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0. Introduction

Many phenomena of wave propagation problems for example acoustic,
electromagnetic and elastic waves, can be written in first order symmetric hyper-
bolic system. According to C.H. Wilcox [10] they can be represented in general
as

(0.1) E(®)Du— 3 A;Dju = f(t, %) .

where tER! (time), x€R" (space), D,=l,8% and Djzi,ai. Here u=(u,
7 i 0x;

(2, x), -+, u,(2, x)) is a C"-valued function which describes the state of the media

at position x and time ¢, E(x) is a positive definite hermitian matrix valued
function of x, 4;’s are mXm constant hermitian matrices and f(¢, x)=(f,(¢, x),
-+, fu(t, ®)) is a prescribed function which specifies the sources acting in the
medium. If we write

A= E(®)™ 3 4x)D;,

(0.1) can be written as

(0.1) Du—Au = f(z, x) .

When E(x)=1 (identity matrix) the equation (0.1)" is represented as
0.2) Du—ANu = f(t, x) ,
where

AO = é Aij .
i=1
Now if we assume that f has the form
—f(t, x) = eMf(x) A&R\{0}

and that the solution of (0.1)’ has the same form
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u(t, x) = e*Mo(x, ),
then v(x, \) must satisfy
(0.3) Av—rv = f(x), xER".

Steady-state wave propagation problem is the problem of deciding the solution
of (0.3). In this paper we consider the asymptotic behavior at infinity of the
Green function G.(x, \) of steady-state wave propagation problem correspond-
ing to (0.2), that is,

(0.4) ANv—ro = f(x), *€R".

The Green function is defined as the following: for {&C\R the Green
function for A°—¢1 is defined by inverse Fourier transformation

(0.5) G(x, ) = F{AY)—tD)™] in S,

where AYE)=31£;4;, E=(E, -, £,) (symbol of A%). Then for A€ R\ {0} the
Green functiorizils defined by the limit

(0.6) lim G(x, Xo£€)=Gu(x, 1)

if it exists. Our final purpose is to show the existence of G.(x, \) and give
its asymptotic estimate at infinity under some suitable conditions. Remark
that the Green function is a fundamental solution of A°—\.[:

(A*—ND)Ga(x, 2) = S(x)I .

The asymptotic behavior at infinity of the Green function is useful to
develop the scattering theory for the system A, that is, the Rellich uniqueness
theorem, limiting absorption principle and eigenfunction expansion for A.
Especially the Green function takes an important role in the proof of the Rel-
lich uniqueness theorem for steady-state wave propagation problem (0.3) under
suitable radiation condition (condition at infinity).

Properties of the Green function are much effected by the geometrical
properties of the slowness surface which is defined by

0.7) S = {E€R"; det(/—A%§)) = 0} .
In this paper we assume that for some integer /
0.8) rank A°(§) =m—1  for any E& R\ {0} .

C.H. Wilcox [12] called the system with (0.8) strongly propagative system.
(0.8) is equivalent to that S is bounded. Thus there exists some constant Cg
such that



AsymproTiCc BEHAVIOR OF THE GREEN FUNCTION 577

(0.9) Sci{§; Cs'> €| =Cs} .

If S consists of concentric spheres concerned at origin the system is called
isotropic, and if S has no algebraic singularities the system is called uniformly
propagative.

The important properties of the Green function for scattering theory are
the following expansion formula and the estimate of the remainder term:

(0.10) G(x, \)

= é (2”)“(ﬂ—l)IZei)\x-sei(ﬂiM)signhlxl —(n-1)/2

< MO () | 71 K(S) | TV2B(5) | mePin
‘I‘Qi(x: 7)),

where
(0.11) lg(x, M) | =C | x|~

for some constant C independent of n=x/|x|. Here s®’s are maps from S*™*
to S, ﬁ(s) is the projection onto the eigenspace for the eigenvalue A=1 of A’(s)
(s€8), K(s) is the Gaussian curvature of S at s and 7(s) is the polar reciprocal
map whose definition will be given later. For isotropic systems the formulas
(0.10) and (0.11) is given in M. Matsumura [2] and the scattering theory is
developed in K. Mochizuki [5]. In the papers C.H. Wilcox [11], J.R. Schulen-
berger [6], J.R. Schulenberger and C.H. Wilcox [7], [8] and [9], the formulas
(0.10) and (0.11) are given and the scattering theory is developed for uniformly
propagative systems whose slowness surface has no parabolic points, that is,
the points where the Gaussian curvature vanishes. In the proof of (0.10)
and (0.11) the stationary phase method is essentially used for the integral on
the slowness surface.

However there are some important systems which are not uniformly prop-
agative, for example electromagnetic wave propagation in crystals. In this
case the slowness surface consists of two sheets which intersect at four points
with each other. These points are the algebraic singularities of the slowness
surface. Moreover there are four circles where the Gaussian curvature vanishes.
In the neighborhood of parabolic points the uniformity for » of the constant C
of (0.11) cannot be expected. In the neighborhood of singularities the usual
stationary phase method cannot be applied. So in this paper we give an ex-
pansion formula and an estimate of the remainder term corresponding to (0.10)
and (0.11) for a class of systems including the electromagnetic wave propagation
in crystals which is sufficient to develop the scattering theory (theorem 7.1).
The class will be given in the next section.

By using this expansion formula and this asymptotic estimate the scattering
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theory can be developed in the method of J.R. Schulenberger [6], J.R. Schulen-
berger and C.H. Wilcox [7], [8] and [9] for some non-uniformly propagative
system A of the form

A= E@7(3 4,(=)D;+B@) (v =E\O)

where © is compact and A=A’ outside a bounded set. Details of the calculas
will be given in another paper by the author.

Here we should state the difference between the results of M. Matsumura
[3] and those of ours. He has considered the system whose slowness surface
consists of some smooth strictly convex surfaces which may intersect with
one another, and he get the decaying order of |x| at infinity for each fixed 7.
But the wave propagation in crystals is not included in this class. Moreover
the uniformity for 5 of the remainder term estimate is not obtained. We shall
give some kind of uniformity for » for a class of systems given in the next sec-
tion.

The paper is organized as follows. In section 1 the assumptions for the
slowness surface are given. In section 2 the Green function is represented
by the slowness surface integral. A modification of stationary phase method
is considered in sections 3~6. In section 3 the case in the neighborhood of
stationary point is treated. Section 4 developes the analysis of the slowness
surface and the Gauss map, and gives some geometrical properties. In section
5 some estimates with respect to the slowness surface integral is given and some
lemmas are prepared, and in section 6 the proof of modified stationary phase
method of the slowness surface integral is concluded. The main theorem is
proved in section 7.

The author would like to express his sincere gratitude to Professor M.
Ikawa for his kind suggestions and constant help.

1. Assumptions for the slowness surface

In this paper some geometrical properties of the slowness surface will be
assumed. First we assume that the space dimension # is odd. Under the
assumption (0.8) the eigenvalues of A°(€) can be enumerated for &0 as follows:

A(E)Z - ZM(E)>0 (EX(E)>N-i(E) 2 -+ 2N-(E)

where p is independent of & ([12, §2]). If I of (0.8) is zero Ay(§) does not ap-
pear. We put

(L.1) Sy={E€R"; (&) =1} (k=12 -, p).
It immediately follows that
S =

ICv

S, .

1
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Since A4(£) is continuous S, is a continuous (n—1)-dimensional surface. These
surface may intersect with one another. Put
ZY = {£E€S; E€8;N S, for some j+k}.

Then Z§ consists of all algebraic singularities of S.

The wave surface is defined as the polar reciprocal with respect to the
unit sphere of the slowness surface S ([12, §1]). This means that

W= {x€R"; {x-£ = 1} is a tangent plane to S}.

Let T be the polar reciprocal map from S to W. It means that for s€S

) — ()
T(s) = N(s)EW

where N denotes an exterior unit normal vector to S at s (the Gauss map).
Let Z§ be the set of algebraic singularities of W, and Z§ be the inverse
image of Z§’ of T

Similarly
Z$ = TZY).

If the Gaussian curvature K(s) vanishes at s€.S, then s€Z$. (For the definition
of the Gaussian curvature refer to M. Matsumura [3, §5]).
We assume following conditions on the slowness surface.
Si) Z§ is an (n—d)-dimensional smooth submanifold of R" where d
= (n-+1)/2.
Sii) Z¥ is an at most (n—2)-dimensional smooth submanifold of R".
Siii) The Gaussian curvature K(s) satisfies

| K(s)] =c dists(s, ZP)~ @D

for some constant ¢ in a neighborhood of Z§.
Siv) In a neighborhood of Z’

dists(s, Z§)~distgn-1(N(S), N(Z$)) .
Sv) On each S,
[X;(8)—Ni(s) | =c dists(s, Z§)
for some constant ¢ in a neighborhood of Z$’> S; N S,.

Svi) ZONZY = 4.
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(Throughout the paper disty denotes the distance of a metric space X).

The slowness surface of the system of electromagnetic wave propagation
in crystals is well-known as the Fresnel surface (cf. C.H. Wilcox [13]). Its
figure is illustrated in P. Appel et E. Lacour [1, page 178, 186 and 187]. The
surface can be parametrized with the elliptic functions ([1, page 180, (10)]).
For the Fresnel surface the conditions Si)~Svi) can be checked with this para-
metrization and some fundamental calculas.

2. Representation of the Green function by slowness surface in-
tegral

In this section we shall give a representation of the Green function by
slowness surface integral. First of all we treat orthogonal projections on eigen-
spaces corresponding to eigenvalues A (&) of A%E). The orthogonal projec-
tion P,f£) on eigenspace corresponding to (&) is given by

2.1) Py = —Ei—l;gyk(e)(./\"(f)—z)"dz, k] = n(l), - p
where z(l) is defined by

1 if 1=0
2.2) (l) = {0 ;f 1eo (oE(D)

and 74() by
7E) = {75 l2—M(E) | = alE)}

with ¢,(§) so small that v, do not intersect with one another. Sets Zg and Z
are defined by Z;=Z$’U Z¥ and

(2.3) Z={E=rs;r>0and s€Z} .

When £ R"\Z we can take such c,(£)’s since N,(€) are distinct. Similarly Z,
and Z are defined by Z,=Z% U Z{’ and

(24) Z = {x=rw;r>0and weZ,} .

Zs, Z, Zy and Z are all closed null sets. Note that T is bijective and diffeo-
morphic from S\Zs to W\Zy,.

Now eigenvalues A,(£) and the orthogonal projections Py(£) (|k|=x=(l),
1, -+, p) have following properties [12]:

(2.5) A i(€) is continuous on R™\ {0} and real analytic on R"\Z
(2.6) A(aE) = any(&) for all a>0, E€R" and k]| =1, -+, p
(2.7) M(—E) = —a_yE) forall EeR" and |k| =1, -, p
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and

(2.8) Py(&) is real analytic on R™\Z for |k|=x(l), 1, -, p

(2.9) Pyaf) = PyE) for all >0, E€R"\Z and |k| =1, -, p
(2.10)  Py(—&) = P_ &) forall EER"\Z and |k| = z(l), 1, -, p
2.11) 3 BPIE) =1 forall EER™\Z

|kl =nrCl)

(2.12) AYE)PE) = Py(E)AAE) = M(E)PAE)
for all Ee R"\Z and |k|==(l), ---, p.
(2.11) and (2.12) imply

(2.13) A%E) =mﬁ=lxk(§)zﬁk(5) for all EER"\Z,

and then we have

0 - 2 ._pk(i
(2.14) (A&)—¢tD)! =;k|=2,:’u>7\k(f)—§
for all Ee R™\Z and { C\R.

Note that P,(£) is real analytic not only for £ R"\Z but for §& R"\{0}. Let
a and b be positive numbers with a<<b. Then A\ (&) attains minimum value
¢, if £ is in the bounded domain {a<|&|<b} because of its continuity. Then
if we define ¢y(§) with ¢,>¢y(&) for € {a<|E| <b}, 7o(§) never intersect with
another circle v,(&) and 150(5) is real analytic in this domain. Since @ and &
can be chosen arbitrally, ﬁo('g’) is real analytic for £ R™\ {0}.

Next we consider the Green function G(x, ¢) for {&C\R. From (0.5)

G(x §) = 7 (A()—¢D)™].

