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1. Introduction
We shall study the following Cauchy problem:

(O +m)u(t,z) =0,
(CP) u(0,z) =0,
| Ou(0,z) = f(z).

Here the potential m = m(t, ) is non-negative. Our interest on this problem is in

(i) estimates for the solution,
and
(ii) the existence and the uniqueness of the solution,

on as weak conditions of the potential m as possible.

The equations which we have in mind include the free wave equation (m = 0)
and the Klein-Gordon equation (m = positive constant). For these special equations,
L2-estimates, together with the existence and the uniqueness of the solution, are well-
known. Furthermore, LP—L? estimates for the solutions

(1.1) lu®)llg = llu(t, 2)llg < Cpg(D)I flp,

which play an important role in the semi-linear problems, have been proved by many
authors; for the free wave equation, by Strichartz [6] and Peral [4] for the Klein-Gordon
equation, by Marshall-Strauss-Wainger [3]. Here (1/p,1/q) is in the triangle T172T3
(see Figure 1), and

(1.2) Cpalt) = CH1—n(/P=1/D)

for the free wave equation (similar constant Cpq(t) for the Klein-Gordon equation).
On the other hand, in the case when m is not necessarily a constant, we do not
have so many results. As for the existence, Strichartz [7] proved that the Cauchy
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Figure 1: the region of (1/p,1/q) for LP—L9 estimate

problem (CP) has the unique solutions u € L2(~1/(n=3)(R™) for initial data f €
L2(n=1)/(n+1)(R") and potentials m = m(t,z) € L(®~V/2(R"). As for LP-L esti-
mates, Beals-Strauss [1] proved that the solution u(t) satisfies the estimate (1.1) at 77,
that is, the estimate with (1/p,1/q) = (1/2+1/(n+1),1/2—1/(n+ 1)) = T1. They
proved it with the same Cpq(t) as that of the free wave equation when m is indepen-
dent of the time variable ¢ and its derivatives up to a certain order are bounded and
decay rapidly enough at infinity. We remark here that the estimate (1.1) at 7} is not
always true without the boundedness of m. In fact, if the estimate could be true, the
norm ||u(t)||, should decay as ¢t — oo. But if we take m = |z|?, —A + m has positive
eigenvalues, and the Cauchy problem (CP) allows a time periodic solution for some
initial data. That is a contradiction.

Recently Zhong [8] proved the estimate (1.1) for more general time-independent
smooth potentials, including m = |z|?, where the constant Cp,4(t) is the same as that
of the free wave equation, but the region for (1/p,1/q) is in the trapezoid P, P, P3Py.

The objective of this paper is to extend Zhong’s result to the case

(i) when m depends not only on the space variable x, but also on the time variable ¢,
and
(ii) when m(t, z) is not a smooth potential of x.
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In general, Cpq(t) is not always the same as that of Zhong’s (Theorem 2.1). But
if m fulfills some more assumptions, it turn out to be the same (Theorem 2.2).

This paper is organized as follows: In Section 2, we shall state our main results.
In Sections 3 and 4, we shall prove Theorem 2.1, and in Section 5 Theorem 2.2.

2. Results

Throughout this paper, we assume the following:

Assumption 2.1. The measurable function m(t, ) on R’}r“ =Ry xR" (n>3)
Sulfills the following:

(i) The function m(t, x) is non-negative.

(ii) There exist the derivative d;m(t,z) and non-negative functions . (t), u—(t) €
L} .(Ry) such that —p_(t)m(t, z) < dym(t,z) < py(t)m(t, z).

Then we have

Theorem 2.1. Let (1/p,1/q) be in the trapezoid Py P,Ps;Py. Suppose m(t) =
m(t,-) € CO(Ry; L; (R™)). Then, for any f € LP = LP(R"), there exists a unique

loc

weak solution u(t) = u(t,-) € L2 (Ry; LI(R™)) to (CP) which satisfies
@1 lu(®)llg < Cog(t)t' /P £
Here

t
Cexp (% / u+(3)d8) for (1/p,1/q) € APyPLPy,
0

t
Cexp(é / u—(S)dS) for (1/p1/q) € APoPyPy,

C max {exp <—;— /Ot ,u+(s)ds) , €Xp (% /Ot ,u_(s)ds)}

\ for (1/p,1/q) € APP\ P>

(2.2 Cpy(t) =

and C is a constant which depends only on the dimension n.

