

Title	S ⁴ does not have one fixed point actions
Author(s)	Morimoto, Masaharu
Citation	Osaka Journal of Mathematics. 1988, 25(3), p. 575-580
Version Type	VoR
URL	https://doi.org/10.18910/6493
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Morimoto, M.
Osaka J. Math.
25 (1988), 575-580

S⁴ DOES NOT HAVE ONE FIXED POINT ACTIONS

MASAHIRO MORIMOTO

(Received May 18, 1987)

1. Introduction

In this paper we mean smooth actions on manifolds of compact Lie groups simply by actions.

Several authors found one fixed point actions on spheres [9] (or [10]), [12], [13] and [14]. Those spheres have dimensions greater than 5. It is easy to see that the spheres S^n of dimension $n \leq 2$ do not have one fixed point actions of compact Lie groups. Further it is conjectured among topologists dealing with 3-dimensional manifolds that S^3 has no one fixed point actions of compact Lie groups. The purpose of this paper is to show:

Theorem A. *The 4-dimensional homotopy spheres have no one fixed point actions of compact Lie groups.*

Special cases of this theorem were proved by M. Furuta and W.-Y. Hsiang-E. Straume. Let Σ be an oriented 4-dimensional homotopy sphere.

Theorem (M. Furuta [4]). *Any finite group G can not act on Σ in such a way that (1) Σ^G consists of exactly one point and (2) each element of G preserves the orientation of Σ .*

Corollary to Theorem 1 of W.-Y. Hsiang-E. Straume [6]. *Any compact connected Lie group can not act on Σ with exactly one fixed point.*

Our proof of Theorem A goes on by showing the following lemmas. For a compact manifold X and for an integer $k \geq 0$, we denote by X_k the totality of k -dimensional connected components of X . For a set Y , we denote by $|Y|$ the cardinality of Y . Let Ξ be an oriented 4-dimensional homology sphere.

Lemma B. *If a compact Lie group G of dimension ≥ 1 acts effectively on Ξ , then Ξ^G is empty or diffeomorphic to S^n with $n \leq 2$. Especially one has $|\Xi_0^G| = 0$ or 2.*

Lemma C. *If a finite group G acts on Ξ , then one has $|\Xi_0^G| \leq 2$.*

For a G -action on Ξ we define $K=K(G, \Xi)$ to be the subgroup of G of elements preserving the orientation of Ξ . If a finite group G acts on Σ^4 with $|\Sigma^G|=1$, then by Furuta's theorem we have $G \neq K$, moreover we will see $|\Sigma_0^K| \geq 3$ in Section 5. This contradicts Lemma C.

We wish to express our gratitude to M. Furuta for informing us of his result.

2. Preliminary

Let G be a compact Lie group, H a subgroup of G and X a compact G -manifold of dimension n . If X_k^H is non-empty, then take an H -equivariant normal bundle of X_k^H in X . The fibers of it are $(n-k)$ -dimensional real H -representations. We call them the *normal representations of X_k^H in X* . We remark that if the G -action on X is effective, then the normal representations are faithful.

We frequently use the following well known result.

Theorem (P.A. Smith [1, Theorem 5.1]). *If G is a p -group (p prime) and if it acts on a mod p homology sphere X , then X^G is empty or a mod p homology sphere.*

The following lemma is well known and easily proved.

Lemma 2.1. *If a compact Lie group G acts on S^n with $n \leq 2$, then S^G is empty or diffeomorphic to S^m with $m \leq 2$.*

3. Proof of Lemma B

Let G be a compact Lie group of dimension ≥ 1 and Ξ an oriented 4-dimensional homology sphere with G -action. Suppose that the G -action is effective. Let G_0 be the identity component of G .

