
Title Qualitative properties for Perona-Malik type
equations

Author(s) Pocci, Cristina

Citation Osaka Journal of Mathematics. 2011, 48(4), p.
913-932

Version Type VoR

URL https://doi.org/10.18910/6465

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Pocci, C.
Osaka J. Math.
48 (2011), 913–932

QUALITATIVE PROPERTIES FOR
PERONA–MALIK TYPE EQUATIONS

CRISTINA POCCI

(Received April 21, 2010)

Abstract
In this paper, we show qualitative results for the solutionsof forward-backward

parabolic equations, where the forward or backward behaviour depends on the gra-
dient of the solution.

1. Introduction and motivations

In [4], [5], [6] the following parabolic initial boundary value problem is considered:

ut D '00(ux)uxx, in (�1, 1)� [0, T),(1)

ux(�1, t) D ux(1, t) D 0, 8t 2 [0, T),(2)

u(x, 0)D u0(x), 8x 2 (�1, 1),(3)

where ' is a nonlinear function of classC2 such that'0(0) D 0. Without any con-
straint on the sign of'00, (1), (2), (3) is a forward-backward problem, well-posed if'00(ux) > 0 and ill-posed if'00(ux) < 0. Backward problems are in general very diffi-
cult to solve. Indeed, the heat equationut D k1u with k < 0 is an ill-posed problem
for t > 0 in most functional classes, includingC1 or analytic functions. On the other
hand, forward-backward equations appear frequently in many important physical mod-
els and this justifies the interest around them. If we choose'(� ) D (1=2) ln(1C � 2)
in (1), we obtain the classical Perona–Malik equation:

(4) ut D 1� u2
x

(1C u2
x)2

uxx.

The forward or backward behaviour of (4) is determined respectively by the conditionsjuxj < 1 or juxj > 1. This equation was introduced in 1990 by the engineers P. Perona
and J. Malik in [17], as a tool to analyze edge detection and image segmentation prob-
lems in computer vision; see also [10] for the connections between the Perona–Malik
equation and the Mumford–Shah functional.

The Perona–Malik problem represents a paradox which has not yet been solved,
despite the intense research devoted to it in recent years. Indeed, from the analytical
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point of view, there does not exist an acceptable definition of weak solution. Only the
following facts are known about classical solutions ([6], [11]):
• if u0 is subsonic, i.e. ju0x(x)j < 1, 8x 2 (�1, 1), then the problem has a unique
global classical solution, which remains subsonic for all times;
• if u0 is transonic, i.e. '00(u0x) changes sign in [�1, 1] and the classical solution
exist, it can not be global ([11]). It is proved ([6]) that fora transonic solution we
have necessarily

T � 4
Z 1

�1
ln(1C u2

0x(x)) dx.

The paradox lies in the fact that numerical schemes for the equation do not show
significant instabilities, despite the expected ill-posedness ([3]); recall also the expli-
cit construction by Höllig [8] of a piecewise affine function' for which the equation
ut D ['(ux)]x has an infinite number of local Lipschitz continuous solutions. In order
to explain this situation, Kichenassamy in [12] proposed a notion of generalized solu-
tion for the initial value problem related to the Perona–Malik equation, for infinitely
differentiable data. This definition closely follows the features of numerical solutions
(see [14] for more details), but the assumptions on the initial datum are unrealistic
in concrete signal processing problems. Therefore, the research on the Perona–Malik
equation is still open.

A first result of the present paper concerns the following equations:

(5) ut D 1� u2
x

(1C u2
x)2

uxx � F(ux).

This kind of equations appears e.g. in [1] and describes nonlinear diffusion phenomena
in hydrology. We consider the initial boundary value problem

ut D '00(ux)uxx � G(u), in (�1, 1)� [0, T),(6)

ux(�1, t) D ux(1, t) D 0, 8t 2 [0, T),(7)

u(x, 0)D u0(x), 8x 2 (�1, 1),(8)

which is the formal gradient flow associated to the functional

H'(u) D Z 1

�1
['(ux)C8(u)] dx, 8(s) D Z s

0
G(� ) d� ,

and its generalization to ann-dimensional open domain�
ut D div

�'0(jruj) rujruj
� � G(u), in � � [0, T),(9)

�u�n
D 0, on �� � [0, T),(10)

u(x, 0)D u0(x), 8x 2 �.(11)
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Equation (9) appears in a reaction-diffusion model proposed by Cohen and Murray
in [2], which describes a diffusive mechanism of a population extending the classi-
cal Fickian diffusion. We also mention [7], [9], [15], [16],[18], where the following
quasilinear diffusive equation is considered:

ut D 1'(u).