We remark that Theorem 2.1 with time-independent C? potentials . = m(z) and
smooth data f € C§°, which guarantees the solution to be sufficiently smooth, has been
given by Zhong [8]. In the case, Cp,(t) is just a constant.

On the other hand, in the case when m(t,x) is decreasing with respect to ¢,
m(t,x) = exp(—t) for example, we have that 1 = 0 and C},(t) is a constant function
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for (1/p,1/q) € APy P, P; while it is not necessarily true for (1/p,1/q) ¢ APy P1 Ps.
We run up against a similar situation in the case when m is increasing with respect to
t. But the following theorem says that it is true for (1/p,1/q) in the whole trapezoid
P, P, P3Py if |V,m(t)| = |Vym(t,-)| satisfies some integrability condition.

Theorem 2.2. Let (1/p,1/q) be in the trapezoid P,P,P3;P,. Suppose m(t) =
m(t, ) € CO(R,; Lj,o(R") N L (R H™2),

loc
1t
(2.3) sup—2/ [Vem(s)||n/2ds < oo.
t>1 t° Jo

Then, for any f € LP, there exists a unique weak solution u(t) = u(t,-) € Lo (Ry;
L3(R"™)) to (CP) which satisfies

(2.4) lu(®)llq < CZ, ()t /=1 £,
Here

Caat) = Cexp ([ 19am(s)lads)

« min {exp (% /0 t u+(s)ds) exp (% /0 t ,u_(s)ds>}

and C is a constant which depends only on the dimension n.

(2.95)

We shall consider several examples of m(t, z) which our theorems can be applied
to.

EXAMPLE 2.1. Let m=exp(exp(—t)). Then Cp(t) in Theorem 2.1 is a bounded
function since both py = 0 and pu_ = exp(—t) are integrable.

EXAMPLE 2.2. Let m = exp(t) [ m = exp(—t) resp. ]. Then CZ_(t) in Theorem
2.2 is a constant function since V,m =0 and y_ =0 [ u4 = 0 resp.].

EXAMPLE 2.3. Let m = exp(—t)¢(z) where ¢ € L], (R") and V¢ € L™/?(R™).
Then Cf,q(t) is a bounded function since V,m = exp(—t)V ¢ and gy = 0,u_ = 1.
We remark that m = exp(t)¢(x) does not have the same property.

EXAMPLE 2.4. Let m = o ((t* + 1)%z) where a > 1/2, ¢ € C*(R™), ¥(z) > 0,
Vi(z) -z < 0 and V¢p € L™/2(R™). Then C2,(t) is a bounded function since y14 = 0.
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3. Proof of Theorem 2.1 (smooth case)

The proof of Theorem 2.1 is divided into two parts. The first part (Section 3) is
devoted to prove the estimate (2.1) for smooth potentials and initial data, and the sec-
ond part (Section 4) the existence and the uniqueness for non smooth ones. Throughout
this section, we assume that m = m(¢t,z) is of C°(R4;C®°(R")) and f = f(z) is of
C§(R™).

The strategy to prove the estimate for smooth data is as follows: For smooth poten-
tial and initial data as assumed above, the problem (CP) has unique smooth solutions
u € C3(RTT) N CH(Ry; L2(R™)) N CO(Ry; HY(R™)) so as to justify the argument
below. First we prove the energy estimate (Lemma 3.1), which yields the desired esti-
mate (2.1) at Py with t = 1. Next, following the same argument as in Zhong [8], we
derive the estimate at P, with ¢ = 1 from the energy estimate as well. The estimate at
Ps is derived from that at P;. Duality argument and the interpolation theorem imply
the estimate at the rest with ¢ = 1. Scaling argument yields the estimate with general
t>0.

Before proving the theorem, we define some symbols: We write derivatives as
Oy = %, 0j = 0O, = %, and u; = Ogu, uj = Ug; = Og;u for a function u on ]RT‘l
and j = 1,--- ,n. We denote the characteristic function of the set E by xg, and use
the notation x:(s) = Xo,¢)(8). For T, R > 0, we define

(3.1 Br:={z €R":|z| < R},
(3.2) Qrr:={tz)eR}:0<t<T ,|z|<T+R-t},
(3.3) O p={(t,z) eRT":0<t <T,|z| < R+1t}.

