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Positive Linear Functionals on Ideals of Continuous Functions

By Junzo Wapa

Let N be the set of all continuous functions on a compact Hausdorff
space or the set of all continuous functions whose carriers are compact
on a locally compact Hausdorff space. Then any positive linear functional
T on N has an integral representation (Kakutani [127] and Halmos [8]),
so any T has the condition (MA’), i.e. T(f,) converges to T(f) for any
fe€N and for any sequence {f,} <N with f,1 f. Let X be a locally
compact space and let Y be the one-point compactification of X ([1],
p. 93). Then we can regard the set of all continuous functions whose
carriers are compact on X as an ideal (=/-ideal. §1) of C(Y), the set of
all real-valued continuous functions of Y. V.S. Varadarajan [16] raised
the following question: Let X be a compact Hausdorff space and let N
be an ideal of C(X). When can we say that all non-negative linear
functionals on N satisfy the condition (MA’)®? An ideal N is said to
satisfy the property (A) if T satisfies the condition (MA’) for any non-
negative linear functional 7 on N (§1). In this paper we consider more
generalized problems. After some preliminaries in § 1 we consider in §2
the above problem in the case where X is a completely regular space.
We characterize ideals which satisfy the property (A) under some condi-
tions (Theorem 4). In §3 we prove that any m-closed (ring-) ideal
satisfies (A) (Theorem 5), and in §4 we show that an «-ideal satisfies
the stronger property (B) (§1) if it satisfies (A) in the case where X is
a normal @-space (Theorem 6).

§1. Preliminaries.

Throughout this paper, spaces are always completely regular Haus-
dorff spaces.

For a space X, a subset N in C(X) will be called an /-ideal® (or,
briebly, an ideal) if the following conditions are satisfied :

(i) if f, g€N, then f+gé€N,

(ii) if f€ N and ¢ is any real number, then #f€ N,

(iii) if f€N, |g|®<f, then g€N.

1) See, Bourbaki [3]. Varadarajan [16] used the term “os-smooth” in place of ‘“the
condition (MA”)”. Numbers in bracket refer to the references cites at the end of the paper.

2) See, Birkhoff [2].

3) For any function f, |f|(2)=|f(2)].



174 J. Wapa

Let X be a space and let f be in C(X). Then we put
Z(f)={x|x€X, f(x)=0},
P(f)={x|x€X, f(x)>0},
PBX)={P(f)|feCX)}.
Let N be an ideal. Then we put
Z(N)=\Z(f),
fen

PB(N)={P(f)|f €N}.

Let N be an ideal and let T be a non-negative linear functional.
Then T is said to satisfy the condition (MA’) (resp. (MA)) if T(f,)
(resp. T(f,)) converges to T(f) for any f€N and for any sequence
{fa} TN (resp. for any directed set {f,} C N) with f,1f (resp. fa 1 )"
An ideal N is said to satisfy the property (A) (resp. (B)) if T satisfies
the condition (MA’) (resp. (MA)) for any non-negative linear functional
T on N.

Let N be an ideal. Then we put

K={f1feC(X), ®pqs,<some heN},
K*=Kn C¥X),

where C*(X) is the set of all bounded continuous functions. We denote
by @4 the characteristic function of a set A. We easily see that K and
K* are ideals and both are contained in N. If X is compact, then we
have that K=K*={f|fe C(X), the carrier of f is contained in some
compact subset of Y=X—-Z(N)}.

Let N be an ideal. Then N is called an a-ideal if f €N for any
feC(X) with |f]AneN (n=1,2,3,---). If X is compact (or pseudo
compact), then any ideal is an a-ideal, and if X is locally compact, the
set of all continuous functions whose carriers are compact on X is an
a-ideal. If Nis an a-ideal and if f€ K, then we have that K D {g|g¢€
C(X), P(1gl)P(f)}.

Let X be any space. Then E. Hewitt [10] introduced a Baire measure
on B(X). Let N be an a-ideal and let T be a non-negative linear func-
tional. Similary, we can introduce a countably additive measure on L(K)
as follows.

