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1. Introduction

In this paper we mean smooth actions on manifolds of compact Lie groups
simply by actions.

Several authors found one fixed point actions on spheres [9] (or [10]), [12],
[13] and [14]. Those spheres have dimensions greater than 5. It is easy to
see that the spheres S” of dimension #=<2 do not have one fixed point actions
of compact Lie groups. Further it is conjectured among topologists dealing
with 3-dimensional manifolds that S® has no one fixed point actions of compact
Lie groups. The purpose of this paper is to show:

Theorem A. The 4-dimensional homotopy spheres have no one fixed point
actions of compact Lie groups.

Special cases of this theorem were proved by M. Furuta and W.-Y. Hsiang-
E. Straume. Let 3 be an oriented 4-dimensional homotopy sphere.

Theorem (M. Furuta [4]). Any finite group G can not act on = in such a
way that (1) ¢ consists of exactly one point and (2) each element of G preserves
the orientation of =.

Corollary to Theorem 1 of W.-Y. Hsiang-E. Straume [6]. Any compact
connected Lie group can not act on 3, with exactly one fixed point.

Our proof of Theorem A goes on by showing the following lemmas. For
a compact manifold X and for an integer £=0, we denote by X, the totality of
k-dimensional connected components of X. For a set Y, we denote by | Y| the
cardinality of Y. Let E be an oriented 4-dimensional homology sphere.

Lemma B. If a compact Lie group G of dimension=1 acts effectively on
B, then EC° is empty or diffeomorphic to S" with n<2. Especially one has | E§|=0
or 2.

Lemma C. If a finite group G acts on E, then one has |E§| <2.
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For a G-action on E we define K=K(G, E) to be the subgroup of G of
elements preserving the orientation of =. If a finite group G acts on =* with
| =¢| =1, then by Furuta’s theorem we have G= K, moreover we will see |=§ | =3
in Section 5. This contradicts Lemma C.

We wish to express our gratitude to M. Furuta for informing us of his
result.

2. Preliminary

Let G be a compact Lie group, H a subgroup of G and X a compact G-
manifold of dimension n. If X7 is non-empty, then take an H-equivariant nor-
mal bundle of X7 in X. The fibers of it are (#—k)-dimensional real H-repre-
sentations. We call them the normal representations of Xy in X. We remark
that if the G-action on X is effective, then the normal representations are faithful.

We frequently use the following well known result.

Theorem (P.A. Smith [1, Theorem 5.1]). If G is a p-group (p prime) and
if it acts on a modp homology sphere X, then X€ is empty or a mod p homology
sphere.

The following lemma is well known and easily proved.

Lemma 2.1. If a compact Lie group G acts on S" with n=<2, then S€ is
empty or diffeomorphic to S™ with m<2.

3. Proof of Lemma B

Let G be a compact Lie group of dimension=1 and E an oriented 4-
dimensional homology sphere with G-action. Suppose that the G-action is ef-
fective. Let G, be the identity component of G.

Proposition 3.1. If G, has an abelian normal subgroup A= {1}, then E° is
empty or diffeomorphic to S™ with m<2.

Proof. Each element of G, preserves the orientation on E. Since the
G-action is effective, we have dim E#<2 for any subgroup B=1 of G,. Let C
be a cyclic subgroup of A of prime order. By Smith’s theorem =€ is a sphere of
dimension £ 2. By Lemma 2.1 E¢=(((E®)*)¥)¢, H=G,, is empty or also a
sphere.

Proposition 3.2. It holds that
(1) if Goe=S0(3), then EC is empty or diffeomorphic to S™ with m=1,
(2) if G;=SU(2), then |E€|=0 or 2, and
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(3) if Gy=S0(4), then |E°|=0 or 2.

Proof. The proof is done under the assumption === ¢ and the notation
H=Go.

(1) Since SO(3) has no irreducible k-dimensional representations for k=2
and 4, we have dimE#=1. Take a dihedral subgroup D of G, of order 4.
Then we have dimEP=1. By Smith’s theorem EP is a circle. Thus E#
coincides with E”. By Lemma 2.1 we have that E¢=(E¥)° is a sphere of
dimension<1.

(2) Since SU(2) has no faithful representations of dimension =<3, E¥ is a
finite set. Furthermore the normal H-representations of E# in E are unique up
to isomorphisms. For any cyclic subgroup C of H of prime order, E° is a
sphere and includes E#. Observing the normal representations of E#, we see
that =€ consists of exactly two points. For any non-trivial subgroup B of H,
we have 1=<|E®|<2. Let T be a maximal toral subgroup of H. We have

ET|=2 by Smith’s theorem. If ET—E¥ is non-empty, then denote the point
by x. There is a subgroup L of H such that (i) L has a normal subgroup Q of
order 8 and L/Q has order 3 and (ii) LN T = {1}. By Oliver’s theorem [11,
Proposition 2] we have that |EX| =2, hence EX=E". Sinc the smallest sub-
group of H which includes T and L is H, we have H,=H. This contradicts
the assumption {x} =ET—E#. Thus ET=E¥ and EC¢ also consists of exactly
two points.

(3) The conclusion follows from (2) and the fact that SO(4) has a normal

subgroup isomorphic to SU(2).

