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In 1934 [3], H. Seifert gave a characterization of the Alexander polyno-
mial of knots, but it has been unknown whether there are some relations be-
tween the Alexander polynomial and the unknotting number or not.

In this paper, after establishing normal forms of knots with unknotting
number <z, we prove that the Alexander polynomial of any knot is able to be
obtained from knots with unkotting number 1. This result shows that there
is no relation between the Alexander polynomial and the unknotting number.

1. Normal form of a knot of unknotting number 1

Let axb be an arbitrary arc of the given knot k& and let D be a disk such that
(i) DNk = axb, and
(i) DNk= {d}, disa point of &,
where D and D denote respectively the boundary and the interior of D. D will
be called an unknotting disk. The operation of exchanging the arc axb by its

complementary arc ayb with respect to D will then be called an unknotting opera-
tion.

b

a X

Fig. 1

D The content of the present paper is a part of my master thesis at Sophia University in 1975
under the supervision of Professor H. Terasaka, to whom and also to Dr. K. Yokoyama and
to Dr. S. Suzuki I would like to express here my sincere thanks.
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Any knot can clearly be shown to be deformable into a trivial knot by a
finite number of repetition of suitable unknotting operations. The minimum
number of operations which are required in order to deform the given knot &
into a trivial knot will be called the unknotting number of k and denoted by u(k).
The unknotting number of a trivial knot will naturally be defined to be 0.

We are now going to establish the normal form of a knot of unknotting
number 1 due to H. Terasaka [5]. '

Let & be a knot with #(k)=1. Then there exists by definition an un-
knotting disk D such that

D= axb U ayb, axb N ayb = {a, b}, DNk = {d},
and that
ky = (k—axb) Uayb
is a trivial knot. Then there exists an ambient isotopy {f}.<;<; of the 3-
dimensional euclidean space E® such that fi(k,) is a circle C in the plane E?

We denote the images by f; of the points a, b, x, y, d, and the disk D res-
pectively by a’, b’, ', y’, d’ and by D'.

Let 7 be an arc connecting d’ and y’ inside D’. Let B be a band, that is

a narrow, elongate disk, containing 7 and contained in D’ such that BN D’ is
an arc a,;y'b, of a'y’b’. Thus, if a,x,b, is the complementary arc of a,y'b, with

respect to B, then
ky = (C—a,y'b) U ayx,b,

is of the same type of the original knot k. By a suitable deformation of the
band B, k, will then be led to a normal form of Seifert’s type (Fig. 4).
Thus we have proved:

Theorem 1. Let C be a circle and let B be a band, i.e. an elongate disk,
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such that C and the boundary B of B has an arc ab in common and that C and the

interior B of B has a single point in common. Any knot of unknotting number 1
is then of the type of the knot

ky=(CU lé)—the interior of the arc ab.

The band B in the above theorem will be called an unknotting band. 'Then
there is no essential difficulty in proving the following generalization of Theorem

1.

Theorem 2. Let C be a circle and let By, B,, -++, B, be n pieces of mutually
disjoint unknotting bands. Any knot of unknotting number at most n is then of
some type of the knot k,:

ko= (CU |)B)— ) (Interior of B,NC).
i=1 i=1
Example.

C

>

N
By

By

Fig. 3

N.B. The knot 5; has been shown to be of unknotting number 2 by Mura-
sugi [2].

2. Proof of main theorem

We shall be concerned in this section with some special kind of knots & of
unknotting number 1 of the following type:

Let C be a circle and let B be an unknotting band starting first from an
arc ab of C outside C. After entangling with itself, B comes inside C passing
under C, and then goes out of C passing over C. After entangling with itself
again outside C, the band B comes inside C passing under C and goes out of it
directly passing over it. The repetition of these entangling, passing under

and passing over will end at the final stage when B intersect C in a point d.
We refer the reader to the following Fig. 4.
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Fig. 4

Let us now begin by computing the Alexander polynomial of this type of
knot k. For this purpose, we follow [4] for notation, deviating if necessary,
and make full use of the Alexander equations as well as results obtained there.
Thus, for example, the part of the band lying between ab and the location where
the band passes for the first time under C, are all denoted by the same notation
B,, even if that part of the band is cut to pieces by another part of the whole
band passing eventually over there. Especially of use are the following equa-
tionsV:

1) )\'i,l(x_l)Bl—}_)\‘i,Z(x—l)Bz_,"
+7\’i,ﬂ(‘x—I)Bn+bi,0_bi,l(i) =0, (i =12, ”) .

e T BRG G

%’“(“ Fig. 5 (1)

Bri b1

By(i,0)

(2) *Bin—B,=0,(i=1,2, -, n—1).
Biiq

|
o 1|

1 (1) corresponds in [4] to (2.9) with 7=21, (2) to (2.5) with 0;=1, (3) to (2.8) with ¢;=1,
B=B;, £;+1=a; and £;=a;_1, (4) to (2.11) with a;,0=a1, (5) to (2.6) with ;=1 and {=a;.

> a; Fig. 5 (2)
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——1/—%
(4) a—by o+ B, =0. N
// _____________ \\// Fig. 5 (4)

(5) (x_l)ai_xbi+l,o+bi,l(i) =0,=12,-, n—1).

3) (1—x)B;4+a,—a;_,=0,(=2,+-,n).