Let a, b and & be given constants with [a, )C R"\{0} and &>0. Here we
suppose {=A+4iE where AE[a, b] and 0<E<E, In proving the existence
of the limit G.(x, A) of (0.6), there are difficulties if some eigenvalue A (&) of
A%£) is equal to A. From (2.6), (2.7) and the definition of S,, A(§)=N is equiva-
lent to E=ns for s€.S;.  So it follows from (0.9) that
{ a Cs' =|E[= N Is|= b +Cs (if 0<<a<d)
[6]-Cs'=1E| =N Is|=la|-Cs  (if a<b<0),

where Cj is of (0.9). Put ¢,(5)eCF(R") as

1 if a-C5'=E|=<b-Cs

(2.15) 4’1(&):{0 if |E|<a-C5'/2 or b-Cs+1<|E|
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when 0<a<<b. When a<b<0, we replace a and b with |b| and |a]| respec-
tively in (2.15). And put ¢,(§)=1—¢y(§). Then

(2.16) G(x, £) = FAY)—ED)$:()]
FF D)D) ()]
= Gy(x, 1)+ Gl 1) -

To begin with we consider Gy(x, ). By the properties of inverse Fourier
transformation

X°Gy(x, §) = FT(—Dg)*{(A(+)—LI) o )}]

holds for any multi-index a=(a, -+ a,) where x*=xf1 --- x3» and Dg=Dg1 ---
Dg». Since My(E) is never equal to A on the support of ¢,(&). and since ¢p,(§)
=1 if |E] is sufficiently large, we have

[(—=Dg)*{(A°E)—LI)'po(E)} | SCLED™™,
where <£> denotes (14 |&|%)* and the constant C, is uniform in
A={t = N1t-1&; AE][a, b], €€(0, &}

with respect to ¢. Since <€)>7'*! is integrable on R" for |a|>n-1, we have
for I>n-+1 and %30

(2.17) |Gy, )| =Ci x|,
where C, is uniform for n:ﬁ and {€A.
X

Next we consider Gy(», £). Since (A%E)—¢I) '¢y(E) has compact sup-
port on R", Gy(x, {) can be regarded as the inverse Fourier transformation of
function of L'. Then by (2.14) we have

(2.18) Gi(w, 1) = | e (A%E)—L1)gE) dE

= iz 2 ﬁ(f) .
= Sm\ze iklgam_;é_)_,c oi(8) dE

p

it PiE) |
——lklg(l)_“ﬂn\ze sm ¢)l(£)d5

P

= E Gl.k(x) g)

k| ==Cl)

where d£=(2z)""*dE. (Note that Z is a closed null set.) In the case of %
>0 we make the change of variables £ to (r, s) for r>0 and s&€S,\Z by &=rs.
Then the n-dimensional volume element of R"\Z can be written

45 = Y|V (E) | drdS
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where 4S=(2z)"®"dS is the (n—1)-dimensional volume element of S, as
a submanifold of R” and dr=(2z)"'dr. 'This change of variable gives

— ” irxes p,,(TS) n—1 -1
Goa(x, £) = So SS*e m-q)l(rs)r V() | 2 S dr

VAi(s) is normal to Sy at s&€S,\ZY. The homogeneity of A,(£) gives &-V,(E)
=1. These facts imply

(2.19) I(s) = (s-N(s))“N(s) = (8 VA(5)) IV N(S) = VA4(s) -
Then from (2.6), (2.9) and (2.19)

2.20) Goa(, £) = S::__;sz""'spk(‘)' T(5) | b, (rs) @S

follows. In the case of —k the change of variables & to —£ gives

Gulin 0) = [, o7t L) G e

Recall (2.7) and (2.10). Then the coordinates based on S, gives

e A e 3By i(— 1) | T(s) | 'S, .
and the change of variable » to —7 gives
@21)  Gmn={ u?g s Py(5)u(rs) | T(s) | *dSidr .
Combining (2.20) and (2.21) we have
(2.22) Gy, £)+G,-a(x, )
= [T 2, P T 1 s yar
—or—C

In the case of k=0 we write

Guale, ©) = — | = PUOB(ENE

Since Py(£) is homogeneous of degree 0 and analytic in R™\{0}, it follows
from Theorem 2.16 of [4, page 116] that

TP = [, PuE)E = potpv. T,

where ,u,°=‘(17$ po(w)dco (Q, 1is the surface area of S*7%), 17=|% and
S

n® 57 -1 |
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Ss _Ty(n)dn=0. Hence G, (x, g):-%(g-l[ﬁo]*g-w (%) gives

Gl.o(x) g)
Ty =2
1 N\[x—
= —?{#o(gﬂ@) (%)+p-v. Sknlﬁc%ylj;l_) (F'¢) () dy

Since (9 1¢,) (x)ES, we have
(223) I Gl.o(x» {) I écolxl o ’
where C, is uniform for n=ﬁ and {EA.

x

(2.16) and (2.18) give

(2.24) 2} (Gualts O)+Gi il 1)
5(~ ' | irxes -1
o e (e OO TE OIS
= {72 e Poysien 1) | ) ar

where £(s) is the function on S\Z which satisfies P(s)=Ps) if s€S,. Then
by putting
Go(%, £) = Gyro(x, D)+ G, £)
we have from (2.24) a representation of G(x, ¢)
(2.25) G(x, )

= G [ U] ey )1 ) 2

o(x, & )—I—Sll:_l_—’; o(rx, r)dr,

where
(2.26) o(x, 7) = Sse"‘"p(s)¢,(rs) | T(s)| 14 .
(2.17) and (2.23) give

|Go(%, )| =C | x|~
where C is uniform for nzTi—l and {€A. Then it is easy to see that the limit
G, +(x, ),)=lgil‘rr01 Gy(x, M11€) exists and satisfies

|Gy, M) [ =C| x|
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uniformly in % and §. Moreover it is also easy to see that the convergence is
uniform with respect to AE[a, b].

Here we state a theorem which is connected with the asymptotic behavior
at infinity of o(x, 7). The following four sections are devoted to prove this
theorem.

Theorem 2.1. Let the space dimension n be odd and let 1ank A%&) be
con.tant if 0. Let I be a constant satisfying

(2.27) | K(s)| Zc-dist(s, Z®)

for some constant c in the neighbourhood of Z'9, whose existence is assured by the
analyticity of K(s). Let p(y) denote the number of points s€S with N(s)=y
and let {s(n); v=1, ---, p(n)} denote the set of these points. p*(s) (resp. p~(s))
denotes the number of positive (resp. negative) principal curvatures of S at s€ S and

¥als) = exp {2 (06— ()} -
Then under assumptions Si)~Svi)
o(s, 1) = | B T()| “,r5)dS
can be represented for n< S*\Z as follows:
(2.28) o(x, 7)
=3 @y oo | oy, ()
“B(s) | T(6) |7 [ K ()| ™25, (75) | smsPir
+'5] @) |3 =D ()

BT 7K (r5) =P
+ g(x, 7)
where q(x, r) has a compact support with respect to r and satisfies that for any p
with 1< p<1—|—% there exists a positive number v==v, such that

(2.29) lg(x, r)| <C(n)| x|~ -1/
and
(2.30) Clp)eLr(S"Y).

3. Modification of the stationary phase method (1)

Recall a proposition, which is called a stationary phase method.
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Proposition 3.1. Let heC~(U) and g Cy(U) where U is a domain of R".
1) If h has no stationary points (the point where Vh=0) on supp g, then we

get
sve"“(")g(a-)da- = O@t™) as |t] — oo.

2) Let h have stationary points on supp g and assume that these points are
all non-degenerate. The set of non-degenerate stationary points on supp g is finite
in number and we denote these poims by a®, -+, a®. Then we get

g e'th(e) g( O‘)dO' — (zﬂ)N/z é e'th (aCV))+¥signH(a<7))
U Y=1

« | Hess &(a®™) | ~Y2g(a™)t~ ¥/
+ (),
where
lge)| <Crvet,

Proposition 3.1 is applied to prove

Proposition 3.2. Let S be a C hypersurface in R, m a function defined
on S X R with compact support and defined

I(x, 7) = g e**m(s, r)dS, x€R", r€R,
s

where dS is the surface element on S. Assume that the Gaussian curvature K(s)
of S does not vanish on support of m. Then the set of points on support of m at
which the normal to S is parallel to v is finite in number for each unit vector n= S*~1.

We denote these points by s©, ---, s®™(y). Denote by p*(s) (resp. p=(s)) the
number of positive (resp. negative) principal curvatures at s€ S and

V() = exp {5 (P*()—2 ()} -
Then the asymptotic behavior of I(x, r) at infinity along the ray 17=ﬁ is given by
x

I(x, )
= (2) =12 | x | ~Gn=2

)
S em 5, 7)) |4 (5) s
+ (2”)(':—1)/2] xl ~(n-1)/2
pC-m
S s, 1) LK(8) | () Lemirion
+4q(x,7),
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where for each non-negative integer |

6!
I PYDRY Q(x) 1‘)

éo x = (n+1)/2
1] 31

with uniform constant C, for n& S*™! and rER.

For the proof of the Proposition 3.1 and Proposition 3.2, refer to M. Matsu-
mura [3, §4 and §5].

If the slowness surface S of A® has no singularities (so-called uniformly
propagative) and no parabolic points, that is, the points where K(s) vanishes,
we can apply Proposition 3.2 to v(x, 7) of (2.26). Then it can be proved that
the remainder term of the Green function has the estimate (0.11) ([7]).

But under assumptions Si)~Svi) S may have some singularities and some
parabolic points. Thus we have to modify the stationary phase method to
be suitable for our case.

In this section we prove only the following two propositions, the one is
related to the case that there are no stationary points in the neighborhood of
singularities and the other to the case that the integrand has its support only
in a sufficiently small neighborhood of a stationary point.

Proposition 3.3. Let U be an open domain of RY, M te a (N—d)-dimen-
sional submanifold of U where d=2. h(c) and g(c) are given functions with the
Sfollowing properties:

(3.1)  A(o)sC~(U\M), real valued, |Vh|=c>0 for any s U\M ,

(3.2) &(o)eC~(U\M), have compact support in U ,
(33) 16°8(s)| < Cudistylr, M)™ for any (|| 20),
(3.4) |8%h(c) | = C,disty(o, M)+ for any a (|a| =1)

for some constants C,. Then we have
(3.5) | Sve““(")g(a-)do-l <Op-@-v-

for some positive number v and positive constant C.
Proof. Let 3 be a positive number. Put

(3.6) Us = {o€U,; disty(c, M)<8} .

Then it is clear that

(3.7) |8U;| ~31

where |+ | means the area. 'Then we calculate as follows:
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ith(o) — 1 ith(c)
(3.8) [, g(a)de =tim(  emerg(o)do
=1 R E— «Ve'th(®)
350 Sm vy " o) Ver ()

Sy Vhen
— 1 Sl lth(cr)
lim {it Sm Vil ———8&(o)do
_1 ith(e)
itsv\vs V(|Vh|2g)d ok
1,; Vh-n
=1 Y/ £/th(®) R 1
im {53 () e v VW); ¢(0)dS
(.t \d-1 ith(c) d-1
()T ) el
d-1
= %slr{,l {g-l:]li_]z} .
It follows from (3.3), (3.4) and (3.6) that
(The integrand of J;) = O(8~“"%).
Thus (3.7) implies
(3,9) I:g:]ulsdz?l*s S-E@-248 — CZ 34 1,§-(@-2)

— 0(:2%-1')-»0 as 80
with suitable constant C. From (3.3) and (3.4)
(The integrand of J,) = O(disty(c, M)~@~V)

also follows, and thus it is integrable on U. Then we have

(10) [ e ogee = (1) e TR ig()ds

|V |?

by making § —0 in (3.8).
Next we consider

= [ jwoyg. VE yi
I_Sve (Voo 8o

Take sufﬁcieﬁtly large ¢ and put é=t"". Here we put pC~(R) as

It RUEES!
”(’)_{0 7| <1/2

and put
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1 ..
i) = Pl disto(s, D).
Then it follows from (3.3) and (3.4) that
[8°p(0) | =Cut™'™, [0°g(a)| SCal™', [0°h(0)| S Cob™*™

on supp pe(c). Here we devide I into two parts:

ith(C Vh -
(3.11) 1= [ ono@ Ty gl do
ith(o) . Vh d—1 _
gm0 Thoy-tige) (1—plodo
= L+1,.
For I, one more integration by parts gives
1( ineyo VA Vh i
I — — 2| it . d-1 J(o))d
v= = LVl T (oo
and thus
(3.12) | L] 08797 = Ct™"%" for some C'.
For I, we estimate it with (3.11)
. L|I< i —@-D
(3.13) VAES CSdistU(a,M)dlstU(a, M)-@-9dgs
=c[renrar = ce
0

= Ct™
By (3.12) and (3.13) and by putting »=1/(d-1) we have
|I| = | +L|<Ct" forsomeC.
Thus (3.5) follows from (3.10) and the above fact. Q.E.D.

