

s=sup (L) zswp (=) =sw{s (L -1) } =s- > a5 -1 =5

Now, we conclude that u = U’. J

REMARK 4.2. The assumption “U’ > u_ for any positive subsolution u_ ...” in
the theorem above seems to be stronger than that in Lemma 2.1. Indeed, in Lemma
2.1, “maximal” means only “U > u for any solution u”. Among the known existence
theorems of the maximal solution, since the technical condition “h is positive outside
a compact subset” (or a slightly weaker one) is assumed, we can easily see that the
maximal solution U satisfies “U > u_ for any subsolution u_". However, it is not
clear in general whether we can expect it or not.

We can observe a typical application in the following

Theorem 4.3. Let (M, §) be a Riemannian manifold, M a relatively compact
domain in M, whose boundary OM is C? and disconnected, , a union of some (not
all ) connected components of OM, Xo := OM\ Xy, and g := §|pr. Suppose F(x,t) is
a nonnegative locally Holder continuous function on M x [0,+o00) satisfying (F.1),
(F.2) and

Cit?! < F(z,t) < C_t? for (z,t) € M x [0, +00)
for positive constants C,., C_ and q > 1. Then, for any positive continuous function

1Y on X, the equation (x) possesses a unique solution u which is continuous on
M UZ,, and satisfies u =1 on ¥, and u — +oc0 asry, — 0.
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To prove the theorem above, we need to show the following

Lemma 44. Let (M,g) and F(z,t) be as in Theorem 4.3. Then, for any
positive continuous function 1y on ¥, the equation (x) possesses at least one solution
u which is continuous on M U L,, and satisfies uw = ¢ on ¥, and u — 400 as
ry, — 0.

Proof. Let a be a positive number smaller than 1. Clearly, there is a positive
number R such that Br(X;) N Br(X2) = 0, and ry, satisfies |Agry,| < Cp <
(1 —a)/R on Bgr(%)).

Set

uy = y{rs,* + (R—rg,) @D _R=2@=DYy  on Bp(Z,)NM,
where 7 is a positive number chosen later. By direct computation, we have

Agu+ =7 |:“‘a(1 - Q- TzlAgrEl )7"210‘_2

2 —2jg-1)—2 | 2
+q_1(R""'Z1) 2/(g—1) 2{—q_1+1+(R—1"21)Ag7'):1}:|
< 7{—0127“):10‘_2 + C13(R — 7'21)—2/(0—1)—2}’

where C15 := a(1 — a — RC,), C13 :={2/(¢ — 1)}{2/(¢ — 1) + 1 + RC,}. Hence, if
we set R’ := min{R/2, (R?/(a-D+2C,/22/(a=1)+23)1/(2-2)} then we get

R\ ~2/(a-1)-2 _
Aguy <y —Crars,* %+ Ci3 (5) <0 on Bpr/(X;)N M.

On the other hand,

Y

Y{(R —rg,)” ¥~ _ g=2/(a=1)}
¥C14(R — ry, )~/ (@71 on (Br(Z1)\ Br(Z1))N M,

U

v

where Cy4 := 1 — (1 — R'/R)?/(a=1)_ Therefore, we get

0 on —B—R/ (21) nM
’LL+_quU+ < 013

Yo on (Bgr(Z1)\ Br/(£1))N M.

Now, if we choose v := (C13/Cl4qC+)1/(q‘1), then

Aguy < Cruy? < F(z,uy(z)) for (z,t) € (Br(X1) N M) x [0,+00),
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namely u, is a supersolution of the equation (x) on Bg(3;) N M. Moreover, since
Ag(uy + ) = Aguy < F(z,ug) < F(z,uy + ),

uy + ¢ is also a supersolution for any positive harmonic function ¢ on M satisfying
the boundary condition ¢ = % on ;.

For any positive number m, let u,, be a solution of the equation (x) satisfying
the boundary conditions u,, = ¥ on ¥; and u,, = m on X,.