Proposition 3.1. *If G_0 has an abelian normal subgroup $A \neq \{1\}$, then Ξ^G is empty or diffeomorphic to S^m with $m \leq 2$.*

Proof. Each element of G_0 preserves the orientation on Ξ . Since the G -action is effective, we have $\dim \Xi^B \leq 2$ for any subgroup $B \neq 1$ of G_0 . Let C be a cyclic subgroup of A of prime order. By Smith's theorem Ξ^C is a sphere of dimension ≤ 2 . By Lemma 2.1 $\Xi^G = ((\Xi^C)^A)^H$, $H = G_0$, is empty or also a sphere.

Proposition 3.2. *It holds that*

- (1) *if $G_0 = SO(3)$, then Ξ^G is empty or diffeomorphic to S^m with $m \leq 1$,*
- (2) *if $G_0 = SU(2)$, then $|\Xi^G| = 0$ or 2, and*

(3) if $G_0 = SO(4)$, then $|\Xi^G| = 0$ or 2.

Proof. The proof is done under the assumption $\Xi^G \neq \phi$ and the notation $H = G_0$.

(1) Since $SO(3)$ has no irreducible k -dimensional representations for $k=2$ and 4, we have $\dim \Xi^H = 1$. Take a dihedral subgroup D of G_0 of order 4. Then we have $\dim \Xi^D = 1$. By Smith's theorem Ξ^D is a circle. Thus Ξ^H coincides with Ξ^D . By Lemma 2.1 we have that $\Xi^G = (\Xi^H)^G$ is a sphere of dimension ≤ 1 .

(2) Since $SU(2)$ has no faithful representations of dimension ≤ 3 , Ξ^H is a finite set. Furthermore the normal H -representations of Ξ^H in Ξ are unique up to isomorphisms. For any cyclic subgroup C of H of prime order, Ξ^C is a sphere and includes Ξ^H . Observing the normal representations of Ξ^H , we see that Ξ^C consists of exactly two points. For any non-trivial subgroup B of H , we have $1 \leq |\Xi^B| \leq 2$. Let T be a maximal toral subgroup of H . We have $|\Xi^T| = 2$ by Smith's theorem. If $\Xi^T - \Xi^H$ is non-empty, then denote the point by x . There is a subgroup L of H such that (i) L has a normal subgroup Q of order 8 and L/Q has order 3 and (ii) $L \cap T \neq \{1\}$. By Oliver's theorem [11, Proposition 2] we have that $|\Xi^L| = 2$, hence $\Xi^L = \Xi^T$. Since the smallest subgroup of H which includes T and L is H , we have $H_x = H$. This contradicts the assumption $\{x\} = \Xi^T - \Xi^H$. Thus $\Xi^T = \Xi^H$ and Ξ^G also consists of exactly two points.

(3) The conclusion follows from (2) and the fact that $SO(4)$ has a normal subgroup isomorphic to $SU(2)$.

Proof of Lemma B. Suppose that $|\Xi^G| \neq 0$ nor 2. Then G is a subgroup of $O(4)$ and G_0 is a subgroup of $SO(4)$. By Proposition 3.1 G_0 does not have an abelian normal subgroup except $\{1\}$. Hence G_0 is isomorphic to either one of $SO(3)$, $SU(2)$ and $SO(4)$. This contradicts Proposition 3.2.

4. Proof of Lemma C

Let G be a finite group, Ξ an oriented 4-dimensional homology sphere with G -action and $K = K(G, \Xi)$ the subgroup of G defined in Section 1. Our proof of Lemma C is done under the assumption that the G -action on Ξ is effective and $\Xi^G \neq \phi$.

First we note that G is a subgroup of $O(4)$, K a subgroup of $SO(4)$ and $\dim \Xi^H \leq 2$ for any non-trivial subgroup H of K .

Proposition 4.1. *Let H be a subgroup of K . Then it holds that*

(1) if $\Xi_2^H \neq \phi$, then H is cyclic, and

(2) if $\Xi_1^H \neq \phi$, then $\Xi_2^H = \phi$ and H is dihedral or isomorphic to one of A_4 , S_4 and A_5 .

Here S_4 stands for the symmetric group on four letters, and A_n , $n=4$ and 5, stand for alternating groups on n letters.

