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1. Introduction

Let X be a connected finite CW-complex with a base point, and & be a (real)
vector bundle over X. We have the natural inclusion map

i: 8" = (pt)" - X*

of Thom complexes, where n=dim & and the trivial z-dimensional bundle is
also denoted by 7 for brevity. Consider the homomorphism

i*: {X¢ 8" — {S", 8"} = Z

of stable cohomotopy groups. Then the stable James number of X¢, which
we shall denote by d(X, &), is defined to be the non-negative generator of image
i* (see [7]). Thus d(X, &) is the least positive integer 7 such that a map S"—S”
of degree r can be stably extended to X¥, if it exists, or zero otherwise. For a
map f: X¢—.S”, we shall call the degree of foi the degree of f simply.

Suppose, for example, that X is the projective space FP*~! (F=C or H), and
£ is n-fold Whitney sum of the canonical line bundle % over FP*™!, then Xf=
FP#¥»=1FP*~1 and d(FP*"!, ny) is the same as F {n, k} in [9]. In that paper,
Oshima determined F {n, k} for several small %’s (see also [3], [7] and [8] for
F {1, k}).

Now let X and & be as before. Let J(X) denote the group of stable fibre
homotopy equivalence classes of real vector bundles over X, and J(£) the class
of £ in J(X). Since a stable fibre homotopy equivalence of bundles induces a
stable homotopy equivalence of their Thom complexes, we may regard d(X, —)
as a function from J(X) to Z. We shall abuse notations, and not distinguish
d(X, J(&)) from d(X, £). Our main result is as follows:

Theorem 1.1. Let p be a prime number, and suppose that & is an orientable
vector bundle over X. Then,

(1) d(X, &) is not zero

(2) p is a divisor of d(X, E) if and only if p is a divisor of the order of J(£).
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As an immediate corollary, we have
Corollary 1.2. d(X, £)=0 if and only if & is non-orientable.

A few other corollaries, and propositions concerning the properties of
d(X, &) will be found in §3.

2. Proof of the main theorem

Let £ be an n-dimensional vector bundle over X as in §1. We may give a
Riemannian metric on £ and regard £ as an orthogonal bundle as usual. Let
S(£) (and D(&)) denote the associated sphere (and disk, respectively) bundle.

Lemma 2.1. Let k be an integer, and let n=dim X+3. Then there exists
a map f: S(E)—S"! such that f has degree +k on each fibre, if and only if there
exists a map from X* to S” of degree k.

This follows immediately from the commutative diagram of cohomotopy
groups (see [4])

S
= H(SE)  —> ="(DE)S(E))

¥ i*

)
7" Y (S(E) 1) : ”"(D(E)"/S(E)ﬂ)

and the fact that X is connected.

We remark that, if such a map f as in (2.1) (with £==0) exists, we can orient
& so that f has degree k on each fibre. Hence, if d(X, £)=0, it follows that £ is
orientable since we may suppose dim £ is sufficiently large. The proof of (1.2)
is completed by this, and (1) of (1.1).

Now, by (2.1), “if” part of (2) in (1.1) is an immediate consequene of the
following Adams’ mod k-Dold theorem ([1], (3.2)).

Theorem 2.2 (Adams). Suppose that k>0 and there is a map f: S(§)—S*™!
of degree +k on each fibre. Then there exists an integer e such that k°E is fibre
homotopy equivalent to a trivial bundle.

For the proof of “only if” part of (2) in (1.1), we need the lemmas which
Adams used in the proof of (2.2). Let G(n, m) be the space of maps from S*~!
to S*7! of degree m. For g&G(n, I) and a positive integer k, we define the
following maps:

c(g): G(n, m)— G(n, Im), (g)(f)=geof (composition)
J(R): G(n, m) — G(kn, m*), j(k)(f)=f*fx*---xf (k-fold join)

As is well-known, if #=74-3, there is an isomorphism §: z(G(n, m))==,°.
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Then Adams’ lemmas we shall use are summarized as follows:

Lemma 2.3. If n=r+4-3, the following diagrams commute.