The choices'(u)D u=(K Cu2) or '(u) D ue�u make the equation a forward-backward
one. In order to obtain a well-posed problem, some possible regularizations are pro-
posed, for example the well known Cahn–Hilliard equationut D 1'(u) � � 12u or
the Sobolev equationut D 1'(u) C � 1ut . Therefore, we consider also the regular-
ized problem:

ut D '00(ux)uxx � �uxxxx, in (�1, 1)� [0, T),(12)

ux(�1, t) D ux(1, t) D 0, 8t 2 [0, T),(13)

uxxx(�1, t) D uxxx(1, t) D 0, 8t 2 [0, T),(14)

u(x, 0)D u0(x), 8x 2 (�1, 1).(15)

Finally, we show the global nonexistence of solutions for the initial boundary value
problem related to the equations:

ut D '00(ux)uxx � u2, in (�1, 1)� (0,C1).

2. Preliminaries

For the sake of completeness, we expose a result of existenceand uniqueness of
the solution for subsonic initial data (due to Kawohl and Kutev [11]).

Theorem 2.1. Let us consider the following problem:

ut D '00(ux)uxx, in (�1, �2) � [0, T),(16)

ux(�1, t) D ux(�2, t) D 0, 8t 2 [0, T),(17)

u(x, 0)D u0(x), 8x 2 (�1, �2),(18)

where' is a nonlinear function of class C2 such that'0(0)D 0, convex forjuxj < K
and concave forjuxj > K. Let us assume that u0 2 C2,�([�1, �2]), � 2 (0, 1), satisfiesju0xj < K in [�1, �2]. Then, there exists T> 0 such that the problem(16), (17), (18)
admits a unique classical solution u. Furthermore, u, ut , ux, uxx are Hölder-continuous
with exponent� in x and �=2 in t.
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Proof. In order to prove the existence, we modify the function ' outside the in-
terval [�1, �2] in order to obtain a uniformly parabolic problem:

 (� ) D
8���<
���:

'(� ), if � 2 [�1, �2],

'(�2)C (� � �2)'0(�2)C (� � �2)2

2
'00(�2), if � > �2,

'(�1)C (� � �1)'0(�1)C (� � �1)2

2
'00(�1), if � < �1.

In this way, 00 � c > 0 and 0 is increasing. Then, the new problem:

wt D  00(wx)wxx, in (�1, �2) � [0, T),(19)

wx(�1, t) D wx(�2, t) D 0, 8t 2 [0, T),(20)

w(x, 0)D u0(x), 8x 2 (�1, �2),(21)

admits a classical solutionw ([13]). Let us setwx D v; the problem (19), (20),
(21) becomes:

vt D [ 00(v)vx]x, in (�1, �2) � [0, T),

v(�1, t) D v(�2, t) D 0, 8t 2 [0, T),

v(x, 0)D u0x(x), 8x 2 (�1, �2).

We can apply the weak maximum principle, therefore:

sup
(�1,�2)�[0,T)

jwx(x, t)j D sup
(�1,�2)�[0,T)

jv(x, t)j � sup
(�1,�2)

ju0x(x)j < K .

The functionw is not only the solution of the problem (19), (20), (21), but also of
(16), (17), (18). Concerning the uniqueness, let us assume that u and v are two differ-
ent solutions of the problem. We can write:

1

2

d

dt

Z �2

�1

(u � v)2 dx D Z �2

�1

(u � v)(ut � vt ) dx

D Z �2

�1

(u � v)[ 00(ux)uxx �  00(vx)vxx] dx

D Z �2

�1

(u � v)[ 0(ux) �  0(vx)]x dx

D � Z �2

�1

(ux � vx)[ 0(ux) �  0(vx)] dx,
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due to the boundary condition. Since is monotonically increasing, we have:

(ux � vx)[ 0(ux) �  0(vx)] � 0.

Therefore:
1

2

d

dt

Z 1

�1
(u � v)2 dx � 0H) u D v.

3. Statements

3.1. The one-dimensional case.The following result is an extension of The-
orem 3.1 in [6].

Theorem 3.1. Let us suppose that uW R2 ! R is a C1 solution of (5), where
F W R! R satisfies the hypothesis F(1=� ) D F(� )=� . Let us assume that there exists
a positive constant C such that:

(22) ux(x, t) � C, 8(x, t) 2 R2.

Then, the functionw W R2 ! R, uniquely defined by:

(23) u(w(x, t), �t) D x, 8(x, t) 2 R2,

is a C1 solution of (5).