Proof. (1) It follows from the fact that a finite subgroup of $SO(2)$ is cyclic.

(2) A finite subgroup of $SO(3)$ is cyclic, dihedral or isomorphic to one of A_4 , S_4 and A_5 (see [5]). Suppose that H is cyclic. Then the normal H -representations have even dimensions. This contradicts $\Xi_1^H \neq \phi$.

Proposition 4.2. *Let H be a non-trivial solvable subgroup of K . Then Ξ^H is (empty or) diffeomorphic to S^m with $m \leq 2$.*

Proof. Take a normal series of subgroups $H(i)$ of H : $\{1\} = H(0) \trianglelefteq H(1) \trianglelefteq \dots \trianglelefteq H(n) = H$ with $H(i)/H(i-1)$ of prime order. By Smith's theorem and Proposition 4.1, $\Xi^{H(i)}$ is a sphere of dimension ≤ 2 . Since $\Xi^{H(i)} = (\Xi^{H(i-1)})^{H(i)}$, by induction on i $\Xi^{H(i)}$ are spheres of dimension ≤ 2 .

Proposition 4.3. *Let H be a subgroup of K and suppose H is isomorphic to A_5 . Then it holds that*

- (1) if $\Xi_0^H \neq \phi$, then $|\Xi^H| = 1$ or 2, and
- (2) if $\Xi^H \neq \phi$ and $\Xi_0^H = \phi$, then Ξ^H is diffeomorphic to S^1 .

Proof. (1) Let V be a normal representation of Ξ_0^H in Ξ . Since V is faithful, $V^H = 0$ and $\dim V = 4$, V is an irreducible H -representation. Let C be a cyclic subgroup of H of order 5. Then we have $V^C = 0$, hence $\Xi_0^G \supset \Xi_0^H (\neq \phi)$. By Proposition 4.2, Ξ^G consists of exactly two points. The relation $\Xi^G \supset \Xi^H$ implies that $|\Xi^H| = 1$ or 2.

(2) In the case Ξ^H is a disjoint union of circles. Let D be a dihedral subgroup of H of order 4. Then Ξ^D is a circle by Smith's theorem. Immediately we have $\Xi^H = \Xi^D \cong S^1$.

Proposition 4.4. *Provided $|\Xi^K| \geq 3$, then every Sylow subgroup of K is either cyclic or dihedral.*

Proof. Let P be a Sylow subgroup of K . Since P is solvable, Ξ^P is a sphere of dimension 1 or 2 by Proposition 4.2. The conclusion follows from Proposition 4.1.

Now we prove Lemma C. We suppose that $|\Xi_0^K| \geq 3$, and we will meet with a contradiction.

We note that $K \neq \{1\}$ and $|\Xi^K| \geq 3$. If K is solvable, then Ξ^K is a sphere, hence $\Xi^G = (\Xi^K)^G$ is also a sphere. We have $|\Xi_0^G| = 0$ or 2. This contradicts

the above assumption. Thus K is non-solvable. By Suzuki's theorem [15, p. 671, Theorem B] and Proposition 4.4, there exist subgroups H, L and Z of K such that (1) $[K:H] \leq 2$, (2) $H = Z \times L$, (3) Z is solvable and (4) L is isomorphic to $PSL(2, q)$. Here q is a prime greater than 4. Since L is non-solvable and $\Xi^L \neq \emptyset$, L has an irreducible representation of dimension 3 or 4. By Tables 3 and 4 of [8], $PSL(2, q) \cong L$ is nothing but $PSL(2, 5)$. In other words, L is isomorphic to A_5 . By Proposition 4.3 it holds that $\Xi^L \cong S^1$ or $|\Xi^L| \leq 2$. From the assumption that $|\Xi_0^G| \geq 3$, we have $\Xi^L \cong S^1$. Since $\Xi^H = (\Xi^L)^H$, it is isomorphic to S^0 or S^1 , so is Ξ^K . Then Ξ^G is also diffeomorphic to S^m , $m \leq 1$. This is a contradiction.