For u € CP(RT™), B C R", t € Ry and z € R", we define the energy density
e(t,z) and the energy E(t, B) on {t} x B by

G elta) =5 (|l 0) + [Vau(t,2)]? +mlt, 2)lut, 2) P}

(3.3 E(t,B) :=/5(t,x)dm.
B

A constant which depends only on n is denoted by letters C' or C’, which we are not
necessarily the same at different occurrence.

Lemma 3.1. Let t, R > 0. Suppose that u satisfies (CP). Then

(3.6) E(t, Br) < exp([xtt+ 1) E(0, Bra+),
3.7 E(t, Br+t) > exp(—|Ixts—[11)E(0, Br).
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REMARK . By mollifying v in a usual way, we extend this estimate for the non-

smooth case, when u € C'(R;; L2(R™)) N C°(R4; H'(R™)). We shall use this fact in
Section 4.

Proof. We may assume that u is real-valued. Since u satisfies (CP), we have

n
1
0se(8, ) = us (uss — Au + mu) + Z(USUj)j + 5m8u2
j=1

n
E (usuj)j + = msuz.
=1

By ms < pym, we obtain

, (exp (— /O ) ,u+(0)d0) (s, a:)) _ f: 9, (exp (— /0 | ,u+(a)d0> usuj>

Jj=1

=exp (— /Os u+(0)d0) : (lmsu2 - u+€>

2
1 S
—lewp (— / u+(0)d0) (~em = mau? = o (2 + Vo))

<0.

Integrating this over {2; r, we have (3.6) since we obtain, from the Stokes formula,
t
0 > exp(—/ u+<0’)d0’)E(t, BR) — E(O, BR+t)
0

+ % » exp (— /03 ,u+(a)da) (E —usn(v) - (Vzu))dv
> exp(— /0 t u+(a)da)E(t, Bgr) — E(0, Brys),

where “side” = dQ; r — ({t} x BrU {0} x Bry:) and (1/v/2,n(v)/V/2) is the exte-
rior unit normal at v € side. Here non-negativity of the integrand

n 2
1 1
e —usn(v) - (Vyu —52 (uj | | ) + = mu >0

at v € side has been used. The estimate (3.7) is carried by the same argument if we
replace p4 by —p— and Q¢ g by 4 g.
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From this lemma, we have the estimate (2.1) at Py with ¢ = 1. In fact, since
u(0) =0,

e = [ 0uu®)adt
</ ) ot
< /O 1 V2E(t, R™)dt
< V2E(0,R™) exp (% /01 u+(8)d8>

<o (3 [ ) 171

Here we have used

(3.8) Fllu®)ll2 < flue(®)ll2,
which is derived from
2llu(®)l|28:llu(®)l2 = Oellu(®)|3
=8, / u(t) - u(t)dz
=2 / u(t)Bu(t)dz
< 2fju(®)ll2llue()l]2-

Next we shall prove the estimate (2.1) at Py. For p=2,q = (3 — )=, we have,
by Lemma 3.1 and Sobolev’s lemma [5, Theorem 2 p.124],

[u()llg < CIVau(D)llp
< C{2E(L,R")}'/

3.9 < Cexp (% /01 u+(3)d8> {2E(0, Rn)}l/z
< Cexp (% /01 u+(s)ds) 1 £1lp-

In order to derive the estimate at P3, we shall prepare a partition of unity and a
covering lemma. Let {B’};en be a covering of R™ of finite multiplicity by closed unit
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balls: B = {z : |z — z;] < 1}, UjenB’ = R™, 34 < oo such that
(e o)

(3.10) > xmi(z) < A.
j=1

Let {¢?};en be a smooth function which is subordinate to {B”},cn which satisfies
0< 65 < 1and ey (6)7 = 1.

We decompose f by {¢},en as f7 := @7 f. We denote by u’ the solution of (CP)
with f = f7. Then we have,

(3.11) F= 0 u=)
j=1 j=1
(3.12)  suppfi C{y:|ly—=z;/ <1},  suppw’ C{(t,y):|y—=z;| <t+1}.

Here we have noticed that Lemma 3.1 shows the finite speed propagation. For 7 > 0
we set Bi(r) = {y € R" : |y — z;| < r} and Aj(r) = {i : B'N BI(r) # 0}. Then
A;(r) satisfies

Lemma 3.2. We have

(3.13) sup #A;(r) < A(r +2)",

JEN

where A is the same constant as in (3.10) and #S denotes the cardinal number of the
set S.