=, Fig. 5 (3)

Biy

”bzuo

—3 Fig. 5 (5)

o 1

The following equations (6) and (7) should be newly introduced: the Al-

exander equations at the crossing points @ and 8 near the point d run respec-
tively, by (1.12) in [4] with é=—1.

(a) (x_l)bn,l(n)+an+l_xan =0 ) »
(18) (x_l)an_}_bn,l(n)_xbn,l(n) =0. I

- d 7
bn.l(n)l B, + b”_,l(")

Since
ba, it —Dn 10 = By s
we have, adding together («) and (),
—B,—a,+a,.,=0.
This equation together with (a) gives at once, considering the relation
Qi1 = by,
and so the following:
(6) —B,—a,+b,=0,
(7) (@—=1)b, 10 +b1,0—xa, = 0.

Thus, the Alexander matrix for & (cf. Fig. 4) runs as given in Table 1 (cf.
[4], p.104).
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B, B, B, b’lkfgbz,o bn,obl,l(l) bn,I(n) a az; - a,
A —1) App(—1) == (2 — 1)) 1 | U 0 —1 0
(1) (Mi;=N;) 0 ! . 0
Aaa(@— )= 1) Ap(x—1) 0 0 O 1 1
—1 x
) -« 0 0 0 0
O 01 .
— x
0 1—«x -1 1
3) 0 1=» 0 0 0 !
0 0 1-x 0 471
(6) 0 eeeveeenn 0 —1 1 00 cooeer 0 0 0--0 —1
*(4) 1 0 eeeene 0 _1§0 ...... 0 0 10 - 0
—x 0 1. 0 0 x—'.l 0 0
() 0 ' : I
E 0 —x 0 10 0 x—1 0
) 0 10 e 00 0x—10 0 —x
Table 1
A" (%= 1) + A" Hx — 1) 4o+ + Ay (x—1) | 0 +-- 0 |—1
1 . 0
(7\'ij=>"ji) . 0 0
0 - 0 .
AX” N — 1)+ Xp " H(x— 1) + -+ + N (x—1) 1 -1
_.xn—l_l_xn—z _1 1
_xn-2+xn—3 -‘1 l O
: 0 0
—x2+x
M= —x+1 0o -—-11
—1 0 0 0 -1
0 —x 1 Ox—1
: w00 0
: 0 |0 - ilo -
0 —x 10 x—1
0 0 0 x—1|0 —x
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Now, since the row (4) (marked with *) can be obtained by adding toge-
ther the rows (2), (3) and (6), we delete it; and since &, , can be set equal to 0
(cf. [4], p.105), we delete the column under b, , (marked with **). Then the
determinant of the remaining matrix is just the required Alexander polynomial
Ay(x) of k.

To compute the determinant, multiply first the column under B, by x and
add it to the column under B,, and multiply the new column under B, by x and
add it to the column under Bj,::-, and multiply the new column under B,_,
by x and add it to the column under B,. Then, we have immediately:

Ay(x) = det(M)
We find that

Ag(x) = ™ A" 2 e Hy,) (6 — 1)
F (R I A T2 e g, )a(x— 1)

R P e s o L e Vi
—(n—1)x" Y (x—1)>+x".

For simplicity let us now set all A;;=x; other than A;;=X\;; equal to 0,
and set

Al = Qo1 Mz = Qpozy =t My = Oy

—

By

M1=4 M2=2, AM3=—1

Fig. 6

Then we have for this knot £,
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(8) Au(x) = (¥ ', "2+ - Fawta,) (x—1)
+(a”_2xﬂ+a”_3xn+l+ cee +a1x2n—3+aox2ﬂ—2) (x_ 1)2
—(n—1x* Y (x—1)°+x"
or
Ap (%) = ay(@®+1)+(—2a+a) (¥ 7' +x)
+(ato—20+ap) (# 7 +-a%)+ -+
F(ai-a—2a; 1) (" x))+ -
F(Ap-3—20a, -ty 1—n+1) (a1 +x"71)
+Q2a,_;—2a,1+2n—1)x" .

Now, if
A(x) = ay(&>+ 1)+ ay(&®* ' +x)+ - +a,_ (" +x""1)F-a,x"
with A(1)=1 is the Alexander polynomial of a given knot, then the solution
Qg Ay ***y A, Of the linear equations
Qo = Gy,
—2at0, = ay,
a—2a,+a, = a,,

(*) ............

............

Ap3—2a,_+a, ,—n+1=a,_,
satisfies the equation
20,-2—20t,_1+2n—1 = a,
on account of
A(1)=1

by (8), which proves that A(x) coincides with some A, (x).
We have thus proved our main theorem:

Theorem 3. For a given Alexander polynomial A(x), there exists a knot k,
of unknotting number 1 with the Alexander polynomial A(x). In fact, for

A(x) = af(*®+1)+ay(@® ' Hx)+ -+ +a, (X" +x* )+ a,x"
with A(1)=1, let us set all Ai=N;;=0 other than \;;=\,, and let

A1 = Qpo1y Mz = Qpozy ***5 Ny = Qs
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where {ag,**,Qy_2 0,1} s a solution of (*). Then, k, is obtained as a normal
Sorm of a knot of unknotting number 1 with respect to the {\;;}. Here, \;; is the
linking number of the band B; and B,.

(1]
(2]
(3]

[4]
(3]
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