5. Proof of Theorem A

By Lemma B, it is sufficient to prove the case in which G is a finite group acting effectively on Σ , an oriented 4-dimensional homotopy sphere. The following arguments go on in this case.

Proposition 5.1. *Provided $|\Sigma^G| = 1$, then $|\Sigma^K|$ is finite and an odd number, where K is the subgroup of G defined in Section 1.*

Proof. Suppose $|\Sigma^G| = 1$. By Proposition 4.2, K is non-solvable. It follows from Proposition 4.1 that $\Sigma^K = \Sigma_0^K \coprod \Sigma_1^K$. It holds that

$$\begin{aligned} 1 &= \chi(\Sigma^G) = \chi((\Sigma^K)^G) = \chi((\Sigma_0^K)^G) + \chi((\Sigma_1^K)^G) \\ &\equiv \chi((\Sigma_0^K)^G) \pmod{2} \\ &\equiv \chi(\Sigma_0^K) \pmod{2}. \end{aligned}$$

Thus $|\Sigma_0^K|$ is an odd number. Especially Σ_0^K is non-empty. If Σ_1^K is non-empty, then K is isomorphic to A_5 by Proposition 4.1. In this case, Proposition 4.3 gives that either Σ_0^K or Σ_1^K is empty. This is a contradiction. Hence we have $\Sigma^K = \Sigma_0^K$.

Now we prove Theorem A. Provided $|\Sigma^G| = 1$, then by Furuta's theorem and Proposition 5.1 we have $|\Sigma_0^K| \geq 3$. This, however, contradicts Lemma C. Thus we get the conclusion of Theorem A.

References

- [1] G.E. Bredon: *Introduction to compact transformation groups*, Academic Press, New York-London, 1972.
- [2] T. Brocker-T. tom Dieck: *Representations of compact Lie groups*, Graduate Texts in Math. 98, Springer, New York-Berlin-Heidelberg-Tokyo, 1985.

- [3] L. Dornhoff: *Group representation theory Part A (Ordinary representation theory)*, Marcel Dekker, New York, 1971.
- [4] M. Furuta: *A remark on a fixed point of finite group action on S^4* , Univ. of Tokyo Preprint Ser. 87-8 (1987).
- [5] L.C. Grove-C.T. Benson: *Finite reflection groups*, Second Edition, Graduate Texts in Math. 99, Springer, New York-Berlin-Heidelberg-Tokyo, 1985.
- [6] W.-Y. Hsiang-E. Straume: *Actions of compact connected Lie groups on acyclic manifolds with low dimensional orbit spaces*, J. Reine Angew. Math. **369** (1986), 21-39.
- [7] E. Laitinen-P. Traczyk: *Pseudofree representations and 2-pseudofree actions on spheres*, Proc. Amer. Math. Soc. **97** (1986), 151-157.
- [8] M. Morimoto: *On the groups $J_G(*)$ for $G=SL(2, p)$* , Osaka J. Math. **19** (1982), 57-78.
- [9] M. Morimoto: *S^6 has one fixed point actions of A_5* , preprint.
- [10] M. Morimoto: *On one fixed point actions on spheres*, Proc. Japan Acad. **63** Ser. A (1987), 95-97.
- [11] R. Oliver: *Fixed-point sets of group actions on finite acyclic complexes*, Comment. Math. Helv. **50** (1975), 155-177.
- [12] T. Petrie: *One fixed point actions on spheres, I*, Adv. in Math. **46** (1982), 3-14.
- [13] T. Petrie: *One fixed point actions on spheres, II*, Adv. in Math. **46** (1982), 15-70.
- [14] E. Stein: *Surgery on products with finite fundamental group*, Topology **16** (1977), 473-493.
- [15] M. Suzuki: *On finite groups with cyclic Sylow subgroups for all odd primes*, Amer. J. Math. **77** (1955), 657-691.

Department of Mathematics
 College of Liberal Arts and Sciences
 Okayama University
 Tsushima Okayama 700, Japan