Each u,, is bounded above by the maximal solution U of the equation (*). Since
uy + ¢ =1 on Xy and uy + ¢ — +00 as T, (s, )nm — 0, each u,, is bounded
also by uy + ¢ on Bg(¥;) N M. By the maximum principle, we see u,, > up, for
any m > m/. Therefore, if we set u := lim,, ;o U, then u is a solution of the
equation (x) with the desired properties. UJ

Lemma 4.5. Let (M,g) and F(z,t) be as in Theorem 4.3. Then, for any
positive continuous function iy on X1, the equation (x) possesses a solution Uy, which
is continuous on M U X, and has the following properties:

(1) Upy=yonky, andUy — +o0 asry, — 0;

(2)  If a positive subsolution u_ of the equation () satisfies limsup,_,,u_(z) <
Y(p) for any p € 3, then it holds that u_ < Uy, on M. Moreover, if u_ # Uy,
then u_ < Uy on M;

(3) If a solution u of the equation (x) which is continuous on M U %, satisfies
u=1 on %y andu~ Uy on M, then it holds that w = U, on M.

Proof. Let R be as in the proof of Lemma 4.4. By Lemma 4.4, for any positive
number 7 < R, there exists a solution u, of the equation () on M\ B,(%2) which
is continuous on (M U ;) \ B,(Z2) and satisfies u, = ¢ on £; and u, — +oo as
ToB,(s2)nM — 0. Let uy, be the solution of the equation (x) on M given by Lemma
44.

Since u, = 9 = u,» = uy on ¥; and both u,s and u, are bounded above near
0B,(X2) N M for any v’ < r, we get u, > u,» and u, > uy on M \ B,(Z,), that is,
{u,}o<r<r is monotonically increasing and bounded below by u,,. Therefore, if we
set Uy, := lim,_,o u,, then Uy, is a solution of the equation (x). Since uy < Uy < u,,
Uy can be extended on X; continuously and satisfies Uy, = ¢ on ¥; and Uy, — 400
as ry, — 0, namely Uy, satisfies the condition (1).

Moreover, it is clear that u,, > u_ for any subsolution u_ of the equation
(*) satisfying the assumption in (2). Hence we see that Uy > u_. By the strong
maximum principle, if u_ # Uy, then u_ < Uy, on M.

Now, the assertion of (3) follows from (2) and Lemma 4.1. ]

Proof of Theorem 4.3. The existence follows from Lemma 4.4. Let u be a
solution of the equation (x) satisfying u = ¢ on ¥; and u — +oo as rg, — 0.
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Then, by the same way as in the proof of Theorem 3.1, we have u ~ ryg,~2/(a=1)
near X, from which it follows that u ~ U, on M, where U, is the solution given
in Lemma 4.5. Now, by Lemma 4.5 (3), we have u = Uy, O

5. An application to the scalar curvature equation

We can apply Lemma 4.1 also for many other cases. One of them can be found
in the scalar curvature equation on a compact Riemannian manifold punctured by
a finite number of points.

Cheng-Ni [3, Theorem II] proved the uniqueness of solutions of the maximal
order when M = R"™ and F(z,t) = h(z)t? and classify all the solutions under a
certain typical assumption. It is well known that the scalar curvature equation on
(R™, go) is equivalent to that on the standard sphere (S™, g1) punctured by a point.
In [6, Theorem 3], we generalized [3, Theorem II] to the case of any compact Rie-
mannian manifold (M,g) (n = dim M > 3) of positive scalar curvature punctured
by a point {p;}.

By the same way as the proofs of Theorem 4.3 and Lemmas 4.4-5, we can
combine the proof of [6, Theorem 3] and Lemma 4.1, and generalize [6, Theorem
3] to Theorem 2 of this work which treats the case of (M,g) (n = dim M > 3)
punctured by a finite number of points {p1,...,pk}.

The existence part of Theorem 2 has already been proven in [6, Proposition
5.2]. The proof runs along a similar line as that for #¥ = 1. However, we have to
analize the solutions more minutely to apply Theorem 4.1. Throughout this section,
we refer the scalar curvature equation as “the equation (f, M)” with various f and
M.

Lemma 5.1. Let (M,g) and f be as in Theorem 2. Then the equation (f, M)
possesses a maximal solution U which satisfies U ~ r, ~i+2(=2/4 peqr p, (i =
1. k).