Let G be any set in P(K). We define the measure y(G) as sup T(f),

4) Let A be a directed system. Then { fy}aca is said to be a directed set if for any pair
@, @ With &, >y, fo,;>fa,. “fotf” means that lim fy(x)=f(x) for any x. We see that
2
a non-negative linear functional T on N satisfies (MA’) (resp. (MA)) if T(f,) (resp. T(fx))
converges to T(f) for any f(=0) € N and for any sequence { f,} C N (resp. for any directed
set {fo}C N) such that f, 1 f (resp. fo?f) and f,=0 for any n (resp. fo>0 for any a)
(Cf. [14]).



Positive linear functionals 175

where f runs through the set of all functions in K such that 0< F<¢g.
By the similar method as Hewitt [10], we have
(1) a) G H implies that y(G)<v(H),
b) 0<HG)<+ oo
c) v(0)=0,
G and H being arbitrary sets in L(K).
(2) Y GUH)Xv(G)+v(H) for any G, H in P(K).
3) If G, HeB(K) and GNH=0, then ¥ (G H)=v%G)+v(H).
(4) Let G,, G be in B(K) and let GC\JG,. Then %(G)<31v(G,).

For any subset AC X, we put

7HA) =inf {Z%G,), AC\JG,, G, €K}

if this set is non-empty, and y*(A)= + o otherwise.

Then we have
(5) a) 0=<9*(A) for any ACX,

b) ¥*A)=v*B) if ACB,

o) (\JA)=37KA,) for all {A,, 4, -, A,

d) ¥*(G)=v(G) for any G € P(K).
(6) Every set in P(K) is measurable with respect to the outer measure *.
(7) The outer measure v* is countably additive on the family PB(K),

where B(K) is the smallest family which contains B(K) and closed

under the formation of complements and of countable unions.

(8) For any non-negative function f¢€ K, there exists some @ >0 such
that y[x|x e X, 0<f(x)<a]=v(P(f)).

If X is a locally compact space and if N is the set of all con-
tinuous functions on X whose carriers are compact, then we easily see
that (G)=w(G) for any G € PB(N)=P(K), whose p is the measure in-
troduced by Halmos ([8]. p. 247, Theorem 8).

By the similar method as Hewitt, we have that for any «a-ideal N and
for any fe K, T( f):S f(x)dy(x). If T satisfies the condition (MA’) and
if f is a non-negative function in N, then g,=f—fAxn"'1f and g,€K,
so T(f )=S f(x)dy(x). Therefore we have

Let N be an a-ideal. Then a non-negative linear functional T satisfies
the condition (MA') if and only if there exists a countably additive measure
v on B(K) for which

T(f) = Sf(x)dv(x) (fEN).
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Let X be a space and let O(X) be the set of all open subsets in X.
By a Borel measure, we shall mean a real-valued function vy defined on
O(X) which is countably additive, where O(X) is the smallest family
which contains O(X) and closed under the formation of complements
and of countable unions.

Let N be a set of continuous functions such that (i) NV is a linear
lattice, (ii) if f€ N, then 1A f€ N and (iii) for any closed subset F and
for any point p with p ¢ F, there is an f€ N such that f(F)=0, f(p)=1
and 0<f(x)<{1l. Then Ishii [11] proved the following: Let T be a
positive linear functional on N having the condition (MA). Then there

is a reducible® Borel measure v on X such that 7(f)= S fx)dr(x) (f €N).
Similarly, we have '

Let N be an ideal and let T be a positive linear functional on N
having the condition (MA). Then there is a reducible Borel measure v on
Y=X—-Z(N) such that

T(f) = SY f@)dy(x)  (FEN).

§ 2. Property (A).
We first prove the following lemmas.

Lemma 1. Let N be an a-ideal and let T be a non-negative functional
on N. Then the restriction T, on K of T satisfies the condition (MA’).

Proof. By §1, there is a measure v such that for any fe K T,(f)=
T(f ):S Sf(x)dy(x), so the lemma is clear.

This lemma can also be proved directly.

Lemma 2. If N is an a-ideal, then it is a ring, i.e. if f, g €N, then
fEEN.

Proof. Let f€éN f=0 and let m be a natural number. Then
mf—(f2amy=mf—f(fam)=f(m—fAm)=0, or mf=f*Am. Since fEN
and N is an a-ideal, f*€N. If f, g€ N, then fge N since (|f]+|gl)*

=4|rgl. '
We can prove the following theorem.

Theorem 1. Let N be an a-ideal. Then the following conditions are
equivalent :

5) A measure v on X is said to be reducible if there is a closed subsets F in X such
that F is measurable and y(X-F)=0. (Cf. [13]).
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(1) N satisfies the property (A).