The following results are an extension of the classical estimates and maximum-
minimum principles obtained by Ghisi and Gobbino in [5].

Theorem 3.2. Let us suppose that uW [�1, 1]� [0, T) ! R is a C2 solution of
(6), (7), (8), with G a non-negative function. Let' be an even non-negative function
of class C2, such that'0(0)D 0. Then, the function t! H'(u(x, t)) is non-increasing
and, for every t1, t2 2 [0, T) such that t1 � t2, we obtain:

(24) H'(u(x, t1)) � H'(u(x, t2)) D Z t2

t1

Z 1

�1
[ut ]

2 dx dt.

Additionally:

(25) ku(x, t1) � u(x, t2)kL2((�1,1))� {H'(u0)}1=2 � jt1 � t2j1=2.

Let us assume that' satisfies also� � '0(� ) � 0, 8� 2 R. Then, for every (x, t) 2
[�1, 1]� [0, T), we have:

u(x, t) � max{u0(x) W x 2 [�1, 1]}I(26)

u(x, t) � min{u0(x) W x 2 [�1, 1]}.(27)
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Furthermore, for every p2 [1, C1] and every t2 [0, T):

(28) ku(x, t)kL p((�1,1)) � ku0(x)kL p((�1,1)).

Corollary 3.3. Let uW [�1, 1]� [0, T) ! R be a C2 solution of (6), (7), (8),with
G a non-negative function. Let us assume that' is an even non-negative function of
class C2, such that� � '0(� ) � 0, 8� 2 R and '0(0)D 0.
• If u0(x) � 0, 8x 2 [�1, 1], then u(x, t) � 0, 8(x, t) 2 [�1, 1]� [0, T).
• If u0 is bounded, then u is bounded.

Corollary 3.4. With the same hypothesis ofCorollary 3.3and assuming u0 � 0,
the L2-norm of u( � , t) is monotonically decreasing for t� 0.

Theorem 3.5. Let uW [�1, 1]� [0, T) ! R be a C2 solution of (6), (7), (8),with
G a non-negative increasing function of class C1. Let us suppose that' satisfies all
the hypothesis of theTheorem 3.2and additionally' is convex in a neighborhood of0.
Then, for every t2 [0, T):

kux(x, t)kL1((�1,1))� ku0x(x)kL1((�1,1)).

Theorem 3.6. Let us suppose that uW [�1, 1]� [0, T) ! R is a C2 solution of
(6), (7), (8), with G a non-negative increasing function of class C1. Let us set:

M(t) WD max{ux(x, t) W x 2 [�1, 1]}, m(t) WD min{ux(x, t) W x 2 [�1, 1]}.

If ' is convex in an interval[�1, �2], with �1 < �2, then:

(29) M(0)� �2 ) M(t) � �2, m(0)� �1 ) m(t) � �1, 8t 2 [0, T).

Similarly, if ' is concave in the interval[�1, �2], then:

(30) M(0)� �2 ) M(t) � �2, m(0)� �1 ) m(t) � �1, 8t 2 [0, T).

Theorem 3.7. Let us suppose that uW [�1, 1]� [0, T) ! R be a C5 solution of
(12), (13), (14), (15)and let' be an even non-negative function of class C2, such that� � '0(� ) � 0, 8� 2 R and '0(0)D 0. We have the following results.
• For every (x, t) 2 [�1, 1]� [0, T):

u(x, t) � max{u0(x) W x 2 [�1, 1]}I(31)

u(x, t) � min{u0(x) W x 2 [�1, 1]}.(32)

• For every t2 [0, T):

(33) ku(x, t)kL1((�1,1)) � ku0(x)kL1((�1,1)).
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3.2. The n-dimensional case. In the following, � is an open set ofRn with
piecewiseC1 boundary and exterior normaln. The results are an extension of The-
orems 2.14 and 2.15 of [5].

Theorem 3.8. Let uW N� � [0, T) ! R be a C2 solution of (9), (10), (11),with
G a non-negative function; let us suppose that' is an even non-negative function of
class C2, such that� �'0(� ) � 0, 8� 2 R and '0(0)D 0. We have the following results.
• For every (x, t) 2 N� � [0, T):

u(x, t) � max{u0(x) W x 2 N�}I(34)

u(x, t) � min{u0(x) W x 2 N�}.(35)

• For every p2 [1, C1] and for every t2 [0, T):

(36) ku(x, t)kL p(�) � ku0(x)kL p(�).

In the n-dimensional case, the total variation estimate ofu is true only in the case
of radial solutions.