In the next proposition we consider an oscillating integral with a para-
meter and take out a relationship between principal part and the distance from
stationary points to singularities of phase functions.

Proposition 3.4. Let U be an open domain of RY and {h},cy and {g;};ev
be families of functions defined on U with the following properties:
1) Let §=dist(a, 0U), h,(a)€C=(U), real valued and

(3.14) |0%h,(c) | < C,8 121+

for some constant C, independent of a.
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ii) For any acU Vh,(a)=0 and Vh,(c)=*0 if c=a. Moreover
(3.15) |Hess h,(a)| >¢d', acU

for some positive constant c, and some positive integer | independent of a.
iii) g,(0)€CF(U) and

(3.16) [8%g,(c) | < C, 5 11+1+D
for some constants C, independent of a.

iv)
(3.17) supp £, C {|o—a| <C&¥ T} |

where T is a constant depending only on N and {h,}.
Then we have

(3.18) gveuh,@) 2.(c)do

= (zn)wzefthaW?E sign#a(0) | Hess h,(a) | "2+ go(a)t~V2+q,(t)

where H (a)= ( 6 (@)). Here q,(t) satisfies that for amy positive number p
T

there exist v ( >0) such that

(3.19) |g.(t)| SC8~*4~¥2~>+ | Hess h,(a)|

for some constant independent of a.

For the proof of Proposition 3.4 we prepare two lemmas related to the
phase functions. We write

(3.20) hie)—ha) = 3 (e, —a) (0r—a)
1
= 2 KH,((o) (¢—a), c—ap,

where <, > denotes the inner product of RY and H ,(0)=(2a;:(c)),

(3.21) au@) = [ (1=p), T (ato—ap)dp.
oo 8 o
Then H,(c) is a real symmetric matrix valued C*~ function on U. Since
1
) =3 a

H,(a):(ajz];" (@)) agrees with the definition above. Put

j00%

(3.22) K,(o) = H,(c)*H,(a) -
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Now we shall make a transformation of variables ¢+ E by
(3.23) oc—a= K, (c)’E.
Then the following facts related to this transformation holds.

Lemma 3.5. 1) c;'|lo—a|<Z|E|=Zc_|oc—al.

2) hy(o)—hia)=(1/2XH(a)E, B.

3) The map o+ E is a diffeomorphism from {|c—a| <c8¥*'*'} to a domain
{|E| Sc_edV+i+i},

Here T is the same constant of (3.17). ¢, and c_ are some constants depending
only on N and {h,}.

Proof. 1) We put

(324 E(0) = K.(o)—1 = Ho) (Ha)—H.(0)) -
By (3.14) and (3.21) we have
(25  [H@—H)
! h, &h,
= I (=) [ @t e—a) p)— 7 @l
= 1[0 ({92~ (a o —a)p0)d0-(r el

= C87%|p—al,
where C,= \/Nng{ C, and HAH:\/W. On the other hand (3.14), (3.21)
and the definition of inverse matrix give
(3.26) IH ()| < | det H,(o)|CY-1-304-D
where C,=V'N max C,. Since det X for X=(x;;) is a polynomial of N? vari-

ables, it is Lipschitz continuous on the bounded domain {||X||<R}, which
means that there exists some constant L=L(R) such that

(3.27) |det X—det Y| <L||IX—Y]|.
(3.14) and (3.21) give
[|H(o)|£8:Cod7' = C,.
Thus it follows from (3.27) that for L=L(C,)
|det (SH. (o)) —det (8H,(a)) | S LIISH,(c) —SH,(a)Il,

that is,
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8| det H,(o)— | det H,(a) | SSL||H,()—H.(a)]| -
Thus we get
(3.28) |det H ()| = |det H,(a) | —8-V"'LI|H,()—H,(a)]| .
Let &,<c, and let
lo—a| SOF'LedV 1,
Then it follows from (3.15), (3.25) and (3.28) that

(3.29) |det H,(a)| = | det H (a)| —C,8' =(c,— )8 >0.
Hence from (3.25), (3.26) and (3.29) it follows that
(3.30) E(o)| = [|1Ho(o) 7] [1Ho(a)—Hu(a)]

< (6—8) 8- CY 16~ VI (52 | o —al

= (—8&)'CY 'L, =K.
By taking sufficiently large L if necessary we may assume that K<(1. Let
¢, and d, be the coefficients in the expansion (l—l—p)‘”:”% c,p” and (14-p)~ 2
=2 d,p", respectively. Since the radius of convergence of both of them are

1, (3.30) implies that

(3.31) K (0)" = S (o), Ki(o) ™ = B dE (o)’
converge absolutely and

(3.32) IK (o)< 3 leal IELII'S 3 ea K*=cy<oo
(3.33) IK (o) IS 35 1, Eo)I'S 3 14,1 K" =c <o

Then 1) follows from (3.32) and (3.33).
2) It follows from (3.31) that

(3.34) (Ka(a)?)™t = Ky(a)™,
(3.35) K(o)" K,(0)* = K (o)
and

(3.36) Ki(0)™" K (o)™ = K ()" .

Note that a relation

£3.37) 'K ()2 H(o) = H,(o) Ki(c)"?
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holds. Indeed the definition (3.22) of K (o) and the symmetricity of H,(o)
give

(3.38) 'Ky(o) H(o) = H,(c) K,(o),
the definition (3.24) of E (o) and (3.38) give
(3.39) ‘Ey (o) H(c) = H,(c) H,(o),

and then (3.37) follows from (3.31) and (3.39). By making the transformation
of (3.23) in (3.20) and from (3.37) it follows

(3.40) (o) —h,(a) = 1)2KH () K,(c)E, K. (o)?E>
— 12 <H,(0)K(0)E, B> = 12<H,(a)E, E>.

This shows 2) of the lemma.
3) If o satisfies |o—a| <C3'L™ ¢,V *) we have

Vao = Vo(K(0)E) Vao+K (o)

by differentiating the both side of ¢ —a=K,(c)/’E by E. (Here VH—(a—
=1

) row vector). Hence

=

(3.41) (I~ VoK (o))""E) - Vao = K(o)".

By the way

(342) 2 Ko =Fe S E, (o) O “”E( ye-rt
follows from (3.31). Since E,(¢)=K,(c)—1,

(3.43) % (o) = %{‘i (o) = % (H. (o) H,(a))

= —Ho) ) oy H )
= —H oy ) g )

follows. By using the estimates (3.14), (3.21), (3.26) and (3.22) to (3.43) we
get

| naH @ 1K)

=(c—7Cy)718~ ’O” 1§-W-DC572c%
Thus by using (3.30) and (3.45) to (3.43) and by the inequality of 1) we have

(3.44) Il%%(cr)lléllfla( )
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(3.45) IV (Ko(c) Bl
nlc | K l(co__zro) 104~ 103‘.2 S- (N+1+l)l=|

IA

I\

n[c | K" Ycq—8)) " 1CY 1Cacl + 3~ WH D _| g—aq|
nlc | K*Yco—8y)'CY 1C3+ C3 L8 e

nlc | K"~ Y(cy—8,)'CY L™ g e -

IA
ﬁ'Ma nM& HM3 HM8 nMa

n[c |K"+c%e.

Since K<1, gnlcﬂlK"'l converges. By the definition of ¢, and d, we get n|c,|
=2|d,_,|, and from it
(3.48) 9K DI < 25 [dyes | K72 K

= 252K

follows. By making L sufficiently large in the definition (3.30) of K if neces-
sary, we may assume 2c5c¢2K<<1. Thus we get

IVo(K (o) B)lI<1,
and as a result (I—V,(K,(c)"?E))" exists. Hence it follows from (3.42) that
det Veo = (det K,(c)?) (det (I— ¥ (K.(c)2E)) ) %0 .

Consequently the map o= is a diffeomorphism from {|o—a| < C3 L™, *1+/}
into {|E|=<c_C3'L™'¢,6¥**'}. 'Then we put c=C3'L"'C,. Q.E.D.

Lemma 3.6. |[820(E)|=C /5~ 0%-D@+1+h
Proof. It follows from (3.46) that
(VoK (o) E) ™ = g} (VoK) E)Y

and

=V Ko) E) IS 3 AR =

Hence it follows from (3.41) that
Cy

(347)  IVaell SII— VoK) D) 1K)l S 15 »

and (3.47) implies Lemma 3.6 in the case of |a|=1. When |a| =2, we differ-
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entiate (3.42) by E and estimate it. Details are almost same as the proof of
the case of |a|=1 by using an inequality

|1—}K,<a>l/’1|

T j
< 331, | K (c—8) 'O 1 Cye, 8N4
which is obtained by (3.42) and (3.44). Q.E.D.

Proof of Proposition 3.4. The transformation from o to E gives

(3.48) I= Se“’"‘"’ g(o)do

T

_ ithe(9) +it/AHa(8)E,E) o (=1\ J'=
= {1 o IRR052 g

by Lemma 3.5, where
(349) &E) = g @G for J8) = |det Vas | .

Hereafter we denote <x, y>=x+y for simplicity. Here g, is a function of O5(R")
by putting g,=0 outside the support of it. Then (3.48) can be regarded as
the inner product in the sense of distribution. Then we have

(3.50) Lo = | itmaos= g (m)am
= <g7'1[gi%(ﬂa(“)')']’ Fle>
by Parseval’s formula. Here the formula

Sw eUaAP=irT g5 — (%)1/2 U12)T+ (mil4)sign d

for d= R\ {0} gives
g" l[e‘.(‘/z) (H4(0) ')‘] (y)

— (2”)-NSRNei(tlz)Ha(a)E-E—iyE d=

-N/2
QRat) ™2 gy s+ misienEaan

" \det H,(a) [
Hence from (3.50) it follows that
(3 . 5 1) I = (2”) -N/2 l Hess ha( a) l -1/2 eith,(a) +(ni/4)sign (Hg(a)t)
t'N/"’S RNél(y )e™ (/30 Ha() —ly'ydy .

Then we put
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Y(y) = e~ (DL}
and
It is clear that
o () =2.

On the other hand it follows from

N (1
W) = 2 3, 3% @30

=
that
(3.53) [ | SIHL(a)]|7 y|* S cr'CY 18~ W=D ]2,
Thus by an interpolation of (3.52) and (3.53) we get for any » with 0<r<2
(3.54) [Yn(y) | S C, 8~ CAW=1D | g ¥

for some constant C,. Tbis gives
@55) || eommerrgyay—| sl
< | Pl D1 140) 10y
= Cva'(VIZ)(N—1+I)t-'u/2 gkﬂ<y>v Ig/:l(y) Idy
< Cva—(v/2)(N—1+I)t—v/2(sup<y>lv+!+vlé.l(y) l ),S N<y>-(N+s)dy ,
yeRN R

where y=(1+|y|%)"? and €>0. Then we consider {yP¥**+¥| g(y)|. Here
(3.56) |82g,(E)| S CL8~1*1W+1+D

follows from (3.16), (3.49) and Lemma 3.6. Let m be a non-nagetive integer.
Since

() = < e E)E
— [ D= g(E)E
= [ =Dymg(E)aE,
it follows from (3.17), (3.56) and Lemma 3.5 that

(3.57) <y | g(y)| < g C,, 8~ +1+D I

|Blgc-cod +1H+
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— sza—(zm—w)(zv+1+1) .

Let m, and m, be non-negative integers and let s be a real number satisfying
s=20m,+2(1—0)m,. (3.57) for m,, m, are

3D 4(9)] S Con 3O 014D
<P | 1(9) | S Co 3 O N 12D

and an interpolation of the above inequalities gives

10| = KD () 1)°(Ky>me] () 1)

< Ogsz%;ga—(ZMI—N)(N+1+1)03—(Zmz—N)(N+1+1)(1—o)
~ (2my0+2my(1-0) - 1+1
= C,5~ @mo+2my(1-6)=N) N+1+])
— C.§~G~NN+1+)
K .

Especially, we have

I | G(9) | SC gD
by putting s=N+&-+». Thus (3.55) gives
(358) | SRNe—(i/2t)Ha(a)—ly-yé-l(y)dy_SRNé'l(y)dy |

< Cue ,,t””l23"("/2)(”"“'1)"(N““)(“"’)

CN \,t_"ﬂS‘ (N+1+1)e—= (BN +1+31)v/2
.8, .