Proof. If i € Aj(r), then |z; — z;| < r + 1 and therefore B* C Bi(r + 2). If
x € BI(r + 2), then the number of B* which contains z is, at most, A. From these
facts, we obtain

#0,) = 3 |BII/IB]

i€h, (r)
< A|Usen,nB'| /1B1]
< A|B(r +2)|/1B1]
< A(r+2)",

where B; is a unit ball.
Now we shall derive the estimate (2.1) at P3 with ¢ = 1 from that at P;. For
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(1/p,1/q) = (1/2 —1/n,1/2 — 1/n) = Ps, we have by the estimate at P,
I¢7u’ (D)llg < llu* (D)l
1 [t ;
<cew (3 [ nos) 17l
0
1 [t ;
= Cexp (5/0 N+(3)d5) lIxB, f*ll2

t
< Cexp (% / u+(8)d8> 1l

On the other hand, by the finite speed propagation, we have

(3.14)

(3.15) Pu(l)= Y ¢l

i€A;(2)

From Lemma 3.2, (3.14) and the Holder inequality we obtain

IFu)llg < D I¢u(D)llg

i€A;(2)

<con( [ neis) T 07,

'iEAj(2)

1/p
1 [t ;
< Cexp (_ y (s)ds) 17z
2 L * (2’6%%2) p)

Then we have by Lemma 3.2 again

lu(L)lg = Y e u()E

FEN

< Cexp ( Jne ds) T
JENIEA;(2)
( ds) T
iEN jEA;(2)
P d i||p
exp 5 ,u+ S) S ||f “p
1EN
( ) 1.

Thus we have obtained the estimate at Ps.
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Next we shall prove the estimate at P, and Py with ¢t = 1. Let (1/p,1/q) be at P
or P,. For this purpose, we shall calculate the formal adjoint of the solution operator
S(1,0). Here the operator S(t, s) is defined in a usual way as

(3.16) S(t,s): fr— u(t)
for the problem
3.17) (@O+m@)u(t) =0, (u,0u)|i=s = (0, f).

Lemma 3.3. Let ¢ be an element of C§°(R™) and w(t) = w'(7,z) a solution of
the following Cauchy problem,

(3.18) (2 - A+m(t—7)w(r)=0 in R,
(3.19) (w(O),c‘).rw(O)) = (0,9).

Then

(320) (S(t7 S)f’ ¢) = (fa ’UJ(t - S))

Proof. 'We have

0:-{(8:S(r,8) f,w(t — 7)) + (S(,8)f,0-w(t — 7))}
=(828(r,8) f,w(t — 7)) — (S(7,8) f, B3w(t — 7))
=((A =m(7))S(r,8) f,w(t — 7)) — (S(7, ) f,0%w(t — 7))
=—(S(r,8)f, (B +m(r))w(t — 7))
=0.

Here we have used the fact that we obtain (O + m(7))w(t — 7) = 0 from the equation
(3.18) by changing the variable ¢ to ¢t — 7. Integrating this equation from s to ¢ in7, we
have (3.20).

Since the function w is the solution of (3.18). and (3.19), the estimates (2.1) at P;
and P3 with ¢ = 1 imply

1 1

2 18,08l = [w@ly < Cexp (5 [ u-()ir ) ol

where 1/p+1/p’ =1/q+ 1/q' = 1. Here we have used Lemma 3.3 and the facts
(3.22) —pr(l=7)m(l —7,2) <O {m(l—7,2)} < p_(1—7)m(1 - T1,2),

1 1
(3.23) / pt(T)dr = / i (1 —7)dr.
0 0
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By the duality argument, we have the estimate

1
629 I501.0)ul < Cexp (5 [ (el ) 17y

at P, and P; with ¢t = 1. Thus we have obtained the estimate (2.1) at all the vertex of
the trapezoid P, P, P3P, with t = 1. By interpolation [2, Theoreml.1.1 p.2] we have
the estimate at the rest of the points.

In the last place, we shall calculate the dependence of the estimate on time variable
t by the scaling argument. We set 47(7,z) = u(ot,0z), m°(1,z) = o’m(oT,0x),
f?(z) = o f (o). Then these functions satisfy

(3.25) (02 +m(r,z))a° =0 in R,
(3.26) @°(0,-) = 0,8,4°(0,-) = f°,

and

(3.27) — g% (r)ym° (1, z) < 8, (7,z) < g (r)m’(r,z),

where i (7) = op+(o7). Then we obtain from the estimate (2.1) with 7 =1

(3.28) @ (1)llg < Co (I Ilps
where
1 o
(3.29) C’gq(l) :/0 g (r)dr =/0 pi(T)dr = C;q(a).