(2) If T is a non-negative functional on N such that T(K*)=0, then T
is identically zero.

(3) If T is a nomn-negative functional on N such that T(K)=0, then T
is identically zero.

Proof. (1)—(2). Suppose that there is a positive functional 7T on
N such that T(K*)=0 and T(f)=1 for som feN, f=0. Put f,=(f—n)
v(fan™). Then f,10. We easily see that @, ,,<<nf€N and
0L f—fun, so f—f,€ K¥ and T(f)—T(f,) =0, or T(f,)=T(f)=1 for
any #. This shows that (1) does not hold.

(2)—(3). Clear.

(3)—(1). Let T be a non-negative linear functional on N. For any
feN f=0, we put T'(f)=inf }‘im T(f,), where f,=0 (n=1, 2, 3, ---) and

f»1f, and the infininum is taken for all sequences {f,} such that £, 1 f,
f,=0and f,e N. Then we have that for any f, g€N f, g=0, T'(f+g)
=T'(f)+T’(g) and for any real number {=0, T'(¢f)=¢T'(f). For any
arbitrary function f€ N, we define T(f)=T(f*)—T'(f "), where f* and
f~ denotes fvO0 and (—f) VO respectively. Then 7" is a linear functional
on N and T=T'. Put T”"=T—-T’, then T” is non-negative linear
functional on N. But, by Lemma 1, 77(K)=0 and by (2) T”=0, so
T'=T. This shows that N has the property (A)*.

If N is an ideal which is not an a-ideal, we can easily see that
Theorem 1 does not always hold.

DErFINITION. An ideal N(=N,,) will be called a principal ideal if there
exist a non-negative function f, €N such that N={g|gec(C(X), |g|<af,
for some «=0}. An ideal N will be called a 0-principal (resp. oo-prin-
cipal) if there exists a non-negative s-function (resp. an unbounded
function) f, such that N={g|geC(X), |g(x)|<af(x) on U, for some
a0 and some natural number m} (resp. N={g|ge C(X), |g(x)|>af(x)
on V,, for some @>0 and m}), where U, = {x|x € X, < f(x)<m '} and
V,={x|xe€X, f(x)_>m}. A positive function f is said to be an s-function
if it admits any small value, i.e. U, is not empty for any m. If X is
compact, then any O-principal ideal is principal, but it is not true in
general.

Theorem 2. (1) A principal ideal N (=N;) fulfills the condition (A)
if and only if Z(f,) is open, Y=X—Z(f,) is pseudo-compact® and N=
{flfeC(X), H(Z(f))=0} (it is lattice-isomorphic to C(Y)).

6) A topological space X is said to be pseudo-compact if any continuous function on X
is bounded.
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(2) Any O-principal (or oo-principal) ideal N(=Ny) does not fulfill
the condition (A).

Proof. (1) Suppose that N fulfills (A). Then we put U,={x|x € X,
0< fo(x)<m*}. If for any » U, is not empty, we can select a point
x, in U,. We put M={g|g €N, lim g(x,)/f,(x,) exists}. For any ge M,

we define T(g)=lim g(x,)/f,(x,). Then T is a positive linear functional

on M. For any g € Ny, there exists an m_>0 such that |g|<{mf,. Since
mf, € M, T is extended to a positive linear functional on N, (Cf. [4]
p. 20). We denote it again with 7. If f,=f,A1/n, we have that £, | 0
and T(f,) =1 for any #n. Since T satisfies (MA’), it is a contradiction.
This fact shows that U,, is empty for some m, or f(x)=m™* for any x
with f(x)==0. Therefore Z(f,) is open, so Y=X—-Z(f,) is open and
closed. Let f’ be the restriction of f on Y. Then NA(C C(Y)) satisfies
the property (A). For any non-negative linear functional 7% on C*(Y)
and for any %€ Ny, we define T,(h)=T*(k/f’). Then T*(g)=T,(f'g) for
any g€ C¥*(Y). We easily see that C*(Y) satisfies (A). By Glucksberg
[5], Y is pseudo-compact and Ny=C*(Y)=C(Y). The converse is clear
by [5].

(2) We define U,, M and T as (1). Then T is a positive linear
functional on M. For any g € N, there are a positive integer m and o >0
such that |g(x)| < afy(x) on U,. We put k=af,Vv |g|. Then #€ M and
|g|<h, so T is extended to a positive functional on N. If f,=f,An",
then 7(f,)=1 for any n and f, | 0. This is a contradiction.