From (3.51) we have
(3.59) I= (27[)—N/Zeitha(a)+(7ti/4)signHa(a) | Hess h,(a)| ~1/2
e GONy+a),
qa(t) — (2”)—-N/Zeitha(a)+(m'/4)signH,(a) I HCSS ha(a) ' -1/2
. t-N/Z. SRN[e_ (if2t) Ha(a) " Lyey ___ l]é'l(y)dy .
From (3.58)
1.2 | < Of WHI/2, §= N HI+DE= BN +1+3)V/2| Hegs h,,(a) [ -1

follows. Hence for any positive number p we have (3.19) by taking £>0 and
v>0 satisfying

p = (N+14+0)+(BN+1+30)p/2
It is easy to verify

(3.60) o(0)=a and ](Zé) 1,

&=
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and with (3.60) we get

con | 400 =0 =a00)-J(%)
(3.59) and (3.61) give (3.18). Q.E.D.

- = ga(a) .

4. Calculus of the slowness surface and the Gauss map

In this section we consider the slowness surfaces and the Gauss maps for
the investigation of the slowness surface integral (2.26).
First of all we define the map R from S to S*™! as

(4.1) SSs R(s) = Ij—l
s
The surface S, defined by (1.1) is star-shaped, which means that the inter-
section of S, and any half-line {r@; r§>0, 6 =.S""'} consists of only one point,
and this fact gives that R/, is bijective. Clearly R|s, is continuous. Onth e
other hand, since (Rlsk)“=£o~) for 6= S}, the continuity of A, gives that
k
(R|s,)"! is also continuous. Thus R|;, is a homeomorphism from S, to §»-%,
Since A4(€) is analytic on R"\Z, S,\Z{’ is a real analytic surface. Then we
get similarly that R|s,, is a diffeomorphism from SA\ZY to S*N\R(ZY).
Next we shall define a covering of S {U%;}41,.05i=1,2,3: j=1,.m; and a parti-
tion of unity {y%;} in the following way. Take an open covering {U%;} of .S,
with the properties:

4.2) ZPc U, Z@c VU,
j=1 ji=1
(4.3) Z$onUl,; = ¢ if 4%,
and
(44) S = (JU)uut)u o).
= =1 ji=1

Such {U%} surely exists on account of Svi). Then map {U%;} into S»-!
by (4.1). Since R|s, is a homeomorphism, {R(U%;)} is an open covering of
S*-1, Then let {J};} be a partition of unity with respect to {R(U*%;)}. Since
R|s, (resp. R|s,\2) is a homeomorphism (resp. diffeomorphism), {y};=};°R}
is a partition of unity with the properties:

(4-5) the support of \%; is contained in U*;

and

(4-6) i =4oR is continuous (resp. C*) on S, (resp. S,\Z¢).

By putting +%;=0 on S, if /4% we can define a covering of S {U%;}4eymps im,
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2,3 j=1,-,m, and the partition of unity };, which satisfies (4.2)~(4.6).
Then (2.26) can be represented as

4.7) o) =3 31 3 [, i, ntio)as

ij

where
(4.8) m(s, ) = P(s)| T(s) | py(rs) .

Here we introduce a local coordinate system of U%;. To begin with we
define a coordinate system (o, -+, o,-;) into R(U%)) in the following way. We
may assume that U?; is sufficiently small, and so there exists » such that

RUL) = {Es -~ £); £ = VI BT T B B b T E)
for (£, -, Evy Evpy, -+, E)EV CR™Y .
Then we define (o, -+, p-1)=(Es -+ Evopy Eviry =+, E4).  Through (R]s,)™! we

introduce the coordinate system (o, ***, 0p—y) in Uk;. o=(oy, =+, opy) is a
map from R(U%;) into R*~. With this new coordinate %; can be written as

v}i(x%, 1) = sao R(Ufj)e"““’)m(s(a), )k i(s(c))w(o)do
where 4S=w(o)do and

0(sy++ S+ 54) 2}1/2

6(0'1 O'n—l)

w(o) = {3

B=1

(" means omitted). About (¢, ‘**, ,-,) there are some lemmas.

Lemma 4.1. s=s(o, :*, 0,,)E U, for s ZY satisfies

1) O0<g= 685'

O

=c,

for u=1, .-+, n—1 and some constants c, and c,
2) [|[V,s||= C for some constant C
3) distg(s;, sp)~disty(ay, o2) where s(o;)=s; and V=qgoR(U%))
4) distg(s, Zs)~disty (o, Z,),
where Zy=(ooR) (ZsN U%))
5) w(a)=c>0 for some constant c.
In 1)~5) the constants are uniform for o ¢ Z,,.

Proof. 6=0(c), :*, o) ER(U?;) satisfy
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<1

4.9) 0-66‘9 —0and |99

O ow

because 09 _ o, .-, 1, -, 0, 56&—“, 0, -+, 0). Then, since s= 4 we can write

T L4 (/" hk 0)
v

o 1 080, $(_(8:M)(6)), 96,
60":. 7\.,,(0) 60"4. 12:5( 7\,,,(0)2 ) 60";1. 0

1 1
=5 e (O 5,)0

Hence we get by (4.9)
s |? 1 98612 1
4.10 —| = —
( ) 60’;1. 7\.]2(0)2 60"4, + 7\,,,(0)‘( p.>
1
(0)2 ; C1 >0

for some constant ¢{ depending on &.

On the other hand, if we estimate s from above, we get

op
s |? 1 |o4 [V,
60’,;. 7\.;,(9) hk(0)4
1 |06
= (14 V(0
i(0)2 00 ( oy (.sv)2l 8 )'>
Note that ——=<c¢}, |VA(0)|2=ch and! (6&) <d f
— a5 =Cl " 3 ¢, for some con-
k( ) O'p.
stants ¢4, ¢4 and ¢; depending on U%;. Then
(4.11) 05 < op
60';1.

for some constant ¢;’ determined by ¢35, ¢4 and c.
(4.10) and (4.11) give

=c

0<g = aa_s

O

by putting ¢;=V/'¢{ and ¢,=V/'c§. Thus 1) is proved.
2) is clear from 1).
Next we prove 3). For any curve s(f) on U%; with s(0)=s, and s(1)=s,
it follows that
Sl @ 2dt _ Sl
oldt 0

By taking inferimum with respect to s(f) we have

s dou*
H=1 80',1. dt

dtgczsw > d"“) dt.
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(4.12) dists(sy, 52) =< ¢, disty(oy, 073) -

On the other hand

(4.13) dists,(53, $2) = | s,—s,| = 6 __ 6 |
M(02)  N(6)

where |+| denotes the norm of R" and 6;=R(s;). We may assume Ay (6,)/
AM(6)=1. Then

W CA)
0,— 22\ g\ >16,—0,] .
0~ 2200,z 10,0,
Hence it follows that
7} 7] 1 A(62)
4.14 2 __ A = —M\Y2) g
(19 M(05)  M(0) M(62) ’ M)

1
=———10,—0,|=c|b,—0,| =c'|g,—
—lk(gz)l —0,| =c|0,—0,| =c'| 7, o

for some constant ¢’ depending on 7, j and & of U¥;. (4.13) and (4.14) give
(4.15) distg(sy, $;)=c’ disty (o o) -

Then 3) follows from (4.12) and (4.15).
Let 5, be a point of Z; satisfying

distg(s, Zg) = distg(s, s) .
It follows from (4.15) that
(4.16) dists (s, Zg)=c¢' disty (o, og)=¢’ disty (o, Zp),
where oy=0(5)EZ,. Similarly it follows from (4.12) that
(4.17) disty (o, Zg)=c5! dists(s, Zs) .

(4.16) and (4.17) give 4).
5) immediately follows from the definition of the coordinates. Q.E.D.

To estimate the derivatives of s(o) we must consider derivatives of A\, (£):

Lemma 4.2. 1)

_ < [PU®ALE) Py ALYE)
b6 = 5 il

for EER™Z where 9= 2
agp,

2) |0gA(E) | S C, dist (E, Z®)-11+
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for some constant C, and £ = R"\Z where
ZO ={E =rs; r>0,s€ZP}.

Proof. 1) (2.23) gives
(4.18) AE)PYE) = ME)BYE).
If we differentiate the both side of (4.18) by &, we get

OuAY(E) - By(B)+A%(E)- 0, PY(E) = 0uni(E) Bu(E)+0ulE) -8 LY(E) .
Hence
(4.19)  8uAYE) PyE)—0uni(E) Pi(E) = —(A%E)—Mi(E)) 0. Pu(E) -
Since AYE)=33E,4,, 0AUE)—Ay holds. Then by multiplying P,(¢) for Ik
from the left to (4.19) we get
PE)ALE) = —(uE)—M(ENLE)-0.PE) -

Hence

(4:20) B(e)-0,By(8) — LB APAE)

ME—ME)

On the other hand by differentiating the both side of ﬁk(§)2=ﬁk(§) we get
By(5)-0.L,E)+0. L) By(E) = 0,8(%).

Then

“21) B0l = 0LEI-LE) = 0.L48) 5 PO)

follows. (4.20) and (4.21) give
B()4, ByE)
) 0uBy() = 3y T2 tit) 1 5, B FAGE
(+22) (0 =5 LA 000 5 20
In the same way as in the proof of (4.20) we get

P4, B

b)) =L

Then

_ 51 PAOAP(E)
(423) wbOZ PO = IS0

follows. (4.22) and (4.23) give

_ < [P APE) P 4. P
2ubyE) = = { ME)—ni(E) } :
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2) By (4.19) we get

(4.24) 0una(E)+ Py®) = AuPy(E)H(A°E)— i) 0, Pi(E) .
If we multiply P,(&) from the left to (4.24),
(4.25) 3un(®)- Pu(®) = By()4.Py(E)

follows. Since A%£) is a hermitian matrix there exists a unitary matrix U(§)
such that

G 0
AYE) = UE)* M(E)lm, U),
0 o),
where each m, denotes the multiplicity of A,(&), and this gives
° 0
(4.26) BH=UEY L, |U®.
0
It follows from (4.25) and (4.26) that
0. 0
B, | = UE0ME)BEUE*
0 "o
— UE)(PyE)ALyE)UE) .
Thus we get
O.
(4.27) 10 M(E) | = \/17 "a,bxk(s)z,,,k.. ”
o o
- ﬁllpk(E)Aﬁﬁ»(E)ll
< \/C;’—kllA»ll

for some constant C, and 0.)\,(§) is bounded. This fact is already known in
another way. See C.H. Wilcox [12, §3]. Next we differentiate (4.25) by
£,. Then we get
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0,04 (E)» Py(E)+8:0i(E) - 8, By(E)
= 8,B(£)- AuPE)+PyE)Au-0,B4(E) .
Then

8,8 (E) - Py(®)
= 8, ByE) AuByE)+ By(E) A 0, Py(E)—0uni(£) -0, By(E)

=J&).

In the same way as in the proof of (4.27) we get

10,86 0(8) | < \/{THJ(&)H .

k
The result of 1) and the boundedness of 9,1,(§) and 15,,(5) give
H](E)Héclg I2M(E)—n(8) |7
Thus it follows from the assumption Sv) that
[0, 02 (8) | =c dist(&, ZM)1
for some constant ¢. By repeating this process we get
|0"0i(E) | = C, distgs (§, ZW)~1"1H1
for any a. Q.E.D.
With Lemma 4.2 we prove
Lemma 4.3. 1) |3%(c)|<C, for o&(coR)(U%) with i=2or3
2) |625(c) | < C, disty (o, Zg)™ ™1™
for c€V =(coR)(U}Y)).

Proof. 1) is clear from the smoothness of U%; for =2 and 3.
To prove 2), note that s=0/\,(0) for 0=0(c)R(U%;). Then we get

azs 0 " n 62h 80 60
4.28 = - k972 976 1 (bounded t .
2 0000y () E 08,08, 0oy aa'y—H ounded terms)
From Lemma 4.2 2)
o\, . -1
(4.29) _—(0) §02 dlStRn (0, VA )

9,08,

follows. From the definition of the coordinate (o}, -+, o7p-y)

(4.30) distgs (6, Z®)~disty (o, Zo)
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and

(4.31)

! 90, <Const.