On the other hand, we have

(3.30) 12 (D)llq = o/ 4||u(o) g,
(3.31) 12 llp = o1 £ 1lp-

Letting 0 = ¢ in (3.28), (3.30) and (3.31), we obtain (2.1). Thus we have proved the
required estimate in Theorem 2.1 in a smooth case.
4. Proof of Theorem 2.1 (non-smooth case)

In this section, we shall consider the uniqueness and the existence for non-smooth
potentials and initial data.
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First we shall consider the uniqueness of the weak solution. It is enough to show
that a solution u of (CP) with f = 0 satisfies xp,u(t) = 0 for 0 < ¢t < T with any
R>0and T > 0.

Let ¢ be in (0,T) for any fixed 7. We have the integral equation

@1 u(t) = — /0 E(t — 5) * (mu)(s)ds,

where E(7)* = sinT|D;|/|D;| is the convolution with the fundamental solution for
the free wave equation. The supporting property of FE(7) yields

¢
4.2) XBpu(t) = _XBR/ E(t — 8) * XBry._. (Mu)(s)ds.
0

Taking the L9-norm, we have for 0 <t < T

t
IxBau(®)llq < Cr ] IXBrse_,muu(s)|pds
t
<Cr /0 1B ()X Bne, (s)]lgds
t
<Cr sup ||xBronm(s)]r / IxBrse,u(s)lods.
0<s<T 0

Here we have used the Holder inequality and the LP—L9 estimate

4.3) |E(s) * |lpqg = sup [E(s)*glly < COst—n(1/p=1/9)

gllp=1

obtained by Strichartz [6]. By Gronwall’s inequality, we have ||x35,._,u(t)|lq = 0
for 0 < s <t and therefore |u(t)||q =0for0 <t <T.

Next we shall prove the existence of the weak solution and the estimate (2.1) for
u. We may assume f € C§°(R™) because the general case can be obtained from it
by the approximation argument. We may also assume r # oo, because the case where
m € CO(Ry; LS,) guarantees existence of a solution u € CO(Ry; H') N CY(Ry; L?),
which is smooth enough to satisfy the energy estimate Lemma 3.1.

We take a smooth non-negative function ¢ of z which satisfies ||#||; = 1 and is
supported in {|z| < 1}. We define ¢"(x) := n~"¢(n~'z) and approximate m by
mT(t,x) = m* ¢"(t,x) € CO(Ry; C®(R™)).

Now we shall consider an approximated Cauchy problem

@.4) O+mMu?=0 in RI",
(45) (u"l, atun)lt=0 = (07 f)y
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which is also expressed in the integral form

(4.6) u™(t) = E(t) * f — /Ot E(t — s) *x (m"u")(s)ds.

We shall show the existence of lim, o u"(t) in L9(R™), which is to be the weak
solution to (CP). Since u” — u? is the solution of the approximated problem

4.7 (@ +m")(u" —uf) = (m? —m")u®

(4.8) (u" = u’, 8, (u" — u?))(0) = (0,0),

we have

4.9) u'(t) —ub(t) = /t S7(t, s)(m® —m")u(s)ds.
0

Here S7(t, s) denotes the solution operator f +— wu to (3.17) with m replaced by m".
Assume 6,7 < 1 so that supp#® C {|z| < 1} and supp ¢” C {|z| < 1}. By the
finite speed propagation and the compactness of supp f, we have for some R > 0

u"(t) = u®(t) = X,y (U () —u°(2))

= X | 5706,5)m*(5) ~ m(o)e)ds

= X || 5005 (m(6) = )1

= XBu+r /0 t S"(t, 8)XBavs n (9" — %) * (XBrsaus nm(s))u’ (5)ds
Hence, by the Holder inequality, .

lun(t) = (2)]lq
< /0 17, ) lpall (@7 — 6°) % (XBr 1201 21(5))u" ()| s

t
<[l
0
On the other hand, applying the estimate (2.1) to the problem (4.4) and (4.5) with the
potential m”, we have the LP—L? estimate

(@" ~ 6°) * (XBryaerat(3)) I |0’ () ds-

(4.10) [w(t)llq < Cag()Er—/2=1/D) 5],
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or more generally,