RemaArRk. If X is an infinite (completely regular) space, then there
is an a-ideal in C(X) which does not satisfy (A). For, if X is infinite,
then there is an s-function f € C(X), so the O-principal ideal N, does not
satisfy (A) (Theorem 2. (2)). We easily see that N, is an a-ideal.

DeFINITION. A directed set® {f,}a.ca Of positive functions (C N) is
called a base of an ideal N if for any f€ N there is an f, such that
| f| <mf, for some m.

Let f be a positive s-function in C(X) and let g be any function in
C(X). Then we define

lim g/f = lim sup g(x)/f(x) ,
lim g/f = lim inf g(x)/f(x) ,
where U, = {x|xe X, 0< f(x)<n'}.

If li_mg/le'Lﬁl g/f, we write simply lim g/f (admits + co).
k>0 I f>0
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Theorem 3. Let N be an a-ideal and let {f,}aca be a base in N.

If for any s-function f, there is an fg such that hm lim fg/fu= oo, then N
satisfies the property (A).

Proof. Suppose that N does not satisfy (A). By Theorem 1 there
exists a positive functional 7 such that T(K)=0 and T(f)=1 for some
positive function f€N. Since {f.}sca is 2 base in N, there is an f,
and a positive constant ¢ such that 0<{f<(c¢f,. Now let f, be an s-
function. Then by the hypothesis, there is an f; such that }171’110 felfo=00

Therefore, for any positive number M there is an m such that fg(x) >
Mf (x) if xeU,. Weset W, ={x|x€X, 0 fo(x)<m '} and F=X—-W,,.
Then if xe W, falx)<Mf,(x). Let 2 be a function in K* such that
h(F)=1. Then we easily see that Mf i+ fs=Mf,, or cMf,h+cfe=cMf,
=My. Since fihe K, T(fsh)=0, so ¢cT(fg)=M. But M is an arbitrary
positive number. This is a contradiction.

Next, let f, be not an s-function. Then if f,(x)==0, f.(¥)=6 for
some positive number 6. The set P={x|x€ X, f,(x) >0} is open and
closed and N DO {f|fe C¥X), f(Z(f,)=0}. Since N is an a-ideal, N DN,
={flfeCX), f(Z(f,))=0} and K DON,. Since T(K)=0, T(N,)=0. But
feN, and T(f)=1. This is a contradiction. ‘

Finally, we characterize ideals which satisfy the property (A) under
some conditions. We see that these conditions are necessary as the later
example shows.

Theorem 4. Let N be an a-ideal and let it have a base {f.,} such
that for amy s-function f, and for any fz with B> some o (& depends
on &), lim fg/f, exists (admits+ ). Then N satisfies the property (A) if

fa>0

and only if N is not O-principal.

Proof. If N satisfies (A), then by Theorem 2. (2), N is not O-prin-
cipal. Conversely, suppose that N is not O-principal. Then for any f,
which is an s-function, there exists an fz such that lim fg/f,=co. For,

/w()—)

otherwise, there would exist an s-function f, such that for any f, € {f,}
lim f,/f,< some M,<_+ o, i.e. if x€ U, then fy(x)<M,f,(x) for some
fa>0

m and M} >0, so N would be a O-principal ideal N,,. This is a contra-
diction. We can here assume that for any « the above 8_>«’. There-
fore, by the hypothesis, for any s-function f, there is an f; such that
lfi_mofs/f,,=<>0. By Theorem 4 N satisfies (A).

Let X be a locally compact space and let N be the set of all con-
tinuous functions on X whose carriers are compact. Then N*={f|fe€N,
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f>0} forms a base which satisfies the hypothesis of Theorem 4. The
ordering of the directed system for the base can be defined as follows:

a>RB if fo>Ppsy for any fa, fp in N*.

ExamMpLE. The hypothesis in Theorem 4 is necessary. The following
example shows it. Let X be the closed interval [0, 1] and let N be an
ideal having a base {f,}. For any » we define: f,(x)=x if x=2""" or
x=0 (m=0,1,2, ), fu(x)=2"" if x=2""*"" (m=0, 1,2, ---) and it is linear
on the intervals [2-"*Y 2-"] (m=0, 1, 2,-::). We see that N is an
a-ideal (since X is compact) and is not O-principal. But N does not
satisfy (A). For, Put M={f|f€N, 3im 27 f(27*") exists}. Define T(f)=

lim 2**£(27%*") for any fe M. T is extended to a positive linear functional

on N (Cf. [4]. p. 20) Set g,,=f,Am™*. Then we have that g, |0 and
T(g,,)=1 for any m, so N does not satisfy (A).