Theorem 3.9. Let � be an open disc inRn. Let uW N� � [0, T) ! R be a C2

radial solution of (9), (10), (11),with G an increasing non-negative function. Let us
suppose that' is an even non-negative function of class C2, such that� � '0(� ) � 0,8� 2 R and '0(0)D 0, convex in a neighborhood of0. Then:

(37) kru(x, t)kL1(�) � kru0(x)kL1(�), 8t 2 [0, T).

4. Remarks

1. As it is well known, the Cauchy problem for the backward heat equation is ill-
posed in the backward directiont < 0 in most function spaces. However, we can prove
a result of local existence provided the initial data are in
 1=2, the space of Gevrey
functions with exponent 1=2; this can be easily seen e.g. using the Fourier transform.
In this case, also the solution belongs to
 1=2. However, this Gevrey class is not stable
for products and it seems that a similar result in the nonlinear case can not be true.
2. We notice that all the above results apply to the classicalPerona–Malik equation,
which corresponds to the choice'(� ) D (1=2) log(1C � 2). Another interesting case
corresponds to the choice'(� ) D (� 2 � 1)2, which appears in several applications in-
cluding nonlinear elasticity and phase transition models.
3. An explicit example of functionF satisfying the assumptions in Theorem 3.1 is
F(� ) D c

p� , with c 2 R.
4. Theorem 3.6 is our main result. It asserts that if the datumux(x,0) takes on values
inside the interval of convexity of', then ux(x, t) assumes values in this interval for
all times; that is, if the initial datum is subsonic, the solution remains subsonic. In the
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same way, ifux(x, 0) is outside the interval where' is concave, thenux(x, t) remains
in this interval for all times. This means that ifu0 is transonic, also the solution will
be transonic.
5. Corollary 3.4 shows theL2-stability of the solution. Corollary 3.3 and 3.4 for the
problem (12), (13), (14), (15) are still true.

5. Proofs

In this Section, we give the proofs of our results. Let us prove Theorem 3.1.

Proof of Theorem 3.1. We show that the functionw, defined by (23), satisfies
the equation (5). Hypothesis (22) assures that the functionx ! u(x, �t) is bijective
for every t 2 R and its inverse functionx ! w(x, t) is of classC1. By derivation of
(23), we obtain:

ux(w(x, t), �t) � wx(x, t) D 1) wx(x, t) D 1

ux(w(x, t), �t)
I

�ut (w(x, t), �t)C ux(w(x, t), �t) � wt (x, t) D 0

) wt (x, t) D ut (w(x, t), �t)

ux(w(x, t), �t)
.

Assumption (22) guarantees that the denominators ofwx andwt are not zero, therefore
their expressions are well defined. Thus:

'00(wx(x, t))wxx D ['0(wx(x, t))]x D
� wx(x, t)

1C w2
x(x, t)

�
x

D �
ux(w(x, t), �t)

1C u2
x(w(x, t), �t)

�
x

D ['0(ux(w(x, t), �t))]x.

Hence:

['0(wx)]x � F(wx) D ['0(ux(w, �t))]x � wx � F(wx).

From the hypothesisF(1=� ) D F(� )=� and from the expressions ofwx and wt ,
it follows:

['0(wx)]x � F(wx) D ['0(ux)]x � 1

ux
� F(ux)

ux

D ['0(ux)]x � F(ux)

ux
D ut

ux
D wt ,

that isw solves (5).

In order to establish Theorem 3.2, we need the following result.
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Proposition 5.1. Let uW [�1, 1]� [0, T) ! R be a solution of class C2 of (6),
(7), (8), with GW R ! R of class C1. Let us suppose that' and  are functions of
class C2 satisfying the following hypothesis:
• ' is an even non-negative function such that'0(0)D 0;
•  0(0)D 0.
Then:

d

dt

Z 1

�1
 (u) dx D � Z 1

�1
 00(u) � ux � '0(ux) dx� Z 1

�1
 0(u) � G(u) dx,(38)

d

dt

Z 1

�1
[ (ux)C8(u)] dx

D d

dt

Z 1

�1
8(u) dx� Z 1

�1
 00(ux) � uxx � ['00(ux)uxx � G(u)] dx,

(39)

Proof. The identities (38) and (39) follow immediately fromintegration by parts.

d

dt

Z 1

�1
 (u) dx D Z 1

�1
 0(u)ut dx D Z 1

�1
 0(u)['00(ux)uxx � G(u)] dx

D [ 0(u)'0(ux)]jxD1
xD�1 �

Z 1

�1
 00(u)ux'0(ux) dx� Z 1

�1
 0(u)G(u) dx.