7,(G(n, m)) L 7 (G (n, Im))

(1) el 6|

S X l S
i) k
7 (G(n, m)) ——> = ,(G(kn, m*))
(2) -

Hereafter we shall express an element of G(n, [) by I.  We prove the following.

Theorem 2.4. Let £ be an oriented bundle of dimension n over a connected
finite CW-complex X, and let n=dim X-+3. Suppose that t: S(kE)— X x Sk~
is a fibre homotopy equivalence of degree 1 on each fibre. Then there exist an
integer e=0, and a fibrewise map f: S(E)— X X S"™! of degree k* on each fibre such
that the following diagram is fibre homotopy commutative:

kf
S(kE) ——> X x Skt
Tl < (k)"
Xx Skt

t

Proof. We proceed by an induction on the number of cells of X. If X
consists of only one cell, the result is clearly true (with e=0). Suppose that
X=Y U¢" with r=1, and the result is true for Y. Let #: S(kE)— XX .S*! be
a fibre homotopy equivalence of degree 1. By the inductive hypothesis, we can
find a fibrewise map g: S(§|Y)—Y xS"™! of degree m, which is a power of k,
such that the following diagram is fibre homotopy commutative:

k
S(RE| V) —2 5 yx St
Y x Skr-1

We wish to extend (1 x /)og to a fibrewise map from S(&) to X X S"~! for some
I, a power of k. Let ¢c: (D", S"')— (X, Y) be the characteristic map of the cell
¢’. Since the induced bundle ¢*(§) over D" is trivial, g defines a fibrewise map
from S"'xS"! to Yx.S" ! of degree m, and hence, a map {g): S"'—
G(n, m). We can find such an extension as stated above, if and only if

{1 xlogd>=c(l)e<g>: S"*—G(n, Im) is null-homotopic. The case r=1 is
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trivial, since G(n, m) is path-connected. Now let »>>1. From the above fibre
homotopy commutative diagram, we have the following homotopy commutative
diagram:

k
Sl ————>< 2 G(kn, m*)

<t|&kG

Since (1xXm*)o(¢|Y) can be extended over X (in fact, to the map (1Xm*)ot),
{(Ixm*)o(t| Y)>=c(m*)o(t| Y is trivial, and hence <kg>=j(k)o<(g)> is also
trivial.  On the other hand, according to (2.3), we have

0(j(R)><gy) = km'~16(<gD)
= O(c(km*)o<g>) .

Therefore c(km*~')o{g> is trivial, and it follows that we can find a fibrewise
extension of (1 X km*~')o g over X.

So, let k: S(E)— X x S""! be a fibrewise extension of (1 x km*~')og over X.
Note that # has degree km* on each fibre. We now have the following diagram
which is fibre homotopy commutative over Y:

ki
S(kE) ——> X x §hr-1
S |1 (deg By
XX Skt

To extending the fibre homotopy over the cell ¢, we have an obstruction,
which is a map ¢: (D" X I)=S8"— G(kn, (km*)*). If we take f=(1xI)oh instead
of &, the obstruction becomes ¢(l¥)e¢p. On the other hand, we can alter f (over
¢") by using any element of z,(G(n, lkm*)). Therefore the obstruction c(l*)og
can be altered by any element of j(k)«(7,(G(n, lkm*))). In other words, the
obstruction to making the homotopy kf==(1x (deg f)*)ot, up to an alteration of
fis

(o mod j(R)x(m(G(n, lem)).
Under the isomorphism 8: 7,(G(kn, (lkm*)¥))==n,5, this corresponds, by (2.3), to
I*9(¢p) mod k(lkm*)*'zS .

If [ is a multiple of A*m**~V| this class is zero. It follows that we can find a
map f: S(E)— X x S""! with the desired property, by taking I=k*m**-1. Note
that the degree of f, being lkm*=Fk**'m", is a power of k. This completes the
proof of (2.4).
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It is now easy to prove (1.1). By (2.4) and the fact that J(X) is a finite
group, it follows that d(X, £)=0 for an orientable bundle £. The rest of (1.1)
is an immediate consequence of (2.4) and (2.2).