§3. Ring-ideals.

A subset N in C(X) is called a ring-ideal® if it satisfies the following
conditions : ~

(i) if f, g€ N, then f+g€N,

(i) if fe N and if 2€ C(X), then Af € N.

A ring-ideal N is said to be m-closed if N is closed in the m-topology
C(X). Any neighborhood of f¢€ C(X) in the m-topology is the set {g|g
€C(X), |g—f|<m} for some everywhere positive function = € C(X) ac-
cording to Hewitt [9]. Shirota [15], and Gillman, Henrikson, and Jerison
[7] proved that any m-closed ring-ideal is an intersection of some maximal
ring-ideals. We shall show that any m-closed ring-ideal is an a-ideal
and it satisfies (A) (Cf. Theorem 5).

The following lemma is proved by [16] in the case where X is
compact.

Lemma 3. Let N be an a-ideal and let it have the property such
that if f€N then |f|V*€ N. Then N satisfies the property (A).

Proof. Suppose that a positive functional 7 on N satisfies the prop-
erty such that 7(K)=0 and 7(f)=1 for some positive f€ N (Cf. Theorem
1). We put g,=(nf—f"*)v0. Then #*f =@p,, and g, € K. 0=T(g,)=
T(nf—f"?), or T(f*»=nT(f)=n for any n. This contradiction proves
the lemma.

We can easily prove the following lemmas.

7) We use the word “ring-ideal” to avoid the confusion.
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, Lemma 4. If N is a maximal ideal (=l-ideal), then it satisfies the
property (A).

Proof. By Lemma 3, it is sufficient prove that (i) for any positive
fin N, f¥*€ N and (ii) N is an a-ideal.

(i) Suppose that fe€ N and f“*¢ N. Since N is maximal, the set
{h|heC(X), MfV*+g=|h| for some positive g€ N and for some A >0} is
identical to C(X). Therefore Af*?+g= f* for some positive g€ N and
for some A >0, or g=fY*—Af2=f"(1—-\f"). For any x in X with
f)<(2N) 7, g(x) >1/2f"%(x), or 2g(x)>f"4(x). For any x in X with
L) 2N NP () =4 %) =N 2MF 4 (x) —1) >0, or (2MPf (%) > (x).
Therefore 2gv (2\)f>fY, and so f7*e€N. By Lemma 2, we have
f¥2e N. This contradication proves (i).

(ii) Let f be a positive function in C(X) such that for any #» fAneN
and f¢ N. Since N is a maximal ideal, the set {k|Af+g=|k| for some
positive g € N and for some A_>0} is identical to C(X). Therefore
M +g=f* for some positive g€ N and A >0, or g>=f*—Af=f(f—N\).
For x€ X with f(x)>14+X\, we have g(x)>f(x). For xe X with f(x)<_
1+X, we can select a natural number # such that n>1+A. If we
put f,=fAn, then (1+N)¥3f%x)> f(x). Therefore gV (1+A)2fY2> f.
Since fY*e N by (i), f€ N.

Lemma 5. A maximal ring-ideal is a maximal ideal.

Proof. Let M be a maximal ring-ideal. Then we must first prove
that it is an ideal. We put M,={f|f€ C(X), |f|<ag for some positive
g€ M and some «_>0}. Then M, is a proper ring-ideal (for, M, %1 since
M#%1), and MCM,, so M=M,, i.e. M is an ideal. To prove the lemma,
it is sufficient to show that if N is a maximal ideal, then it is a proper
ring-ideal. We put N,={f|fe€C(X), |f|<hg for some positive & € C(X)
and some g€ N}. Then N, is an ideal and NCN,. Therefore it is
sufficient to prove that N, is proper. Suppose that N,=C(X). Then
there exist 2 € C(X) and g € N such that 2g>1, so g is everywhere positive.
If we put N={fg™*; fe N}, then N’ is a maximal ideal and N'>1. By
the proof of Lemma 4, N’ is an a-ideal, so N'=C(X) and N=C(X).
This is a contradiction.