From (7) and from the assumption on'0, the boundary terms are zero and the identity
(38) follows. Analogously, sinceu 2 C2, we have:

d

dt

Z 1

�1
[ (ux)C8(u)] dx

D Z 1

�1
 0(ux)uxt dxC d

dt

Z 1

�1
8(u) dx

D Z 1

�1
 0(ux)['00(ux)uxx � G(u)]x dxC d

dt

Z 1

�1
8(u) dx

D Z 1

�1
 0(ux)['00(ux)uxx]x dx� Z 1

�1
 0(ux)[G(u)]x dxC d

dt

Z 1

�1
8(u) dx.

Let us integrate by parts the previous integrals; using the boundary condition (7) and
the hypothesis, we have:

(40)
Z 1

�1
 0(ux)['00(ux)uxx]x dx D � Z 1

�1
[ 00(ux)uxx]['00(ux)uxx] dx

and

(41)
Z 1

�1
 0(ux)[G(u)]x dx D � Z 1

�1
[ 00(ux)uxx]G(u) dx.
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Therefore, by (40) and (41), we obtain:

d

dt

Z 1

�1
[ (ux)C8(u)] dx

D � Z 1

�1
 00(ux)'00(ux)u2

xx dxC Z 1

�1
 00(ux)uxxG(u) dxC d

dt

Z 1

�1
8(u) dx,

which proves (39).

The proof of Theorem 3.2 will be obtained by a suitable choiceof the function 
in the previous identities.

Proof of Theorem 3.2. Let us show (24). With the choice D ' in (39), we have:

d

dt

Z 1

�1
['(ux)C8(u)] dx D � Z 1

�1
'00(ux)uxxut dxC d

dt

Z 1

�1
8(u) dx

D � Z 1

�1
[ut C G(u)]ut dxC d

dt

Z 1

�1
8(u) dx

D � Z 1

�1
[ut ]

2 dx� Z 1

�1
G(u)ut dxC d

dt

Z 1

�1
8(u) dx

D � Z 1

�1
[ut ]

2 dx.

Therefore:

H'(u(x, t1)) � H'(u(x, t2))

D Z 1

�1
['(ux(x, t1))C8(u(x, t1))] dx� Z 1

�1
['(ux(x, t2))C8(u(x, t2))] dx

D Z t2

t1

Z 1

�1
[ut ]

2 dx dt.

Using (24) and the Hölder inequality we obtain that:

ku(x, t1) � u(x, t2)kL2((�1,1)) D





Z t2

t1

ut (x, � ) d�




L2((�1,1))

� Z t2

t1

kut (x, � )kL2((�1,1)) d�
� �Z t2

t1

kut (x, � )kj2L2((�1,1)) d��1=2 � jt1 � t2j1=2
D [H'(u(x, t1)) � H'(u(x, t2))]1=2 � jt1 � t2j1=2
� {H'(u0)}1=2 � jt1 � t2j1=2.

that is (24).
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Now we prove the maximum and minimum principles, respectively (26) and (27)
for the solution. Let us set:

 (� ) D �
0, if � � K ,
(� � K )4, if � > K ,

K D max{u0(x) W x 2 [�1, 1]}.

We notice that is a non-negative convex function of classC2. Moreover:

Z 1

�1
 (u(x, 0)) dx D Z 1

�1
 (u0(x)) dx D 0, 8t 2 [0, T),

sinceu0(x) � K . Applying (38) with this choice of and having 00(� ) �� �'0(� ) � 0, 0(� ) � G(� ) � 0, the function

t ! Z 1

�1
 (u(x, t)) dx

is non-negative and non-increasing. Then:

Z 1

�1
 (u(x, t)) dx D 0)  (u(x, t)) D 0, 8t 2 [0, T) ) u(x, t) � K

which proves (26). The proof of (27) may be easily obtained defining

 (� ) D �
0, if � � K ,
(� � K )4, if � < K ,

K D min{u0(x) W x 2 [�1, 1]}

and arguing as above.
Let us prove theL p estimates onu.
We remark that, in the case whenpDC1, the estimate follows immediately from

(26) and (27), which ensure the boundedness ofu. If p<C1, let us set the function:

 (� ) D j� jp.