Ou

follow. Thus we get

()’<C’d1stv(o-, Z)y'  for ce(coR)(U)

‘ 0000y

by applying (4.29), (4.30) and (4.31) to (4.28). In the same way as above we
get

|05s(a) | =C, disty (o, Z)~ 1"+, Q.E.D.
Here we consider
m(s(a), W (s(a))w(@) = B(s(e)) | T(s(e))] *pulrs(@)) ¥ (s(a))(a) -
To begin with we treat p(s). A derivative of ls(s(a-)) with respect to o is

as,,

(432) 0uPl(a)) = T OLI6E)
Thus we have from (4.32) by using Lemma 4.2 1), the assumption Sv) and
Lemma 4.3

10,,(B(s(e))) | Sc dist, (o, Zo)*
for s€(aoR)(U%;). In the same way we have
(4.33) 102(L(s(o))) | e disty (o, Zo)™™

for o€V =(coR)(U%;). Next we treat |T(s(c))|'=|VAy(s(c))]”. Then
Lemma 4.1 4), Lemma 4.2 1) and Lemma 4.3 give

(4.34) |05 T'(s(e)) | | ¢ disty (o, Zo)™"™
for c€V=(coR)(U};). For ¢,(rs(c)), the smoothness of ¢, and Lemma 4.3

give
(4.35) 16%(,(rs(a))) | < disty () Zg)~121*
for c=V=(coR)(U}%;). Since ¢, has compact support, the constant ¢ of

(4.35) is independent of . For w(c), applying Lemma 4.1 5) and Lemma 4.3
to an equality

D (at most first order derivative of s) 9%

9,
w#(@) = w(o) 05, 05,

we have
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[0,,0(c) | =c disty (o, Z;)™".
Similary we have
(4.36) [05w(a) | <c disty (o, Zo)™™!

for € V=(coR)(U%;). +%i(s(c)) is smooth with respect to o because yr;(s(c))
=+t ;(6(c)) and both of § and J%; are smooth. Then by summing up above
facts we have

(4.37) |82 {m(s(a), r)vt(s(o))w(o)} | Sc disty (o, Zo)~'™

for o€ V=(aoR)(U%,) where c is independent of 7.

We are now considering to apply the stationary phase method and a modifi-
cation of it to the integral (2.26). Recall that (2.26) has a decomposition (4.7),
where each v%;(x, 7) can be written

(4.38) o, ) = S (), Py (s(o))(o) o .
(0oRX(U%))
Then we look for the stationary points of the phase function 5+s(c) for y=x/|x]|.
Its gradient is
Ve(7+5(0)) = 7-Vos(o)

where — denotes the row vector and ?7,,=<~6—, ey 9 ) Here note that
the column vectors of 00, 001

Vos(a) = cvvvereremeens

construct the basis of the tangent plane of S, at s(¢). Hence
?;’-ﬁ,s(a) =0

is equivalent to the fact that 5 is normal to S, at s(c), namely, s(c) is a stationary
point of 5+ (a")(V(x+s(c))=0) if and only if  is normal to S, at s(a) (d=n=N(s(c)),
where N denotes the Gauss map). Then the next problem is to search for
s with »=N(s) on the slowness surface S when »&.S""! is given, in other words
to determine the inverse image of the Gauss map N.

The following facts about the Gauss map on the slowness surfaces are
already known ([12, § 6]).

Let p(y) for n€S"*\Z denotes the number of points in which a ray
{x=rs; r>0} meets the wave surface W, and
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p = max p(n).

nes

(Z is defined in (2.4)). Let
Q= (€S \Z; p(n) =B  (B=1,2,-,p).

Then S has a decomposition

P B
S=(U USM"UZ

B=1y=1
which is disjoint union, and for each QF there exists a diffeomorphism from
0f to S

s Qf — SPY
which satisfies
Nos?"=14id on QFf

for =1, .-, p and y=1, .-, 8. This shows that if &Qf the number of
s€S with »=N(s) is @ and these points s are represented as s*’(y). Since
nE€Q®? means p(n)=p, these can also be written as s*™(y) (v=1, 2, -+, p(n))-

Thus when & 87*\Z is given there exists a unique point s in S’ which
satisfies

7 = N(s).

If & is a stationary point of 5+s(c), o satisfies N(s(c))=7 or N(s(¢))=—=». Then
there exists at most one such point in U%; for i=1 and 3 since U¥%; ’s are suffi-
ciently small. On the other hand U}; intersects with Z@ which forms the
boundaries of S®”’s, and Z§ is an at most (n—1)-dimensional smooth sub-
manifold by Sii). Thus U}; can be represented as

(4:39) Ut = (SN UL USPYNUL)UEE N TYE)

for some (B, ¥)%(B’, v'), which is a disjoint union. This fact means that
(o°R)(U}%;) may have two stationary points.

In the rest of this section we introduce local coordinate systems in S,
and give the relation between the coordinate of S and that of S;~! through the
diffeomorphism .

The local coordinate & of S37! is introduced in the same way to . Here-
after we denote (aoR)(U%;) by V;. Note that V; depends on not only i but
also j and k. For i=1, V\Z, is diffeomorphic to U5;\Z¥ by coR. On the
other hand, since the Gauss map N is a diffeomorphism from S®' to Qfc.S*~!
for any B8 and v, U*\Z¥ is diffeomorphic to N(U%*\Z%’). Hence V,\Z, is
diffeomorphic to (GoN)(U%,\Z¥) which we denote by V,. Note that (5oN)-
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(Z¥)caV,. For i=2 V,\Z, is diffeomorphic to U4,\Z¥ but is not always
diffeomorphic to N(U%;\Z%®) because U%; may have the decomposition (4.39).
However, since N is a diffeomorphism from S® to Qf, SP'N U}, is diffeomo:-
phic to N(SP*NU%;). Thus if we write Vi=(coR)(U%NS®) and Vi=
(eoR)(U%; N SFY), then each V4 is diffeomorphic to its image of 5o NoR log™?
which we denote by 7%,

We introduce the coordinate & to have good properties, and we can write

(4.40) dS* = w(s)ds ,

where () is a bounded function with its derivatives on ¥, (or V'4). On the
other hand, the following two equalities are already known:

(4.41) dS=w(s)do
and
(4.42) dS*! = |K(s)|dsS .

Then (4.40), (4.41) and (4.42) give
W(o)de = | K(s(o)) |w(o)do .

Thus the Jacobian of the map from V, (V%) to ¥, (V%) can be represented as

(443) J (%) = wle) 1 Kis(o)) | "00)
g
For V, it follows from the assumption Siii) and Lemma 4.1 5) that

(4.44) J (2—;>§Const. distg(s(a), ZP)41.

The assumption Siv) gives

(4.45) dists(s(a), Z9)~distgn-1(N(s(c)), N(Z)) .

In a similar way to the proof of Lemma 4.1 3) and 4) we can prove
(4.46) distgn-1 (7, no)~disty, (), 72)

and

(4.47) - distgn-1(n, N(Z9®))~disty (3, 7)) .

Then by summing up (4.44), (4.45), (4.35) and Lemma 4.1 4) we have
(4.48) disty, (o, Zo)~distz, (s, V1)

and
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(4.49) J (Z—;’)éamst- distr, (, V)"

5. Calculus of the slowness surface integral

Now we begin to prove Theorem 2.1 from the preparation as mentioned
above. We estimate each v%;(x, 7) of the decomposition (4.7) of the slow-
ness surface integral v(x, 7).

When x=|x|» for p&S""\Z is given, each (i, 7, k) satisfies either of fol-
lowing six cases:

i)-a) i=1 and one of s™(+4-7)’s belong to U%;
i)-b) 7=1 and none of s™(+7)’s belong to U};
ii)-a) 1=2 and some of s"(4-%)’s belong to U%;
ii)-b) i=2 and none of s (+)’s belong to U};
ili)-a)  7=3 and one of s™(4-7)’s belong to U},
iii)-b)  7=3 and none of s™(47)’s belong to U};,

where s™(y) denotes s*™¥(») for y=1, 2, ---, p(). In the case of ii)-b) and
iii)-b) we estimate v*; by using Porposition 3.1 1), in the case of iii)-a) by
Proposition 3.1 2) (or Proposition 3.2) and in the case of i)-b) by Proposition
3.3. In the case of i)-a) and ii)-a) we need more precious considerations.
We devide v%; into two parts, and estimate the principal part of them by using
Proposition 3.4. To estimate the other part we shall prepare some lemmas
in section 5, and the desired estimate will be shown in section 6.

In the case of ii)-b) and iii)-b) Proposition 3.1 1) can be applied to the
integral (4.38) and

(5.1) v*(x, 7)=0(|*| ) uniformly for » = ]i‘-l and 7
X

follows. In the case of iii)-a) usual staticnary phase method Proposition 3.1
2) (or Proposition 3.2) can be applied to (4.38) because there are neither sin-
gularities nor parabolic points in U%;. Then it follows that

(3:2) vhi(x, r) = (2m)" DR eS| x| =D
Ao (S)m(s, r) | K(s) | 7| s—senam a5 5(%, 7)

for some s™(4-7) contained in U}, where
(5.3) ¢4i(x, r) = O(|x|~*?) uniformly for 7;=|—x—l and r .
x

Remark that the uniformity in (5.1) and (5.2) follows from the uniformity of
the derivatives of s(c) and m(s(c), r) for  and r.
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In the case of i)-b) we apply Proposition 3.3 to the integral o};(x, 7).
Lemma 4.3 2) gives

(5.4) 02(n+5(0)) | SC, disty, (o, Z)"*+ for o€V,

which is the condition (3.4) for the phase function in Proposition 3.3. On the
other hand the condition (3.3) of Proposition 3.3 has already verified as (4.37).
Thus we get

(5.5) |oti(x, r)| S C | x| ~-D2-Y

for some positive constants » and C independent of y=-*— and 7.
x

Note that Proposition 3.3 and Proposition 3.4 can be extended for g and
g, depending on r under the condition that they and their derivatives have

uniform estimates for .
In the cases of i)-a) and ii)-a) a more precise consideration is needed.

§1, and s, denote s (z) or s™(—x) which are contained U%; for i=1 or 2. Nota-
tions V;=(ooR)(U*;) and a.=(ooR)(sy,) Will also be used. We put pC5(R?)
as

- {0 lr|=1
PO=U =1,

Then v{;(x, r) can be written as
(5.6) 0¥ (%, 1)
=5, e mis(o), rrti(s(eN)p(lo—anl B ya(o)dr

. D)
+SV.6”‘"‘”)m(~'(tf), Wii(s(e)) I A—p(lo—au] 8" ))u(o)do
Bon)
= E.’ wtJz,
where 8=min disty, (au, 0U*%;UZ,) and u(n)=1 for i=1 and =1 or 2 for i=2.
m

First we consider J,.. For simplicity the index p will be omitted, for
example Jiu=],, ax=a and so on. To consider J,, we shall introduce another
coordinate &=(é4, **+, 6,-;) in the neighborhood of s, in the following way.
Take an orthogonal matrix T=T, with the property ‘(T7)=(0, -+, 0, 1), write
H(Ts)=(5, -+, §,) for s&S and define (&y, -*+, 6,-1)=(5}, ***, §4-1)- This coordi-
nate system is well-defined in

(5.7) U,= {s€S; distg(s, 5,)<R distg(s,, Zs)}

if the constant R is sufficiently small. With this coordinate 5-s(6)=35,(¢) and
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the eigenvalues of the Hesse matrix of §,(¢) coinside with the principal curva-
tures at s,. Moreover we have

(5.8) Hess (7+5(8)) | ey = K(55)
and
(5.9) dS, = (14|V3:3,(s) |5 de .

(For details refer to M. Matsumura [3, §5]). Here some lemmas about &
will be prepared. Note that T, can be written as

tl
T,=|:
! tn—l ’
n
where {t,, ---, t,-,} spans the tangent plane at s,,.
Lemma 5.1. ] 9ay =C
06

for some constant C and for any v and .

Proof. Note that

-1 —> —
[?ﬁ] = [66‘,,,] ie. Vio = (V,0)".
86"4. 80'\;

It follows that

9w 8 (7, — (Tﬂ> =1, 05,
m

0oy, Ooy Oy Oop

Thus

o _[4 e

60' v in—] 60' v ’
that is,

- [ tl -

Vo =]| : Vs

L. til—l

Then

T(@s 7= [L219].

’ * |1

Hence

(5.10) det(V,a) = det T+-det(V,s, 7).
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On the other hand 5 can be written as

os Os
60’1_'— + Cn-1 60’,,_]

N s
for some constants ¢,, -+, ¢,_, because {_6_, ey 0
o1 00y

S at s=s(c). The equality det(V,s, N(s))=(—1)"*?w(c) is easily obtained (refer
to [3, §5]). Then

det(?,,s, 7)
= cos(n, N(s)) det(V,s, N(S))—I-:?;Jz cu det (6,,:, :—S“>

()

7 = cos(n, N(s))N(s)+¢,

} span the tangent plane of

= cos(y, N(s)) det(sV,, N(s))
= cos(n, N(s))w(o) .

By making R of (5.7) sufficiently small, we may assume that cos (5, N(s))>1/2.
Thus by Lemma 4.1 5) we have

(5.11) |det(V,s, 7)| =¢/2>0.
Hence (5.10) and (5.11) imply
|det V,a] =¢/2>0.

Lemma 4.1 1) gives
os

<Const.
60'1,

lu

’6@

60‘1.