Now we can prove the following theorem.

Theorem 5. Any m-closed ring-ideal is an a-ideal and it satisfies the
property (A).

Proof. Let N be an m-closed ring-ideal. Then N is an intersection
of some maximal ideals M, ([15] or [7]). Any M, is a maximal ideal
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(Lemma 5) and by the proof of Lemma 4, any M, is an a-ideal and has
the property such that for any positive fe M,, f“?€ M,. Therefore N
is an a-ideal and has the property such that for any positive f € N,
f¥*e N. By Lemma 3, N satisfies (A).

ReEMARK. If X is a P-space (Cf. Gillman and Henriksen [6]), then
any ring-ideal in C(X) satisfies (A) since any ring-ideal is m-closed ([6].
p. 345).

ExaMpPLE. An m-closed ideal (not a ring-ideal) does not always sat-
isfy the property (A). Such an example is the following: Let X be the
semi-line [0, o) and let N={f|fe C(X), |f(x)|<ax for some a_>0 and
for x=1}. Then we easily see that N is an m-closed ideal but it does
not satisfy (A) since N is oco-principal (Cf. Theorem 2. (2)).

§4. Property (B)

Let X be a locally compact space and let N be the set of all conti-
nuous functions whose whose carriers are compact on X. McShane [14]
proved that N has the propety (B). We can regard N as an ideal in
C(X,), where X, is the one-point compactification of X. We here consider
ideals in C(X), where X is a Q-space. @-spaces are considered in [9].
Any separable metric space or any locally compact Hausdorff space which
is sum of countable compact subsets is always a @-space [9]. We here
show that an a-ideal satisfies the property (B) if it satisfies (A) in the
case X is a normal @-space.

We first prove the following

Lemma 6. Let X be a normal Q-space and let F be a closed subset
in X. Let Y be the decomposition space® consisting of F and all elements
in X—F. Then Y is also a Q-space.

Proof. Let @ be the mapping such that ¢ (y,)=F and ¢ Yy) is a
set consisting of only one point for any y€ Y, y==3,. Then @ is conti-
nus. Now suppose that Y is not a Q—'space. Then there exists a family

8) Let X be a topological space and let {Fy} be a division by closed sets of X, i.e.
X=\JF,, any F, is closed and elements of {F,} are mutually disjoint. We can consider new
space Y whose points are {F,}. This space is called the decomposition space of X if for any
open set UDF,, there exists an open set V) Fy such that Fg~ V==0 implies that F,C U.
For anypoint y,=Fy in the decomposition space Y, any neighborhood of y, is the set {y|y=Fg,
FgC U} for some open set U in X (Cf. [1]). Then there exists a continuous mapping from
X onto Y.
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FB(Y)” such that (i) § is Z-maximal, (ii) any countable family of §
has a non-void intersection and (iii) /\% B=0 (Cf. [9]). Let 9={A|A
Be

€ B(X), ADp'B for some BeF}. Then we shall first prove that 9 is
Z-maximal. If © is not Z-maximal, then there exists an A4,¢ 9 (4, € 3(X))
such that ¢ 'BNA,=+0 for any Be . Since A, ¢, A, 39 'B for any
Be$, so pA, DB for any Be . For, if A, DB for some Be€ g, by (iii),
there exists a B, € § such that @A, DB, and B, y,. Therefore A, >¢™B,.
This is a contradiction, so @A, DB for any BEF. Let A,=Z(f) (f € C*(C))
and let V(y,) be a neighborhood of y, in Y. Then f¢'is continous on
Y—V(y,). Let g be an extended continous function of fe*|(Y—V(y,)) on
Y (Y is a normal space). Then we have Z(g)C pA,vV(y,). We take a
B, €% B, %y, and V(y,) such that V(y,)nB,=0. To prove that Z(g) £, we
suppose that Z(g) €¥. Then pA, DpA,NB,=(pA,v V(y,))"B, DZ(g)NB,
and Z(g)nB, €%, this is a contradiction. Since & is Z-maximal, there
exists a B€® such that BNnZ(g)=0. We can assume that B3y, and
BnV(9)=0. 0=p ' BN (Z(2) Dp ' Bne (pA,—V(3) =p [ BN (pA—
Viy)l=9 (BnpA)=9pBnA,. But »'BnA,=0. This contradication
shows that  is Z-maximal. We easily see that any countable family

of © has non-empty intersection and [\®A=0. Therefore X is not a
Ac
Q-space. This shows that Y is a @-space.