For p 2 [2,C1),  is a non-negative convex function of classC2. Thus, by (38), the

function t ! R 1�1ju(x, t)jp dx is non-increasing in time and (28) follows. In the case
when p 2 [1, 2),  is not of classC2, although it is convex. However, we can approxi-
mate it with a family{ �(� )}�>0 of functions satisfying the following conditions:
• for every � > 0,  � is a convex function of classC2, such that 0�(� ) � G(� ) � 0
and 0�(0)D 0;
•  �(� ) ! j� j uniformly on R, for � ! 0C.
Applying (38) to  � and using the assumptions, we obtain that the functiont !R 1�1  �(u(x, t)) is non-increasing, thus:

Z 1

�1
 �(u(x, t)) dx � Z 1

�1
 �(u0(x)) dx.
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Letting � ! 0C, (28) is established also in this case.

The proof of Corollary 3.3 is a direct consequence of Theorem3.2. In particular,
the non-negativity of the solutionu yields immediately from (27) while the bounded-
ness is obtained applying (28) withp D C1.

Concerning the proof of Corollary 3.4, from the Corollary 3.3 we obtain that the
solution u and thenu � G(u) are non-negative.

d

dt

�
1

2
juj2L2((�1,1))

� D 1

2

d

dt

Z 1

�1
u2 dx D Z 1

�1
uut dx

D Z 1

�1
u['00(ux)uxx � G(u)] dx.

Integrating by parts, we obtain:

d

dt

�
1

2
juj2L2((�1,1))

� D � Z 1

�1
'0(ux)ux dx� Z 1

�1
uG(u) dx.

The integrands at the right-hand side of the previous are both non-negative, therefore:

d

dt

�
1

2
juj2L2((�1,1))

� � 0.

We prove Theorem 3.5.

Proof of Theorem 3.5. Let us consider a family{ �(� )}�>0 of functions satisfy-
ing the following conditions:
• for every � > 0,  � is a convex function of classC2, such that� �  0�(� ) � 0, 0�(0)D 0 and 00� (� ) D 0, if j� j � �0;
•  �(� ) ! j� j uniformly on R, per � ! 0C.
From (39), for everyt 2 [0, T):

(42)

d

dt

Z 1

�1
 (ux) dx D � Z 1

�1
 00(ux)'00(ux)u2

xx dx

C Z 1

�1
 00(ux)uxxG(u) dx.

Integrating by parts the last term and applying this identity to  � , we obtain:

(43)

d

dt

Z 1

�1
 �(ux) dx D � Z 1

�1
 00� (ux)'00(ux)u2

xx dx

� Z 1

�1
 0�(ux)G0(u)ux dx.
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The integrands in the right hand side of (43) are non-negative, therefore t !R 1�1  �(ux(x, t)) dx is non-increasing:

Z 1

�1
 �(ux(x, t)) dx � Z 1

�1
 �(u0x(x)) dx.

The conclusion follows passing to the limit as� ! 0C.

Let us establish Theorem 3.6.

Proof of Theorem 3.6. We prove (29); the boundary condition (7) implies
M(0) � 0, thus �2 � 0. We analyze separately the cases�2 > 0 and �2 D 0. For
the first one, we introduce the function:

 (� ) D �� � �2, if � > �2,
0, if � � �2.

Then, we consider a family{ �(� )}�>0 satisfying:
1. for ever � > 0,  � is a convex function of classC2, with � �  0�(� ) � 0 and 00� (� ) D 0 if � � [�1, �2];
2.  � !  uniformly on R, for � ! 0C;
3.  0�(0)D 0, for every� > 0 (here we use the assumption�2 > 0).
Applying (42) to � and letting� ! 0C, we have:

d

dt

Z 1

�1
 (ux) dx � 0.

Hence:

0� Z 1

�1
 (ux(x, t)) dx � Z 1

�1
 (u0x(x)) dx.

Since M(0)� �2, we find:

Z 1

�1
 (u0x(x)) D 0H)  (ux(x, t)) D 0,

thereforeux(x,t)� �2 for every (x,t) 2 [�1,1]�[0,T). If �2 D 0, we need to distinguish
two cases:'00(0)D 0 and'00(0)> 0. In the first one, we can find a family{ �(� )}�>0

that satisfies the first two requests of the previous case, butnot the third one and we
can conclude in the same way of the case�2 > 0. In the second case, there exists an
interval [�1, N� ], with N� > 0, where'00(� ) > 0. Arguing as in the case�2 > 0, we have
M(t) � N� , 8t 2 [0, T) and the conclusion follows by taking the limit forN� ! 0. The
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other implication in (29) can be analogously proved defining:

 (� ) D ��1 � � , if � < �1,
0, if � � �1.