Thus it follows that
06

lyn. of
(o)l = | (%)

Lemma 5.2. 1) disty, (o}, oz)~disty, (5, &2),

1§Const . Q.E.D.

where V,, and V, denote (aoR)(U,) and &(U,) respectively.
2) disty, (o, Zo)~disty, (5, Z,),
where Zy=&(ZsN U,).

Proof. The boundedness of V;o and V,s has already proved in Lemma
5.1. 1) is clear from this.
Here we prove 2). There exists o, Z, such that

disty, (¢, Zy) = disty, (o, oy -
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Then 1) gives

disty (o, oo) =27 disty, (&, &) (60 = &(a0) EZ,)
=¢disty, (o, Zy).

In the same way
disty, (&, Zy)=c? disty, (o0 Zo)
follows. QE.D.
Lemma 5.3. |02 | =C, dist(s, Zy) e
for some constants C,.

Proof. The case of |a|=1 is already proved in Lemma 5.1. Here we
only prove the case of |a|=2. When |a|>2 the proof is almost same as
the following. Differentiate an equality

(5.12) I=Y;0-V,0

by & and we have

0=-2 V0 ¥s0+ V02 V.0
05y 06+,
6 - — — ”_160- 6 -
=9 96V, 0 Vso( S om —V,&)
3o, 70 Vot a(#=18&,, dcn
Then
(5.13) 0 Yog— —¥: (2 3o, __v*z,&)ﬁm
06y ¥=10¢, Oopn
By use of a relation
% — ¢ 0%

06,05, = 00vs0,

it follows from Lemma 4.3 2) and Lemma 5.1 that

(0') ZO)_

l 06,00
from Lemma 5.2 2)

< Const. disty, (e, Z,)™* .
Q.E.D.

Since the support of p(|oc—a|/8**") is contained in V,, we can make a
change of variables ¢ to & in J;. Then we get by using (5.9)
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Ji={ O mis@), Nt (eNelo(@)—alB)(1+V35,(2) ) ds .

The estimations (4.37), (5.4) and Lemma 5.3 imply
1825,(5) | =C, disty, (&, Zo)™"*!*
and
[82m(s(e),r) | < Cy disty, (&, Zo)™'' .
Lemma 5.2 implies
disty, (a, Zo)~disty, (@, Z,)
where @ denotes &(s,). Then it follows that
disty, (&, Zo)~disty, (&, Zo)~d
on support of p(|a(+)—a|/8"*"). This fact implies
[82p(lo(6)—al [3")| S Cud™'"¢*D .
Summing up these facts, we have
|625,(0) | S C. 871

and
|03[m(s(2), )¥i(s(a))p(l () —al [8"*)(1+ | VZ3,(5) )]
<0518+
We apply Proposition 3.4 to the integral J, by setting N=n—1, a=a, h,=s,
and so on. Note that the conditions corresponding to (3.14) and (3.16) are
verified in the above estimates. Then we have
(5.14) Jo= 2m)™ TR (5) [ K ($) |, 7)
E() x| VP o+l 7)
where

(5.15) Iq’;j(x’ )| SC8#| x|~ w-Dr-Y

for any positive number p and for some positive number » and C independent
of 8 and 7.

In the rest of this section we prepare some fundamental facts which are
needed to estimate /.

Lemma 54. Let a=(coR)(s,) be a stationary point. Let p=C7(R") be
a function with
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1 for |r|=1]2

plr) = {0 for |r|=1.

V;=(ooR)(U%)), 8=disty,(a, aVUZ,) and N=n—1. Put h(c)=7s(c)=
N(s(a))+s(c). Then

1) there exists a transformation o—E in {|c—a|=c, 8"} for some con-
stant ¢, which satisfies the following properties:

i) the image of {|c—a|=c,8""'*'} is contained in {|E| Y and

iille—a| = |E|=Z¢lo—al

for some constants c, and cs.

ii)
hy(o) = %(XIE%+~~-+xNE?v)+ha(a)
where \, -+ Ay are the principal curvatures of S at s,.
2)
616) [, VRIS Calny |,
where
(5:17) B,(c) = {(c/)8" 1S |o—a| Se 8V}

Proof. 1) First of all we make the transformation Veo—ecV. By
Lemma 52 1) {|oc—a|=¢,8"*"'*'} is mapped into {|&—a|=<e,d¥"*"} for
some ¢;. As we have already remarked the eigenvalues of Hesse matrix of
h(&)=mn-s(¢) coinside the principal curvatures at 5,. So we make a transfor-
mation & E as

o—a = K,(5)VE .

From Lemma 3.5 it is well-defined. We make one more transformation =+ =
as PE=E, where P is an orthogonal matrix satisfying

. o°h
t J— oo —_ "t
PH,(a)P = diag(\; ** Ay) (Ha(a) (6 e (a))) .
T'hen the assertions of lemma follow from Lemma 3.5.

2) Lemma 3.6 and Lemma 5.1 imply that J (gg) is bounded. B,(C))
=}

is mapped into B={(c,c3'2)8" < |E| Zc, 8V} from the property i) of
transformation. Then we make a transformation ¢ —E in the integral (5.16),
and we have
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SB o |Vhi(c)|¥*"de < C SB (MBI A ER) W-mrgE
a'cy

0N +1+1 n (2n 2
= C'S r"”*"'r”"‘drs S S (A] cos? 6,
0

(c1c57/2)0 W +1+ 0Jo
4+ sin? @, cos? @,+---+A% sin @, --- sin® @ _,) "N -m7
<isinN=20, - sin O_,d0, - dOy_,

= Qg S‘ﬂ g:ﬂ(---)dﬁl e dfy_, s (-+)dr .

0

Integration by 7 can easily be calculated and it is C8"¥*!+) for m=4=0 or C|log 8|
for m=0. Integrations by 6,, -, 8y, are calculated as follows. In the case

of m=0,
=2 a2 2 2 -NJ2
So go (Af cos? @+ +rysin? G, - sin® O y_))

«isin?"24, --- sin 0 _,d0, -+ dl_,

/2 /2 2 2 2 2 2 2 ain2 2
= S S [S (A3 cos? 8,+(N; cos? 0,425 sin® 0, cos® ;4 -+
0 0 0
+A% sin? @, --- sin? §_,) sin? 8,)¥/%) sinV~% 4, d6,]

"SinN_Sez b Sin eN_zdez b deN..l

/2 /2 . .
= So So (7\:% 0032 92+'+7\:12V Sln2 02 Sln2 0N-1)—N/2+1/2

+SInY¥"3 6, -+ sin Oy_pd0y -+ dOy_y| | ! S‘" V(1L a?)N
(1]
== ...=Oomt.,hl e RNI_IC

In the case of m>0 the calculus is almost the same. But last step only N-m
times of iterations are needed. Thus the proof of lemma is complete. Q.E.D.

From Lemma 5.4 1)
az P
Aj= E?ha(tr (B))
follows. Then it is easy to verify
[n; | SCOSWHHD for j=1,2,---,N,

where C is independent of a.
When s, is in the neighborhood of Z@’, the assumption Siii) gives

le b XNI écomt. 8—(d—l) .
Then each A; has the polynomial order of 8:

(5.18) n;~dM;  for some M; (maybe negative) .
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When s, is in the neighborhood of Z%
A o An] = | K(s,)| =Const &' .

by (2.27). Then (5.18) also holds for this case with different M;.
Next we state a relation between the metric of V;CR.™ and that of
V.cR:.

Lemma 5.5. Let ac€V\Z,=(coR)(U%)). s, and b denote (soR) (a)
and &oN o(aoR)™(a) respectively. -

If |oc—a| T8V, then |6—b| ZC |\, | |o—a] for some positive constant C
where Ay, +++, An-, denote the principal curvatures at s, and |N,| =min{|\,], -+,
|7\‘n—1'}-

Proof. Since|o—a|<td"*'*!, we can introduce the local coordinate &.
By use of this coordinate unit normal at (&) can be written as

1 ¢ 0% 05
N =+ %5 .. __O%
$(8)) (1+1Vz5, 1972 ( 66’1’ ’ 66',,_,, 1)

and

N(so) = (0, -+, 0, 1).
Then

| N(5)—N(sg | = 1 Vsl H(0=U VS, 1P
141V55,1?
_ 200 |Ve5 D (A+1Ve8,1)7—1)
14]V5:8,1°

= c'|(14|V;8,])2—1| (for some c¢').
By the Taylor expansion of (1+4x%)"* we have
|N(s)—=N(so) "2 " V55,1*

for some constant ¢/>>0. Here we make a change of variables & —E once
more. By this coordinate

Vas, = Ve V;5,
and

|Ves,|? = MBI+ +Ai-1Ei
hold. Hence by noting (3.47), we have
(5.19) Const. V5,2 |Vas,| = [\, | | E]
Lemma 5.4 1) and (5.19) give
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|N()—N(sp)| =C A, ] |o—al

for some positive constant C. Thus the conclusion of lemma follows from

(4.46). Q.E.D.

Lemma 5.5 shows that the intersection of {|oc—a|=<c8¥"*} and the
inverse image of {|6—b|=¢)|N,|8V**} by GoNoR log™! is included in
{lo—a| <,8¥**'} for some constants ¢, and ¢,. We may assume that ¢, and
¢, are sufficiently small and that {|a—a | =¢,; 87"} is included in {|oc—a| =
coV*1*} . Then the connectedness of U= (goNoR ‘oo )"{|a—b| < |0,
SN+ gives

Uc{lo—al <c, 8"+,

Moreover this fact implies that if |oc—a|=¢, 8V, then |a—b| =¢o| N, |8V,
Last of this section we estimate the gradient of the phase function 7+s(c")
from below.

Lemma 5.6. Let s=s(c)€U?%; and n&S"'. For any orthogonal basis
{ei(a), -**) ex-1(a)} of tangent plane of S, at s=s(c), we have

[Vao(n+s(e)) | ZC [3i(ey, -+, €5-1)
where C s independent of o
Proof. Recall that

Vo(1+5(c)) = 7+ Vos(o)
and

Tos(a) = [ e

and that the column vectors of V,s(c) span the tangent plane of S at s=s(c).

Denoting by P=P(c) an (n—1) X (n—1)-matrix which transforms {—8§— e 08 }

to {e,(o) - e, (o)} o1 00 4-1

(5.20) (ﬁ o 08 )P = (&1 €s-1) 5

60'1 60',,—1

we have
Vo(n+5(a)) = 7(ey =+ €-1)P 7.

Since N(s(o)) is a unit normal of S, at s(c), {ﬁ— e O N(s(o-))} is a basis of

60’1 60'”_1
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R". Then we multiply the inverse matrix of (_é@s_ 663‘ N(s(o-))) to the
o 0y
both side of (5.20) from left and we get ' '

(5.21) [ [Jr )P = (25 B Nestoh) (e 0

80'1 60'”._1

The left-hand side of (5.21) is a product of zX(n—1)-matrix and (n—1)
X (n—1)-matrix, and the right-hand side is a product of #Xz-matrix and

nX (n—1)-matrix. Since det(~6—s— 865 N(s(o-))) = (—1)"**w(c), it follows

o, O -1

from Lemma 4.1 5) that det(ﬁ B8

(] 0041
to o. 'Then (4.11) implies

N(s(o-))>_l is bounded with respect

IPl|=¢o

for some constant ¢, which is independent of & and the choice of the basis
{e, - e,_;}. Thus

[7(e1 *** €s-1) | = | Vo(n+5(a))P | Z||P|] | Vo(n+5(c)) ]
follows. Hence we have

[Vao(n+s(e)) | ZIIP] 7(er -+ €am) | Zc5™ |7i(ey - €n-1) |-
Q.E.D.

(e, -++ e,-1) represents the projection of % to the tangent plane of S, at
s(e). Thus

[7(e; -+ €y—1)| = sin 6,
where 6, denotes the angle between 5 and N(s(s)). Since
0, = distsn—l(‘q, N(S(O'))) ’

we have from Lemma 5.6

(5.22) | Vo(n- s(o))| =c distgs-1(n, N(s(c)))
for some constant ¢>0. Then we have from (4.46) and (5.22)
(5.23) |V o(n-5(e)) | Ze distar-s(s, b) = c|a—b],

where b=(coN)(s,). (s, denotes s™ () or sM(—x).)

6. Modification of the stationary phase method (2)

The purpose of this section is to give a stationary phase estimate of J,
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of (5.6). First we treat the case of i=1:
Jo= | e om(s(a), ()1~ p(lo—al [ u(e)de

Here we put &,(c)=17-5(c)=N(s(a))+5(c), gs(a)=m(s(c), )V’ ;(s(c))(a), | x| =¢,
N=n—1,V=V,and M=Z,=(c°R)(U},NZ$). By Si) M is an (n—1)-dimen-
sional submanifold of V. Clearly

(6.1) Vh (a)=0 and Vh(c)*+0 if o=*a.
(4.37) and (5.4) give

(6.2) |8%g.(c) | =C, dist(o, M)~ for |a|=0
and

(6.3) |8%h,(a)| =C, dist(o, M)™'"**  for |a|>0.