3. Applications and remarks

Let M be a connected, orientable closed manifold of dimension #n. By the
S-duality, there exists a stable map f: S”— M?° of degree &, if and only if there
exists a stable map g: M*—S™ of degree k (in our sense). Here v is a normal
bundle of M, and m=dim ». Then (1.1) implies that, for a prime p, there exists
a stable map f: S"— M° of degree prime to p, if and only if the order of J(v) is
prime to p. Thus we have the following theorem, which is a “mod p” analogue
of Milnor-Spanier’s theorem [6].

Theorem 3.1. Let M be as above, and let p be a prime. Then there exists
a stable map f: S" — M such that

f*: Hn(Sn’ Zp) an(My le)
if and only if the order of J(v) is prime to p.

Our next application is concerned with the James numbers of Stiefel mani-
folds ([5]). Let O, denote the Stiefel manifold over F(=C or H), with the
projection p: O, ,— 0, =87 (d=2 or 4). The James number O {n, k} is
defined to be the non-negative integer r such that r generates the image of p,:
Tan-1(0n 1) = Tan-r( S )=Z ([5]). O, has the stunted quasi-projective space
0, as a subcomplex, which is the S-dual of (FP*~!)™"" (5 is the canonical line
bundle). Since the inclusion Q, 0O, ; is 2d(n—k)+3(d—1) equivalence, and
0, is d(n—k-+1)—2 connected, it follows, by the S-duality and the suspension
theorem, that we have Op{n, k} =d(FP*™', —ny) for n=2k—1 ([9], (4.6)).
Hence, as a corollary of (1.1), we have the following, which is a (stable) portion
of Sigrist’s result ([10], Théoréme I).

Proposition 3.2. If n=2k—1 and p is a prime, Op{n, k} is prime to p if
and only if the order of J(—nn) is prime to p, that is, if and only if v,(n)=v,(b,).
Here b, denotes the order of J(x) in J(FP*™'), and v(n) the exponent of p in the
prime factorization of n.

We note that we did not use the intrinsic join, while Sigrist’s proof depends
on James’ theorems proved by using the intrinsic join.
Finally, we give some properties of d(X, &) for a general £ over X.

Proposition 3.3. d(X, &)-d(X, &) is a multiple of d(X, £,+-&,).

Proof. If f;: X%—S" has degree 7; (=1, 2), the composition of maps
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AN
Xaté __A_) (XX X)El xty — X /\X£2 _fl__i(z) S”l/\S”Z = S"ht"

clearly has degree r;7,. Thus the result follows.

In case that X is FP*™!, and &, £, are Whitney sums of the canonical line
bundle, the above proposition corresponds by the S-duality to the James’ result
that Op{m, k} Oy {n, k} is a multiple of Op{m+n, k}, which was obtained by
using the intrinsic join ([5]).

Now, in case that X=S", as is well-known, (S™)! has the same homotopy
type as S"Ue"™™. Hence d(S™, &) is equal to the order of J(£). More gene-
F3)

rally, we have the following proposition:

Proposition 3.4. If X is a double suspension, then d(X, £) is equal to the
order of J(£) in J(X).

Proof. Suppose X=3Y, with Y also a suspension. Then there is an iso-
morphism 6: [2Y, BG,]=[2"Y, S"] for a sufficiently large n. Here BG,
denotes the classifying space for (n—1)-spherical fibrations. By the result of
Wall ([11], (3.7), see also [2], (2.2)), we have the following cofibration

6
S'Y _(_‘.](_E)Q S —— (zy)s
from which we obtain

d(X, &) = order of 0( J(£))
= order of J(£).
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Added in proof. After this paper was accepted, an article of I. Dibag was published
in which Theorem 2.4 was proved in a little more general setting.
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