We prove (30); the boundary condition (7) gives immediatelythe conclusion in the case�2 � 0. Thus, we can suppose�2 > 0 and� > 0, in such a way that�2�� �max{0,�1}.
Let us choose the following function:

 �(� ) D �
0, if � � �2 � �,
k(� ), if � > �2 � �,

wherek is a positive function for which � is convex, of classC2, such� � 0�(� ) � 0
and 00� (� ) D 0,8� � �2. With these requests, using (42) we find:

d

dt

Z 1

�1
 �(ux) dx � 0.

Hence: Z 1

�1
 �(ux(x, t)) dx � Z 1

�1
 �(u0x(x)) dx.

The hypothesisM(0)� �2 yields

Z 1

�1
 (u0x(x)) dx > 0,

that is M(t) � �2��, 8t 2 [0,T). We can conclude by calculating the limit for�! 0C.
In a similar way we can prove the other implication.

In order to prove Theorem 3.7, we need the following result.

Proposition 5.2. Let uW [�1, 1] � [0, T) ! R be a C5 solution of (12), (13),
(14), (15); let us assume that' and  are functions of class C2 and C3 respectively,
satisfying the next requests:
• ' is an even non-negative function such that'0(0)D 0;
•  0(0)D 0.
Then:
(44)

d

dt

Z 1

�1
 (u) dx D � Z 1

�1
 00(u) � ux � '0(ux) dx

� � Z 1

�1
 000(u) � u2

x � uxx dx� � Z 1

�1
 00(u) � u2

xx dx, 8t 2 [0, T).
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Proof. We can argue as in the proof of (38). Integration by parts yields:

d

dt

Z 1

�1
 (u) dx D Z 1

�1
 0(u)ut dx D Z 1

�1
 0(u)['00(ux)uxx � �uxxxx] dx

D  0(u)'0(ux)jxD1
xD�1 �

Z 1

�1
 00(u)ux'0(ux) dx

� �[ 0(u)uxxx]jxD1
xD�1 C �

Z 1

�1
 00(u)uxuxxx dx.

The boundary terms are null due to (13) and (14), then:

(45)
d

dt

Z 1

�1
 (u) dx D � Z 1

�1
 00(u)ux'0(ux) dxC � Z 1

�1
 00(u)uxuxxx dx.

Let us integrate by parts the second integral in the right-hand side of (45):

Z 1

�1
 00(u)uxuxxx dx D [ 00(u)uxuxx]

xD1
xD�1 �

Z 1

�1
[ 00(u)ux]xuxx dx

D � Z 1

�1
[ 000(u)u2

x C  00(u)uxx]uxx dx

D � Z 1

�1
 000(u)u2

xuxx dx� Z 1

�1
 00(u)u2

xx dx.

Substituting the previous expression in (45), we obtain (44).

We prove Theorem 3.7.

Proof of Theorem 3.7. We choose

 (� ) D �
0, if � � K ,
(� � K )2, if � > K ,

K D max{u0(x) W x 2 [�1, 1]}.

The C2 function is convex and non-negative. Using (44) and arguing as in the proof
of Theorem 3.2, we have (31). From (31) and (32), we have (33).

As in the one-dimensional case, we need the following resultin order to prove
Theorem 3.8.

Proposition 5.3. Let uW N�� [0, T) ! R be a C2 solution of (9), (10), (11),with
G W R! R; let us assume that' and  are functions of class C2, such that:
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• ' is an even non-negative function such that'0(0)D 0;
•  0(0)D 0.
Then:

(46)

d

dt

Z
�  (u) dx D � Z�  00(u)jruj'0(jruj) dx

� Z�  0(u)G(u) dx, 8t 2 [0, T).

The identity (46) can be easily established as (38) via integration by parts and
Theorem 3.8 can be proved arguing as in Theorem 3.2.

Concerning then-dimensional problem, we can take� WD {x 2 Rn W jxj < R}; if
we consideru D u(r, t) with r D jxj, the problem (9), (10), (11) becomes:

ut D '00(ur )urr C (n� 1)
'0(ur )

r
� G(u), 8(r, t) 2 (0, R) � [0, T)I(47)

ur (0, t) D ur (R, t) D 0, 8t 2 [0, T).(48)

In order to prove Theorem 3.9, we need the following result.

Proposition 5.4. Let uW [0, R]� [0,T)! R be a C2 solution of (47), (48),with G
of class C1; let us assume that' and  are C2 functions verifying the next requests:
• ' is an even non-negative function of class C2 satisfying'0(0)D 0;
•  0(0)D 0.
Then, 8t 2 [0, T):

(49)

d

dt

Z R

0
r n�1 (ur ) dr D � Z R

0
r n�1 00(ur )'00(ur )u

2
rr dr

� (n� 1)
Z R

0
 0(ur )'0(ur )r

n�3 dr

� Z R

0
r n�1 0(ur )G

0(u)ur dr , 8t 2 [0, T).