The transformation goN o(coR)™': V\M Sot—aEV C RY satisfies
J (a_")gco dist(a, 07)e1,
o

|VA(o(e))| =c1la—b] where a—b
and

dist (o, M)~dist(a, V)
for some constants ¢, and ¢; because of Siv), (4.55) and Lemma 5.6. Then
we prove

Proposition 6.1. Under the above situation there exist some positive number
v and C,, independent of a such that

| g o)(1—p(lo—al 687 +)der | S Cptn-D-"5*
14
or any naiural number m with m<d and m—1< N/|2 and for any positive
y y p
number p.

Proof. By a similar way as in the proof of (3.10) we get

64 1= g o) 1—p(lo—alle" ) do

. N h m-1
3 —l tm_ls ’tha(a‘)( . V a
1 f, eV gge)

*[g(e)(1—p(|o—a] [c3"***))]do

— (—1/ity? Sve;tmm[(v.I_Vth:?)'”"g,,(a)](1—p,(a))dc
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+(=1fity= | emar([v- l;;‘:I2)"'"1.@,(0)]p,(a)da

EII""IZ H

where g,(0)=g,(c)(1—p(|oc—a| [cd¥+*!)) and p(c)=p(dist(c, M)/E). Here we
put €=06t"" (v,>0) for sufficiently large fixed ¢. By integrating by parts once
more, we get

II=(—l/it)’”'lsve“““(”(v- Vh, ){[(v Vh, )m_lga(a)](l—pg(a))}do-.

|Vh,|? |Vh,|?
Recall that
Vh Vh, Ah, 1 )
6.5 V. ¢ _f= 1.V e f+V «Vh,f,
65 (v ronge = Ton Y o+ ) I
and that |V#,| 2 appears in the estimate by one operation of (V- I‘Z’}:al z).

the other hand for a0
(6.6) supp 02 [p(lo—al [c8%+ )] CB,(@),

where B,(C) is a set defined by (5.17) by replacing ¢; with ¢, and on this set it
follows from (6.2) and (6.3) that

(6.7) 18°2,(0)| <Cp8~® and  |6Phy(c)| < Cpd~1P1*

for 80. Moreover since ¢ is sufficiently large, p(c)=1 on this set. Then,
when we write

I = (—1/it)" Sve‘tha(“)(l_p( lo—al [c8N+1+))

'(V' |§::|2){[<V' |g}}:ﬂZ)M-lg“(")](l—"'(“))}d"

+(___ l/it)m Sveitha(o') Ea Caaw[P( |0‘—¢l l /€8N+l+l)] ( . ')da'

=li+1,,
we get from (6.5), (6.6) and (6.7)

IIIZ' é C,{, " S E 8"1“|(N+1+I) |Vha(0') ' "2m+lmlam"|ml do

B, (%) @0

é C,ﬁ, 8-—m(N+l+1)t—m S Elvha(a_)l—zmﬂm!do. .
B ,(¢) w0

It follows from Lemma 5.5 and Lemma 5.6 that

|Vh(o)| =C N | lo—al,
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where |A,|=min{|x;|---|Ay|}. Thus

(6.8) | I,| SO 4~mg=m+1+) S S |o—a| "o

B,(c) ax0

éC:n/t—m 8-m(N+1+l) 8—2m(N+1+I) S )do_, |xq ' —2m

o@

_Cll/t—m 8-3m(N+1+l)+(N+l+l) , by , —2m
—m q .

Then we get from (5.18)

(6.9) | L] SC,pt=m 8= Cm-MI(N+1+D-2mM,
On the other hand
(6.10) |0%pi(o) | SCab™™!, |8%g,(c)| SCu&™™

and |0%,(0)| =C, &1
follows from (6.2) and (6.3). Then we get

(6.11) |L <CLt-mem §V |Vhy(o)| " do

<cirme | |o—al-do 2,7
|4

oo

=C,,,:/t_m8—"' S —2m+N—1dp. |7\,q I -2m

— Cm tmem 8—(2m-—N) (N+1+1)-2mM,

c—ay+1+l/2p

O, gy - G N) )
For I, of (6.4) note that
supp 0°[p(|o—a|[e8" )| Nsupp p, = ¢  for a=0
when £>2%, Thus
(6.12)  |L|<C't ™ SV! |Vho(c) | ~2-D dist (o, M)~ 'do
(here V, = {dist (o, M)<€/2})

<0y sv lo—a|~%m=D | x| 2D dist (o, M) ™"'dor

< c’ t—(m—l)s—:(m-l)(l"’Mq) S!r—(m-l)'*'d-l ar

0
< C/// - (m—l)a—z(m—l) +My) &

= Q' = (m=D =Y, §=2(m=D(A+Mp) +1
By putting »,=1/(m-+1) and by summing up (6.9), (6.11) and (6.12) we get
(6.13) = Iyt Tot+L| SCut™ " P7%874,
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where A= max{(3m—N)(N+1+4-1)+2mM,, m+ (2m—1)(N + 14 1)+ 2mM,,
2(m—1)(14+M,)+1}.

Next we look for another estimate of I without using the decomposition
of (6.4), and we shall make an interpolation of two estimates. We put

I — (_ l/l‘t)m—l Sveitha(ﬂ')(l_p( loc—al /53N+1+1)).<v. IVV;I:IZ)M_Ig,,(o-)do-

+(_ I/it)"‘“l Sveitha(v) Eo(_aw[’)( l o'—-d[ /68N+1+1)]) . ( . ')da'
=K1K,

and calculate as the following way.

(6.14) | K| <Chyt™ ™Y S S S iRl
B,@ a0
. IVha(O') l ~2(m=1)+1®] §= (m=D+I®] J
by using Lemma 5.4

SOy ™D S §-mm0Hl 3 |
@30

Note |[n; - Ay | =Const. 8@V and (5.18). Then it is easy to verify
s o Aymtal | Sc8G-181M @D

Hence from (6.14) we get

(6.15) | K| S Cpy ™™D 33 800171 5012100
=C, _ t"(m"l) 2 S@-m+(1A-1/N)|®|
m=-1 a0
écm_lt_(m—l)

(here note d=m). Next we estimate K, by changing variables & to &. As
we have remarked after Lemma 5.5, Q = {|o—a| =¢8"**//2} is mapped into
{|le—b| =¢|r,|8¥**'} for some constant &, and by (5.18) into Q= {|e—b| =
ESMtWHIEDY - Thuys

(6.16) | K| =Chs t_(m_l)g | VA, | 72D dist (o, M)~ Vdo
Q
<Cl_t=mD s“ B Io—._bl—Z(m—l) dist(a‘r, 67)—('"'1)+(d_1)d6-.
anv

Here note that for sufficiently large M, QNV C{M = |6—b| = dMa+(N+1+h}
Then since d =m, we have

K| =Cha t_(m—l)g |G—b| ~¥m-Vd5

anv
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M

(7 =(m-1) 2 (m~1)+N—-1
__Om_lt Sfauq‘*(ﬂ"'l'ﬂ)r dr.

Since N—2(m—1)=0,

| K| =Cpoit™ ™ V]log 8.
Thus from (6.15) and (6.16),
(6.17) [I]=|K,+K,|<C,,_,t=™V|log 3|

follows.
Hence it follows from (6.13) and (6.17) that

| =CnCuit~ " D7%57%4 log §|-°

for any  with 0<é<1. Then if we put §<u/A, we have the conclusion of
Proposition 6.1 for v=0v,,. Q.E.D.

We can get the estimate of J, for i=1 from Proposition 6.1. Since z is
odd, (r—1)/2 is an integer. So, if we apply Proposition 6.1 for m—1=(n—1)/2,
then we have

(6.18) ljzlgclxl—(n—l)/z—va—u

for any >0 and for some »>0.
By (5.14), (5.15) and (6.18) we have in the case of i)-a)

(6.19) v, 7) = (2m)" OO, (5) | K() |7

(s, INA() [ [~ gt 1),
where
(6.20) gt i(x, )| SC8~*| x| ~-Dr2-

for any x>0 and for some »>0.
Next we consider the case of i=2:

Jo =, @O mis(a), (o@D T (1= p(l o —au | fE8 a(o)d

Here we put h,(o)=2%-s(c), glo)=m(s(c), r)¥};i(s(c))w(s), |x|=t, N=n—1,
M=Z,=(coR) (U;N Zs), V=V, and ﬁi(l— o(|o—au] [25")) = dn(a). (Note

that a,s’ depend only on 7). By Sii) M is an at most (N—1)-dimensional
submanifold. Let V! and V? be domains with the properties V=V'UV?UM
and a,€V"* for p=1, 2. Clearly

(6.21) Vh(au) =0 for p=1,2 and Vh(s)+0 for o+Fau
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(6.22) |0%h,(c)| =Cs

(6.23) 16°g(c) | =C4

and

(6.24) [0%¢,(0) | S Ca 8- 1D,

where C,’s are independent of . Then we prove the following Proposition.

Proposition 6.2. Under the above situation there exists some function Du(z)
with
Du(n) €LV (S3Y)
such that

I Sveith,,(o')g(o_)d)ﬂ(o_)do_‘ <t (m=1)-v 8-#‘13,:.(17)

for any positive number p, for any p' with 1 <p'<<14-1/1 and for any natural number
m with m—1 < NJ2.

Proof. By integration by parts we have
1={ M g0)p(o)do

= (—1/it)" SV eithn("')(V- lg}il:lz)”( 2(a)py(0))da

for any =.
In the case of n=m, we get from (6.24) and Lemma 5.6

[I|=Cht™™ S |Vh,| “2mdg + §=2mN+1+D)

V Nsupp ¢

[ 282]
éC’,,’.t"" 2 g IvhﬂI—Zmda_.a—Znn(N+l+l) ,
»=1 QI“

where Qu={|o—au.| =c8"*'*![2}. Since |Vh,(c)| Zc|N,||c—an| by Lemma
5.4 and Lemma 5.5 where |\, |=max {|\], .-+, |An|}, We get

wCnd
II' éC'/n/t—ms—Zm(N+l+l) I)\q I —2m El so lo‘——dy. I —2mdo_
p= ﬂ-

117 3~m S=2m(N+1+1) -2m “ -2m+N-1
<Cu'tms O e

= O/ §=m §-ImNFIHD) | §= @m=N)(N+1+]) |7\'q |-2m

Then from (5.18)
(6.25) |I] £0,, 8 m=N)WN+1+D=2mMq f=m
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follows.
In the case of n=m—1, we write

= (—1/iy* 1\ &g (o) (V- Vh, \"! oo
I=(—1jity | e, (0)(v ) &M

H— ity | ¢ 58°6,(0)+(-+)do
= Il +I2 .

To estimate I, note (6.22), (6.23) and (6.24). In the same way as in the proof
of (6.14) we can get

(6.26) 1B SCacat™ ™ 3 Iy - Aoyt
SCu 7™ Ay Ay
=Cpy ™" V| K(s,) |7
Next we estimate 1,. It follows from (6.24) and Lemma 5.6 that

|5 SChyt=ov=D j |V, | 2" 4

V Nsupp ¢y
<Ci e S Jo—bln (2 Vao,
=

Vi

where Vu,=(50NoR 'og?)(V.Nsupp ¢,). As we have remarked after Lemma
5.5,

V.c{|o—b| =T, | SNy
Thus

L1sCire> | Jo—b] -2<m-1>1(f’—")da,
Q o0c

where Q= {8+ W++h < |5 p| <M} for some sufficiently large M. Then
for arbitrary positive number & we have

(6.27) IIll écm_lt—(m—l) §— (Mg+N+1+1) SRN Ia_bl—zm-l)ﬂj(_g_;;)da ,

o
|- —b|*m-D** e L(RY), and (2.27) and (4.43) imply [ (S—T)EL"(R;’.') for
o
any p’ with 1=p'<1/l4-1. Thus

_ —emenyre 7 0 5 -
\I'g(b)=SRNIa—~b| 2m-D+e ](6—a)d¢reLl*L’ crr.

where [ (%{) is extended as zero for large &. Since m—1=NJ2,

Since dS* '=w(s)de with w(s) and w(5)~* bounded, the integrability is con-
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served under change of variables. On the other hand (2.27) imply |K(s,)|™*

€L¥(S37'). Hence by putting vr(7)=C,[| K(s,) | "4+ ¥.(5(5))], 'we have from
(6.26) and (6.27)

(6.28) II ' ét—(m—l) 8—(M1+N+1+I)!‘Ire(n) R

where (7)€ L? (S37") for arbitrary & and p’ with €>0 and 1=<p'<1/I+1.
Then it follows from (6.25) and (6.28) that for any § with 0<<d<1

[T] SOt m=D-05-40 §=(Mg+N+IDEA=0) o (1)1=0

where A=—(4m—N)(N+1+41)—2mM,. Thus, if we take p and make €
and & sufficiently small depending on it, we get the conclusion of lemma with
(pe(n):-'\p!(n)l—o. Q.E.D.