(4.11) I187(2, 5)llp,q < Cpy(t, 8)(t — 8)' /P10,

for (1/p,1/q) in the trapezoid Py P,P3Py. Here C},(t,s) is defined by (2.2) with fot

replaced by fst Then for fixed T, (4.10) and (4.11) lead to

(4.12) lu”(8) =’ (®)llq < CT/o 16" = ¢°) * (xBs 12012 (8) In sl 11

for 0 <t < T. We remark here that C7 can be taken independently of n and theta by
the definition of m"” and C;q. Futhermore, we have

(4.13) (87 = 8°) % (XByrsarenm ()]l — 0

as 7,0 N\, 0 since ¢" x g — g in L™ as  \, 0 for g € L"(R™) (r # o). Hence
{u(t)}, is a Cauchy sequence in L? and has a limit

(4.14) u®(t) € L2 (R, ; LI(R™))
as 11 %, 0, which satisfies, by (4.10),

O(#)llq = lim |Ju"(¢
@15) 1™ (®)llg = lim [lu"(®)llq 1
1 1-n(1/p—
< Cpg ()t H/P= D £l

Thus we have finished the proof of Theorem 2.1.

5. Proof of Theorem 2.2

In this section, we shall prove Theorem 2.2. We have only to show the estimate
for f € C§°(R™). In fact,

1 1
50 10l < Coxp ([ IVen(loyads + 5 [ u-@)ds ) 151,

from (5.1) and (2.1), we obtain

1
lu(D)]l; < Cexp ( / nvzm(snu/zds)

min fep (5 | 1 s ) exo (5 [ 1 u-(9)ds) bl

(5.2)
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This estimate is extended to all (1/p,1/q) in the whole trapezoid P, P,P;P; and we
have the estimate (2.4) by scaling argument.

Let (1/p,1/q) = (1/2,1/2 — 1/n) and u be the solution to (CP). Then d;u is
equal to the solution v of the problem

(O+m)v = —(9;m)u,
(v,8p0)e=0 = (0,0, f)-

Hence we have an.integral equation
¢
(5.3) Ou(t) = S(t,0)(0;f) —/ S(t, s)(0;m(s))u(s)ds,
0

where the solution operator S(t, s) is defined as in (3.16). Operating the Riesz potential
of order 1 on both sides of this equality, we get

Rju(t) =I'0ju(t)
t
5.4 =1S5(.00,f ~ [ 115(t5)@ym(s)uts)ds
¢
—1'S(t,0)[ 'R, f — / 1'S(t, 5)I 1" ((3;m(s))u(s) ) ds.
0
Here we call the operator I* = F~1|¢|~*F the Riesz potential of order o, and R; =
F~1E;/|€|F the Riesz transform.
In order to estimate ||u(1)||4, we shall consider the LP—L9 operator norm

|71 S(t,s)I~||p,q- Applying Lemma 3.1 to the Cauchy problem (3.18) and (3.19), we
obtain from Lemma 3.3

1 t
65) 19:50.9)"6ll < Coxp (5 [ () ) Il

Hence we have for t > s
II71S(t, 8)* M u(s)||2 < C||V2S(t, 8) T u(s)|l2
1t
< Cexp (—2—/ /.l,_(’T)dT) 11 u(s)|2
1 o
< 0exp (3 [ n-rr) Bt jzeasmy

Here we have used the equivalence of the operator norms of /=! and V, and the
L2-L(1/2+1/m)™" pondedness of the Riesz potential. This implies, by duality,

' t
5.6) 1ILS(t, 8) T [pg < exp <% / u_(T)dT>.
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On the other hand, we have

17 ((Vam)(s)u(s))llp < Cl(Vem)(s)u(s))ll1/2+1/m)-2

(5.7) /
< C'[[Vam(s)lny2llu(s)llq;

by the mapping property of the Riesz potential again and Holder’s inequality. Applying
(5.6) and (5.7) to (5.4), we have

oy O Gf u_lde) 171
—f—(]/0 exp (%/g #—(T)dr) Vem(s)lln/2llu(s)llqds,

where we have used the equivalence of the norms ||g|| and Z;;l |IR;g|l. Denoting

exp (—% fol p,_(T)d’T‘) |lu(1)|lq by J(1), we rewrite the above inequality as

1
(5.9) J() < |l + /0 1V 212l ()ds.

Then we have, by Gronwall’s inequality,

1
(5.10) J(1) < Cexp ( /0 nvzm<s)nn/2ds) 1l

that is (5.1). Thus we have proved Theorem 2.2.
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