Proof. Integrating by parts, we have:

d

dt

Z R

0
r n�1 (ur ) dr

D Z R

0
r n�1 0(ur )ur t dr

D Z R

0
r n�1 0(ur )

�'00(ur )urr C (n� 1)
'0(ur )

r
� G(u)

�
r

dr
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D Z R

0
r n�1 0(ur )['00(ur )urr ]r dr C (n� 1)

Z R

0
r n�1 0(ur )

�'0(ur )

r

�
r

dr

� Z R

0
r n�1 0(ur )[G(u)]r dr

D � Z R

0
[r n�1 0(ur )]r'00(ur )urr dr C (n� 1)

Z R

0
r n�1 0(ur )

�'0(ur )

r

�
r

dr

� Z R

0
r n�1 0(ur )[G(u)]r dr

D � Z R

0
[(n� 1)r n�2 0(ur )C r n�1 00(ur )urr ]'00(ur )urr dr

C (n� 1)
Z R

0
r n�1 0(ur )

r'00(ur )urr � '0(ur )

r 2
dr � Z R

0
r n�1 0(ur )G0(u)ur dr .

and (49) follows.

Indicating with!n�1 the (n� 1)-dimensional Hausdorff measure of the unit sphere
in Rn, we have:

kru(x, t)kL1(�) D !n�1

Z R

0
r n�1jur (r, t)j dr .

We establish Theorem 3.9.

Proof of Theorem 3.9. We can apply (49) to a family{ �(� )}�>0 of functions
verifying the following requests:
• for every � > 0,  � is a convex function of classC2, such that 0�(0) D 0 and 00� (� ) D 0, if j� j � �0;
•  �(� ) ! j� j uniformly on R, for � ! 0C;
• � �  0�(� ) � 0, for every� 2 R and every� > 0.
In this way, 00� (� )'00(� ) � 0 and 0�(� )'0(� ) � 0 for every� 2 R. Therefore the func-

tion t ! R R
0 r n�1 �(ur ) dr is non-increasing:

Z R

0
r n�1 �(ur (r, t)) dr � Z R

0
r n�1 �(u0r (r )) dr

and the theorem follows as� ! 0C.

6. An example of global non-existence of solution

In this section, we show examples of global non-existence ofsolution for problems
related to the equations:

ut D '00(ux)uxx � u2,
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where' is a C2 non-negative even function, such that'0(0)D 0, with suitable hypoth-
esis on the initial datum.

EXAMPLE 6.1. Let us consider the following problem:

ut D '00(ux)uxx C u2, in (�1, 1)� (0,C1)I(50)

ux(�1, t) D ux(1, t) D 0, 8t > 0I(51)

u(x, 0)D u0(x), 8x 2 (�1, 1).(52)

We prove that it does not exist a global solution of (50), (51), (52) if u0 is a non-
negative function satisfying: Z 1

�1
u0(x) dx > 0.

Indeed, integrating the equation with respect tox, we have:

d

dt

Z 1

�1
u dxD Z 1

�1
u2 dxC Z 1

�1
'00(ux)uxx dx

D Z 1

�1
u2 dxC '0(ux(1, t)) � '0(ux(�1, t)) D Z 1

�1
u2 dx,

due to the boundary condition (51). Hölder inequality yields:

Z 1

�1
u dx� j[�1, 1]j1=2 � �Z 1

�1
u2 dx

�1=2 ) �Z 1

�1
u dx

�2 � 2
Z 1

�1
u2 dx.

Hence

d

dt

Z 1

�1
u dx� 1

2

�Z 1

�1
u dx

�2

.

Solving the previous inequality with initial datum (52), wefind:

Z 1

�1
u dx� 2

R 1�1 u0(x) dx

2� t
R 1�1 u0(x) dx

.

Therefore, lettingt ! t� D 2
Æ�R 1�1 u0(x) dx

�
, we have:

Z 1

�1
u(x, t) dx !C1,

i.e. the solution blows up in a finite time.
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EXAMPLE 6.2. We consider the equation

ut D '00(ux)uxx � u2,

with the conditions (51) and (52) and
R 1�1 u0(x) dx < 0. Arguing as above, we obtain

Z 1

�1
u dx� 2

R 1�1 u0(x) dx

2C t
R 1�1 u0(x) dx

.

Thus, t ! t� D �2
Æ�R 1�1 u0(x) dx

�
yields

R 1�1 u(x, t) dx ! �1.
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