We can get the estimate of J, for i=2 from Proposition 6.2. Since 7 is
odd, we can apply it for m—1=(n—1)/2. Then we have

(6.29) | Jol < || ~#7D27 67  Dy(n)

for any p and some ®u(n)L¥ (S37') with 1<p'<1/I4-1.
By (5.14), (5.15) and (6.29) we have in the case of ii)-a)

(6.30) v, 1) = (Zm) OO (5) | K(5) | T

(s, )WA(s) ||~ OR) , ghi(x, 7),
where
(6.31) |ghi(%, 7)| S8~ Dy(n) || -0 D2

for any x>0 and for some »>0 and ®u(y)eL? (S37') with 1=<p'<1/l+1.
Then for any p with 1=<p<1/l4-1 we make p and p’ satisfy 1/p'+pu/l=1/p.
(It is possible if g is sufficiently small). Note that Lemma 4.3 3) implies
distg (s,, Zs)~disty (a, Zs)=8. Then §~*&L'* (S37') because

S(S"‘)’/"dS:—l = Const. | dist (s,, Z5)'dS3™
— Qonst. j dist(s, Zs)~'| K(s)|dS

=< Const. S ds.

Hence ®u(5)8" "Lt (S77Y).

Then the decomposition (4.7) and estimates (5.1), (5.2), (5.3), (6.19), (6.20)
and (6.30), (6.31) imply the conclusion of the Theorem 2.1.

There are some corollaries to Theorem 2.1.

Corollary 6.3. Under the same conditions of Theorem 2.1 it follows that
for any natural number m
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(6.32) Dro(x, )
= 3 @y || 05y ()
<P T(5)| 7 K(5) |72 ba(r5) | smstmen
+f§m(2ﬂ>-<ﬂ-lm| x| @I 5)" 1 0gr_(5)
< B($) | T(5) | 7 | K($) | 2 (rS) | om D H 0 7)
where q,,(x, r) satisfies (2.29) and (2.30).

Proof. By differentiating v(x, 7) by |x| we can write
Diyo(x, 7) = | e (-s)" B T6) | (rs) S

and in the same way as in the proof of Theorem 2.1 we get the conclusion.

Q.E.D.

Corollary 6.4. Not only q(x, ) of Theorem 2.1 but D}3q(x, r) and D7q(x, r)
also satisfy (2.29) and (2.30).

Proof. (6.32) implies
g, 1) = o, 7)— £ (2m) 00| | 00
e ()P() | T(5) | 7 K($) | ™26hy(r5) | D0
+ 3 ) 2 x| Dy () B(0) | T(5) |
| K(s)| 72y(75) | s=sPinp}
Then Corollary 6.3 implies
Dfg(x, 7) = gu(®, 7)+Coln) | 2] "0,

where
Caln) = 2 (29— (n— 1)/ D", () P(S)
AT K09 oot 33 (2) -7
(—(n—1)2)e (B T(6) | ™ | K(5) | 24,9 e -

Clearly C,(7)€L*S;™"). Hence Dfjg(x, r) satisfies (2.29) and (2.30). For
D7 q(x, r) the proof is almost the same. Q.E.D.

7. Asymptotic behavior at infinity of the Green function

In this section we give the following theorem which is our main purpose
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of this paper.

Theorem 7.1. Under conditions Si)~Svi) we have for any p with 1=p
<1/l+1 and for some v=v,>0

(7.1) G(x, £)

PN (9, N (n=1)/2, i1 T ()7L | g [ - (=172
=§1(27f) e* |%]

<[ @I2] K ()| 2] T(5) | 7P () Wrigacen(s)

* 01(77’ g, ,x I) |s=s<”(¢n)+€1(x, f)
when {=\4-1& for AER\{0} and &€>0 where Cjs are bounded functions and
q(x, §) satisfies

(7.2) lg(x, £)| SC(x) | x| ~¢=Dr2=>
and
(7.3) C(n)eL*(S3™).

Moreover G(x, N-+1€) converges as € | O uniformly for NE[a, b]JC R\ {0}
for any a, bER', and the limit G .(x, \) can be represented as

G(x,))

pCEM . B
= 2 (2”)—(11—1)/2 +iX|2]|T(s)| 71 le —("—l)lzl)» I (n—1)/2
¥=1

« | K(s) | 72| T(5) | " P(5) W atgnen (5) | emePam

+9¢(x, X) .
Here q.. also satisfies
(7.4) Iqi(x, 7\.) I éO(?]) lxl —(n-1)/2-v
and
(7.3) Cn)eLX(S;™).

Proof. We suppose {EA= {{=N1-1E; AE[q, b] and €€(0, &J}. G(x, §)
can be written as (2.25):

o n—1
G(x, £) = Gy, CH—S_J:—I_E o(rx, r)dr .
Recall that Gy(x, §) satisfies the estimate
|Go(x, )| =Cx]|™"

for some constant C independent of {EA. So we may consider only
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- 00 r.—-

- Il
(7.6) S ol )dr
Applying theorem 2.1 to (7.6), we have

r fr]™ o(rx, r)dr

-0 r_

o0 (n :
= i L g
r_
|r|(ﬂ n/2

Vs (8O |10+ S )| -

- Gu(rsO(—))e TS gy (sP(—))

-le"”’”’z-l—g |,|<n /2

= L+1,+1;,

q(rx, r)dr

where

@5(n) = Q2m)~ V2| K(s) | 72| T(5) | " B(5) | sm i) -

Note the relations

(- " — LiV(dp)e?

for {=n-4-1€ (6>0) where Y(p) is the Heaviside function. Hereafter we as-
sume ¢{=n-1€ for simplicity. In the case of {=A—1€ the proof is almost the
same. Then by Perseval’s formula we can get

(7.7) == '( % g (rs ()i gy
o F—
- S“’ z.Y(|xl77'8""(:&77)—P)ff”'“'”""sm‘i’”"")
- falp, s (En))dp

where
(7'8) fi(r’ s) = lrl (”_l)/2¢l(rs)"tb‘sizn(ir)(s)
and
(79) flpy )= | 1102 15 Prsgucan(s)r
By (7.7) we get

12115 ()

(1)
(7.10) Il = .yzﬂa;(ﬂ)lxl_(”-l)/zs-—
ei§(|x|'ﬂ-s(1)(”)'9) ft(P’ S(y)("?))dp
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and

711 5 =S a5 x| oo T
0P f(p, s(—n))dp

From the definition of s™

(7.12) N(s™(L£n)) = £7

holds. On the other hand it holds that for any s&€S,\Z{’

0 VA M) o
(7.13) SNO) = 1o = Tomy) — VMO 17>0.

Thus (7.12), (7.13) and the definition of T" imply
(7.14) dnes(£n) = N(P(L£m)sP(En) = [ TP (L)
Then by the change of variable from p to —p in the integral (7.11) we get

oC-m
(7.15) I,= -,E—Ia’;(") ] (D2
S m(_n)sm(_n)e-‘;axm.s(‘i)(_n)+p,f +(—p, sP(—2))dp,
By (7.14) we have

)]
= 3t as() x| "
y=1

Az 1T EP (=m) 1~ L)
12T (-m)1 2

- fe(—p, sP(—n))dp .

Since s”(+%)ES and S is bounded, it follows for any integer m=(n-1)/2
and for p==0 that

(7.16) | £, sP(£m) | SCulpl™™,

where C,, is independent of . Hence

) igp B . -
¢ ISm-lr(s“')(—n))l-le fi( ps $P(—n))dp|
<\" et 12
—slzl-W(s(‘f)(_,,))l-xe lpl~%dp
= Const. | T(™(—n)) | 1217
(0.9) and (2.19) imply

CT=ITE)| = VM) =0
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for s&€S,\Z$ and some constant C. Then by (7.15) and (7.17) we have
(7.18) |1 < Const. "3 a() 3] =0,

)
Here Cy(n)= -,Eﬂa; () belongs to L*(S*'). Thus it follows from (7.10) and
(7.18) that

(7.19) L+1,= %’) a3 (7)1 NTEPNTY | o | - (=172
y=1

12T P eyt
-$ & f.(p, s™(m)dp

+QO(x’ é‘) )
where
(7.20) [go(®, §) | = Cofg) 2]~V

for some Cy(n) EL*S*™?) independent of { EA.
Next the rest I; will be considered. Since ¢, has compact support, (2.28)
implies
supp ¢(rx, r)C[—A4, 4]

for some constant 4. Then we can write

(7.21) I,— S" 71" g(rx, )— M " "g (02, )
-4 r_C
+ In]*%g(nx, x)sd dr
-ar—¢
=Iyt1p.

(2.29) of Theorem 2.1 gives

Ll S NP | =emonv 4

-ar—{§

Note the equation

SR dr. = 27 arctan R/€ .

-Rr—1€

Then IS:4 ‘_lf | is uniformly bounded with respect to {EA. Hence it follows
that '

(7.22) [ I | <C() x| =D,

where C() is independent of { €A and satisfies (2.30). Next Iy, is considered.
Since
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71" lq(rs, 7)— [ Tg(nx, 3)
1

= [ 2 (17172975, 7D} | onso-nd0- (=
od?

— ! — n-2 ”—‘a_q_ ~
_So{(n 1)|7|*%g(Fx, 7)+- | 7| lalxl(?x,r)lxl

+ fl""gg(?x, O} 5 rroendf-(r—2),

it follows from Corollary 6.4 that
(7.23) [lr]*"'g(rx, r)— X ] "'g(A, A)|
=< (j(,)) | %] - (n=1)/2=v+1 lr—2],

where C(z) is independent of {EA and satisfies (2.30). On the other hand
it also follows that

(7.24) | |7]* q(rz, r)— N " g(nx, )|
< ) || ~0m0,

Hence by (7.23) and (7.24)

(7.25) [7 " q(rx, )— [N ]*"'q(2, A) |

< C(r) 2] =200 r—p |

for any @ which satisfies 0<§<1 and v—0>0, where C() is independent of
€A and satisfies (2.30). Thus I, is estimated by (7.25) as

(7.26) | Iy = S:%‘__“%F dr+C(q)| x| ~#-D2-0-0)

< C(z)| x|~ #~Dr-0-0)

Then (7.20), (7.22) and (7.26) imply (7.1), (7.2) and (7.3) of theorem.
Next we shall consider the behavior of G(x, ) as € | 0. Note that
L (lEnT Pyt
(7.27) 1:?04
. glxnus“’(v))r'

_N e f,(p, s (n)dp

lim e, (p, s(x))dp

e, (p, sP(n))dp

-c0

Slznr(s‘”(w»l“l

—00

_S-w SI:IIT(s(y)(n))I'l

=L

In the same way as in the proof of (7.18) we can get
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Thus
(7.28)

K. KikucH1

lS lxllr(,CV)(u)n—1e_wf+(P’ sM(n))dp| = Const. |x]|™*.

Gl . i
lyzﬂal(n) le "(ﬂ—l)/zetg'lxl57(3(1)(,,))1 lle

= Cyfn)| x|+

for some Cy(n)EL*S*"") independent of AE[a, b]. On the other hand it
follows from (7.8), (7.9) and the definition of ¢, that

(7.29)

Then

where

So_omeihpf +(P, s (y)("l))dp = f +(7\'» s ('Y)(,]))

= M2 (As M () Vrsigua(s™ (7))
= MO g (sP(n)) -
(7.27), (7.28) and (7.29) give
. B , e —
lim >} aj (5)e'1=N 6 m) x| a2

240 y=1
Sm 1T (P )y —1

-0

e F(p, sP(n))dp
o0

= 3 @ ()eNNTEPONTL 5 | =172 | | - w112
=1

+qi(x, N) 5

| (%, N) | S Cy(n) | x|~ 02

for some Cy(y)EL*S*") independent of AE[a, b]. It is easy to show the
existence of the limit of g(x, A+2€). In fact g(x, A+i€)=1I,+1I; holds and
it is clear for I, from (7.15) and (7.20) and for I; from (7.21). Then we put
g+(%, N)=q(», A+20)+qi(x, A). This completes the proof of Theorem 7.1.

(1]
[2]
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