Proof.  Clearly, there is a positive number R such that Bag(p;) N Bog(pi) =0
(i # '), rp, is smooth and f <0 on Bg(p;) (i =1,...,k).

For each 1, let f;_ be a nonpositive smooth function on M\ {p;} such that f;_ <
fon M and f;_ = f on Bgr(p;). By [5, Theorem V], the equation (k%/("=2) f; _ M\
{p:}) possesses a maximal solution U;_ which satisfies U;_ ~ r,, (6 +2)(n=2)/4_get

U_ = Zle U;—. Then we have
k

k
LU = ZLQU’- = Zk4/("_2)f¢-Ui-("”)/("‘2)
i=1

=1

k
< Z k4/(n—2)fUi__(n+2)/("—2)

=1
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(n+2)/(n-2)
) = fU_ (n+2)/(n—2) on M,

k
<f (Z Ui
i=1

namely U_ is a positive subsolution of the equation (f, M). Therefore, by [5, The-
orem 1], the equation (f, M) possesses a maximal solution U which satisfies

U>U- >Ui_ > Cygrp, GtD=2/4  pear p;,  (i=1,...,k)

for a positive constant Cis.

On the other hand, by the proof of [5, Theorem 1V], we have an a priori upper
estimate U < Cigrp, ~472("=2)/4 near p; (i = 1,...,k) for a positive constant Cyg,
and hence we get U ~ r,,, ~(6it2(n=2)/4, O

The following lemma corresponds to Lemma 4.5.

Lemma 5.2. Let (M,g) and f be as in Theorem 2. Then, for any v =
(Y1, - -+, 7%) € (0,+00]*, the equation (f, M) possesses a solution U., which has the
following properties:

(1) Uy(@)/Gp(@) = v asz —p; (i =1,..., k)

(2)  If a subsolution u_ of the equation (f, M) satisfies limsup,,_,, (u—(z)/Gp,(z))
<, for any i, then it holds that u_ < U, on M. Moreover, if u_ # U,, then
u_ < Uy

(3) If a solution u of the equation (f, M) satisfies lim,_.,,, (u(z)/Gp,(x)) = v: for
any ¢ and u ~ U,, then it holds that w= U, on M.

Proof. For v = (+00,...,400), the existence of the maximal solution U of
the equation (f, M) which satisfies the property (1) follows from Lemma 5.1. By
the strong maximum principle, U satisfies (2), and (3) is given by Lemma 2.1 (or
[6, Theorem 1]).

For any v € (0, +00)*, we also know the existence of solutions u, of the equa-
tion (f, M) satisfying (1) (see [5, Theorem V]). In this case, (2) and (3) are conse-
quences of the strong maximum principle.

When some ~,;’s are finite and the others are +00, we may assume ~; < +oo for
i <k’ and ; = 400 for i > k' +1 without loss of generality. Set &1 := {p1,...,px}
and X2 := {pr'41,-..,Pk}. By [6, Proposition 5.2], the equation (f, M) possesses a
solution w., satisfying u,(z)/Gp,(x) = vi asz — p; (i =1,...,k).

Let R be as in the proof of Lemma 5.1. Let f;1 be nonpositive smooth functions
on M\, such that fi1 > f > fi_ on M and f1+ = f near £, and fo+ nonpositive
smooth functions on M \ ¥, such that fo. > f > f,_ on M and fo+ = f near
Y. Now, let u;; (resp. u;_) be the solution of the equation (fi1, M \ £;) (resp.
(24/ =2 f, _ M\ %,)) satisfying limg_p, (u14(2)/Gp, (z)) = v; forany i = 1,..., K/,
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and, for any positive number r < R, Usy , (resp. Us_ ) the maximal solution of
the equation (fay, M \ B,(X3)) (resp. (2¥/(»=2f, M \ B,(X3))) which satisfies
Uzt r — +00 as Tgp, (z,) — 0. Set us . := uy4 + Uzt . Then uy . (resp. u_,) is a
supersolution (resp. subsolution) of the equation (f, M \ B,.(X2)), and the equation
(f,M \ B,.(X2)) possesses a solution wu, satisfying u, , > u, > u_, from which
it follows that lim,_,p, (u,(z)/Gp,(z)) = 7; for any ¢ = 1,...,k’" and u, — +oco as
ToB,.(5;) — 0.