By this lemma, we have

Theorem 6. Let X be a normal Q-space and let N be an a-ideal.
Then N satisfies the property (B) if and only if N satisfies the property (A).

Proof. It is sufficient to prove that if N satisfies (A), then it satisfies
(B). Suppose that N satisfied (4). Let T be a positive liner functional
on N and let f be a positive function N. Then we define T'(f)=
inf liin T(f,), where any f, of a directed set {f,} is non-negative and

f 1S, and the infinimum is taken for all directed sets {f,} such that
folf, fo=0 and f,€N. Then we have that for any f, g(=0)€ N,
T(f+g)=T(f)+T'(g) and T'(¢f)=tT'(f) for any £=0. For any f€ N,
we put T(f)=T(f")—T/(f"). Then T’ is linear functional on N. If
we put 7”7/=T-—T’, then T”=0. To prove that T=7T", it is sufficient to
show that T”(K)=0 (Theorem 1). Therefore we have only to show that
for any positive function fe€ K, T| K, satisfies the condition (MA), where
K,={glgeK, P(|g|)ZP(f)}. Since N is an a-ideal, K,={g|gec C(X),
P(lg))ZP(f)}. If we put F=P(f)®, we can regard K, as the set of

9) For any topological space X, we denote by 3(X) the family {Z(f)|feC(X)}.
10) For any subset A, A denotes the closure of A.
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all functions in C(F) vanishing of F—P(f). Therefore to prove the
Theorem, we have only to show that if M is the set of all functions in
C(F) (F is a @Q-space) vanishing on a fixed closed subset A in F, then
M satisfies (B).

(i) If Ais the empty set, then M=C(F). If T is a positive linear
functional on M, then there are a Baire measure y on F' and a compact

set CCF with T(f )=S f(x)dy* (fe M) ([10]. Theorem 18). Therefore
M fulfills (B)™. c

(ii) Let A be a set consisting of one point and let A=(p). Let T be
a positive linear functional. Then T is continuous, i.e. ||T||= sup T( <<

+ oo, We can assume that ||T]|=1. We put for any f¢€ C(F), T*(f)=
T(f—F(PN+f(P). We easily see that T* is a positive linear functional
on C(F). By (i) T* satisfies (MA) and so does T.

(iii) If A is an arbitrary closed subset in F, let Y be the decom-
position space consisting of A and {x},cr-4. Then by Lemma 6 Yis a
@Q-space. Let @ be the mapping such that ¢ (y,)=A4 and ¢ '(y) is a set
consisting of only one point for any y€ Y, y==y,. For any f€ M we put
() =f(p~'y), then f’ is continous on Y. M*={f’|fe M} is the set of
all continuous functions vanishing at y,. Let T be a positive linear func-
tional on M and let T(f')=T(f) for any f'€ M*. Then 7T, is positive
on M*. By (i) 7, satisfies (MA) and so does 7.

Let N be an ideal and let T be a non-negative linear functional on
N. T is said to has the property (D) if T(f)=T(g) for any f,geN
where f=g on some open set U D>Z(N).

In the case where X is compact, we have

Theorem 7. Let X be a compact space and let N be an ideal. Then
N satisfies the property (B) (or (A)) if and only if any non-negative linear
Functional on N which has the property (D) is identically zero.

Proof. By Theoreme 1 and 6, we have only to show that T has
the property (D) if and only if T(K)=0. Since X is compact, it is clear.

REMARK. Any non-negative linear functional 7" on N which has the
property (D) is of the following form. For any s-function f€ N we put
M={glgeN, Z(g) DZ(f) and hm g/f exists}. Then we have that for
any geM

T(g) = clfim g/f, where ¢ =0

For, if we put lim g/f=a, then for any &_>0 there is an m such that
>0

11) This fact is pointed out by [11].
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(@a—8) fx)<gx)<(a+8&)f(x) if f()<m™. (a—&)fng<lg<l(a+8)fVg,
s0 (@—=8T(f)=T((a—&frg)<T(<LT(a+&)fVEg) =(a+ET(f). Since
& is an arbitrary positive number, 7(g)=aT(f)=c lfmol g/f, where c¢=T(f).

(Received September 17, 1959)
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