Proof of Lemma B. Suppose that |E¢| =0 nor 2. Then G is a subgroup
of O(4) and G, is a subgroup of SO(4). By Proposition 3.1 G, does not have an
abelian normal subgroup except {1}. Hence G, is isomorphic to either one of
SO(3), SU(2) and SO(4). This contradicts Proposition 3.2.

4. Proof of Lemma C

Let G be a finite group, E an oriented 4-dimensional homology sphere
with G-action and K=K(G, E) the subgroup of G defined in Section 1. Our
proof of Lemma C is done under the assumption that the G-action on E is ef-
fective and EC=¢.

First we note that G is a subgroup of O(4), K a subgroup of SO(4) and
dim E# <2 for any non-trivial subgroup H of K.

Proposition 4.1. Let H be a subgroup of K. Then it holds that
(1) if EY ==, then H is cyclic, and
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(2) if Ef ¢, then Ef=¢ and H is dihedral or isomorphic to one of A,, S, and As.

Here S, stands for the symmetric group on four letters, and 4,, n=4 and
5, stand for alternating groups on 7 letters.

Proof. (1) It follows from the fact that a finite subgroup of SO(2) is cyclic.

(2) A finite subgroup of SO(3) is cyclic, dihedral or isomorphic to one
of 4,, S, and As (see [5]). Suppose that H is cyclic. Then the normal H-
representations have even dimensions. This contradicts E¥ 3 ¢.

Proposition 4.2. Let H be a non-trivial solvable subgroup of K. Then BX
is (empty or) diffeomorphic to S™ with m=<2.

Proof. Take a normal series of subgroups H(7) of H: {1} =H(0)s1H(1)s1
«+1H(n)=H with H({)/H(i—1) of prime order. By Smith’s theorem and
Proposition 4.1, E#® is a sphere of dimension<2. Since EFf)=(E#(-D)H® by
induction on 7 E#® are spheres of dimension=<2.

Proposition 4.3. Let H be a subgroup of K and suppose H is isomorphic to
As, Then it holds that

(1) if Ed==¢, then |E¥|=1 or 2, and
(2) if EXFEp and Ef =, then EF is diffeomorphic to S*.

Proof. (1) Let V be a normal representation of E§ in E. Since V is
faithful, V#=0 and dim V=4, V is an irreducible H-representation. Let C be
a cyclic subgroup of H of order 5. Then we have V¢=0, hence E§ DEF (F+¢).
By Proposition 4.2, =€ consists of exactly two points. 'The relation E¢ D EH im-
plies that |E#|=1 or 2.

(2) In the case E# is a disjoint union of circles. Let D be a dihedral
subgroup of H of order 4. Then EP® is a circle by Smith’s theorem. Im-
mediately we have Ef=EP=S",

Proposition 4.4. Provided |EX|=3, then every Sylow subgroup of K is
etther cyclic or dihedral.

Proof. Let P be a Sylow subgroup of K. Since P is solvable, E? is a
sphere of dimension 1 or 2 by Proposition 4.2. The conclusion follows from
Proposition 4.1.

Now we prove Lemma C. We suppose that |E§|=3, and we will meet
with a contradiction.

We note that K == {1} and |EX|=3. If K is solvable, then =¥ is a sphere,
hence E¢= (EX)° is also a sphere. We have [E§|=0 or 2. This contradicts
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the above assumption. Thus K is non-solvable. By Suzuki’s theorem [15,
p. 671, Theorem B] and Proposition 4.4, there exist subgroups H, L and Z of K
such that (1) [K: H]=<2, (2) H=ZX L, (3) Z is solvable and (4) L is isomorphic
to PSL(2,q). Here g is a prime greater than 4. Since L is non-solvable and
El=¢, L has an irreducible representation of dimension 3 or 4. By Tables
3 and 4 of [8], PSL(2, q)=L is nothing but PSL(2,5). In other words, L is
isomorphic to A;. By Proposition 4.3 it holds that E*==S* or |E*| <2. From
the assumption that |E§|=3, we have Er==S'. Since B =(E)¥, it is iso-
morphic to S° or S, so is EX. Then EF€ is also diffeomorphic to S™, m=<1.
This is a contradiction.

5. Proof of Theorem A

By Lemma B, it is sufficient to prove the case in which G is a finite group
acting effectively on =, an oriented 4-dimensional homotopy sphere. The fol-
lowing arguments go on in this case.

Proposition 5.1. Provided |5¢| =1, then |SX| is finite and an odd number,
where K is the subgroup of G defined in Section 1.

Proof. Suppose |3¢|=1. By Proposition 4.2, K is non-solvable. It
follows from Proposition 4.1 that S¥=3§ J[ =¥. It holds that
1= X(2°) = X((Z")%) = X((Z5)°) + X((Z1)°)
=X(=5)°)  (mod. 2)
= X(=f) (mod. 2) .
Thus || is an odd number. Especially 3 is non-empty. If =¥ is non-
empty, then K is isomorphic to 45 by Proposition 4.1. In this case, Proposition

4.3 gives that either I or SF is empty. This is a contradiction. Hence we
have SX=3f.

Now we prove Theorem A. Provided |Z¢|=1, then by Furuta’s theorem
and Proposition 5.1 we have |Zf|=3. This, however, contradicts Lemma C.
Thus we get the conclusion of Theorem A.
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