Define a scalar flat conformal metric by § := (Zf;l Gp,)¥/("=2g. Then both
Up 1= up/ Zf;l Gp, and 4., :=u,/ Zf;l Gp, are solutions of the equation (f, M \

B,(22)) with the metric §. Note here that u, — 400 as rap,(z,) — 0, both u, (r' <
r) and u., are bounded above near 0B, (%), limgy_.p, {(ur(z) —ur (2))/Gp,(x)} =0
and limg_p, {(ur(z) — uy(x))/Gp,(x)} =0 (i = 1,...,k"). Then, by the maximum
principle, we get u, > u, and u, > u, on M \ B,(X2), that is, {ur}o<r<r is
monotonically increasing and bounded below by u.. Therefore, if we set U, :=
lim,_,¢ u,, then U, is a smooth solution of the equation (f, M). Since u, < U, < u,,
we have lim,_,p, (Uy(z)/Gp,(z)) = ~; for any 4, namely U,, satisfies the condition
(1).

The assertions (2) and (3) follow by the same way as the proof of Lemma 4.5.

O

We can show the following inequality by the same way as the proof of Cheng-Ni
[3, Proposition 5.2] or [6, Lemma 4.1].

Lemma 5.3. Let(M,g) and f be as in Theorem 2, and suppose u is a solution
of the equation (f, M). Then there is a positive constant C17; which is independent
of both u and r and satisfies

max u < Ci;7 min u
9B..(pi) 9B, (pi)

for any positive number r small enough.

Proof of Theorem 2.  The existence follows from [6, Proposition 5.2].

Suppose u is a solution of the equation (f, M) such that u*(™=2g is
complete. If u/Gp, is bounded near p; for some i, let x; be a nonnegative smooth
function on M such that x; = 1 on Bg(p;) and x; = 0 on M \ Byr(p;). Then
xiu is a nonnegative smooth function on M \ {p;}. Note here that —Lg(x;u) =
| flutr+2/(n=2) < Cigr,,,%5~™=2 on Bgr(p;) \ {p:} for a positive constant Cig, and
that —Lz(x,;u) is bounded on M \ Bgr(p;) since it vanishes on M \ Bag(p;). It is
clear that

B (x) = — /_ Gz, y) Ly (i (v)u(y) ) dy
M\{p:}
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is a smooth function on M \ {p;} and satisfies L;®; = —Lg(x:u), and we get, by
standard calculation, that —Chg < &; < Cgorpf‘" near p; for positive constants
¢ € (2,min{¥¢;,n}), Cig and Cy. In particular, it holds that ®;(z)/G,,(z) — 0
as © — p;. Set ¢; = x;u + ®; + v/G,,, where 7, is a real number chosen to
satisfy p; > 0 on M \ {p;}. Then ¢; is a solution of the equation (0, M \ {p;}), and
hence there is a positive number ~;" such that ¢; = v/'G,, (see [5, Section 4]). We
get

Xi(z)u(z) = "_ /) _ @;(x) ’

Gpi (ZL') 7 1 - ’Yi/ - ’Yz/ as T — pg,

and hence u(z)/Gp,(z) — 7 — v, as ¢ — p;. Since u/G,, is positive, we have
v =7 20.

Set v; = 7! — /. Here we claim v; > 0. Indeed, suppose v; = 0. Then
u(x)/Gp,(x) — 0 as z — p;. For each i’ # 14, let fiy, be a nonpositive smooth
function on M \ {py} such that f,,. > f on M and fiy = f on Bgr(ps). Let
Uy r be a solution of the equation (fir, M \ Br(py)) such that Uy p — +oo as

ToBr(p,,) — 0. For any positive number ¢, set u;; := tGp, + Zi,# U;».r. Then

Lg’ui,t = tLEsz 4 Z L§Ui’,R = 0 —|— Z fi'+Ui’,R(n+2)/(n_2)
Vi i #i

> ZfUi’,R(n+2)/(n_2) >f (tGpi)(n+2)/(n—2) + ZUi’,R(n+2)/(n_2)
v# Y
(n+2)/(n—2)
> f|tGp, + ) Uir
-y
= fui,t(n+2)/(n_2) on M\ ({pi}UUi’#iﬁR(Pi')),

namely u; ; is a positive supersolution of the equation (f, M\ ({p;} U2 Br(pir)))-
Since u;¢(x)/Gp,(x) — t > 0 as x — p; and u;s(x) — +00 as 1y, 8Bx(p,) — 0,
u satisfies u < u;, on M\ ({p;} UUs2:Br(pir))). Hence we have u < lim;_qu;; =
>+ Ur,r. In particular, u is bounded near p;. This contradicts the completeness
of the metric u*/(*=?)g. Therefore we get ; > 0. When +; > 0, clearly u®/("~2)g is
complete near p;.

On the other hand, if u/Gy, is unbounded near p;, then limsup, _, , (u(x)/Gy, (x))
= +o00. Hence, there is a sequence {z; ; } jen of points in M such that lim;_, 4 o0 25 ; =
pi and u(z;,;)/Gp, (i,;) > Ci7j for any j, where C17 is the constant given in Lemma
5.3. By Lemma 5.3, it holds that u/G,, > j on BBrpi(uj)(p,-) for any 5. Let f;_ be as
in the proof of Lemma 5.1, U;_ the maximal solution of the equation (f;_, M \{p;})
which satisfies U;— ~ 1, ~(6+2(=2)/4 "and u,;_ ; a unique solution of the equation
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(fic, M\ {p:}) satisfying u;_ ; < jG,, and lim,_p, (ui— j(x)/Gp,(x)) = j. By [6,
Corollary 3.2], we have lim;_, o u;,— ; = U;_.

Now, u > u;_ j on 8B,«pi(,,.i,j)(pi). On the other hand, for any i’ # 4, if u/Gp, is
bounded near py, then u(z)/G, ,(z) — v as £ — p; for some ~y; > 0. Since u;_ ;
is bounded near p;;, we have u > u;_ ; near p;. If u/G), is also unbounded near
py, then, by the consideration above, u/Gp, > maszER(pil)(ui_,j (x)/Gp,, (x)) on
OBr(pir) for some positive number R’ < R. Therefore, by [5, Lemma 2.2], u > u;_ ;
on M\ (Brpi(zi’j)(pi) UUi2:Br(pi+)) for any j, from which it follows that

u> lim u_j=U_ > Coirp, ~(EADm=2/4  on M\ ({p:} Uui/#BR(pi,))

Jj—+oo

for a positive constant C2;. Combining this with the upper estlmate for the maximal
solution, we have u ~ r,, ~(6+2)(n=2)/4 pear p;.

Now, by Lemmas 5.1 -2, we see that the solution w coincides with one of
the solutions given in [6, Proposition 5.2] (or Lemma 5.2). This completes the
proof. O

Taking account of the fact that u/G,, must be bounded near p; when f = 0
near p; (see the proof of [6, Theorem 6.1]), we can also prove the following theorem
by the same way as the proof of Theorem 2.

Theorem 5.4. Let (M,g) be as in Theorem 2, and f a nonpositive smooth
Sfunction on M. If f satisfies f ~ —rpq.‘zi near p; for a number £; > 2 (i =1,... k)
and f =0 nearp;, (i =k'+1,...,k), then, for any v = (v1,...,v) € (0, +00]* x
(0,400)*=*', the scalar curvature equation (f, M) possesses a unique solution u.,
such that u,(z)/Gp,(z) — v; asz — p; (i = 1,...,k) and the metric u,*/("=2g
is complete. Conversely, any solution u of the equation (f, M) such that u*/("=2)g
is complete coincides with ., for some v. Namely, the space of complete conformal
metrics on M with scalar curvature f is parametrized by (0, +oc]*" x (0, +00)*=*",
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