<table>
<thead>
<tr>
<th>Title</th>
<th>Positive linear functionals on ideals of continuous functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wada, Junzo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 11(2) P.173–P.185</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1959</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/6516</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/6516</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Positive Linear Functionals on Ideals of Continuous Functions

By Junzo WADA

Let \(N \) be the set of all continuous functions on a compact Hausdorff space or the set of all continuous functions whose carriers are compact on a locally compact Hausdorff space. Then any positive linear functional \(T \) on \(N \) has an integral representation (Kakutani [12] and Halmos [8]), so any \(T \) has the condition \((MA') \), i.e. \(T(f_n) \) converges to \(T(f) \) for any \(f \in N \) and for any sequence \(\{f_n\} \subseteq N \) with \(f_n \uparrow f \). Let \(X \) be a locally compact space and let \(Y \) be the one-point compactification of \(X \) ([1], p. 93). Then we can regard the set of all continuous functions whose carriers are compact on \(X \) as an ideal (\(= l \)-ideal. § 1) of \(C(Y) \), the set of all real-valued continuous functions of \(Y \). V.S. Varadarajan [16] raised the following question: Let \(X \) be a compact Hausdorff space and let \(N \) be an ideal of \(C(X) \). When can we say that all non-negative linear functionals on \(N \) satisfy the condition \((MA') \)? An ideal \(N \) is said to satisfy the property \((A) \) if \(T \) satisfies the condition \((MA') \) for any non-negative linear functional \(T \) on \(N \) (§ 1). In this paper we consider more generalized problems. After some preliminaries in § 1 we consider in § 2 the above problem in the case where \(X \) is a completely regular space. We characterize ideals which satisfy the property \((A) \) under some conditions (Theorem 4). In § 3 we prove that any \(m \)-closed (ring-) ideal satisfies \((A) \) (Theorem 5), and in § 4 we show that an \(\alpha \)-ideal satisfies the stronger property \((B) \) (§ 1) if it satisfies \((A) \) in the case where \(X \) is a normal \(Q \)-space (Theorem 6).

§ 1. Preliminaries.

Throughout this paper, spaces are always completely regular Hausdorff spaces.

For a space \(X \), a subset \(N \) in \(C(X) \) will be called an \(l \)-ideal \(\Phi \) (or, briefly, an ideal) if the following conditions are satisfied:

(i) if \(f, g \in N \), then \(f + g \in N \),
(ii) if \(f \in N \) and \(t \) is any real number, then \(tf \in N \),
(iii) if \(f \in N \), \(|g| \leq f \), then \(g \in N \).

1) See, Bourbaki [3]. Varadarajan [16] used the term "\(\sigma \)-smooth" in place of "the condition \((MA') \)."
2) See, Birkhoff [2].
3) For any function \(f \), \(|f| = |f(x)| \).
Let X be a space and let f be in $C(X)$. Then we put
\[Z(f) = \{ x \mid x \in X, \quad f(x) = 0 \}, \]
\[P(f) = \{ x \mid x \in X, \quad f(x) > 0 \}, \]
\[\mathcal{P}(X) = \{ P(f) \mid f \in C(X) \}. \]

Let N be an ideal. Then we put
\[Z(N) = \bigcap_{f \in N} Z(f), \]
\[\mathcal{P}(N) = \{ P(f) \mid f \in N \}. \]

Let N be an ideal and let T be a non-negative linear functional. Then T is said to satisfy the condition (MA') (resp. (MA)) if $T(f_n)$ (resp. $T(f_{\alpha})$) converges to $T(f)$ for any $f \in N$ and for any sequence $\{ f_n \} \subseteq N$ (resp. for any directed set $\{ f_\alpha \} \subseteq N$ with $f_\alpha \uparrow f$ (resp. $f_\alpha \uparrow f)$).

An ideal N is said to satisfy the property (A) (resp. (B)) if T satisfies the condition (MA') (resp. (MA)) for any non-negative linear functional T on N.

Let N be an ideal. Then we put
\[K = \{ f \mid f \in C(X), \quad \varphi_p(f) \leq \text{some } h \in N \}, \]
\[K^* = K \cap C^*(X), \]
where $C^*(X)$ is the set of all bounded continuous functions. We denote by φ_A the characteristic function of a set A. We easily see that K and K^* are ideals and both are contained in N. If X is compact, then we have that $K = K^* = \{ f \mid f \in C(X) \}$, the carrier of f is contained in some compact subset of $Y = X - Z(N)$.

Let N be an ideal. Then N is called an α-ideal if $f \in N$ for any $f \in C(X)$ with $|f| \wedge n \in N$ ($n=1, 2, 3, \cdots$). If X is compact (or pseudo compact), then any ideal is an α-ideal, and if X is locally compact, the set of all continuous functions whose carriers are compact on X is an α-ideal. If N is an α-ideal and if $f \in K$, then we have that $K = K^* = \{ g \mid g \in C(X), \quad P(|g|) \subseteq P(f) \}$.

Let X be any space. Then E. Hewitt [10] introduced a Baire measure on $\mathcal{P}(X)$. Let N be an α-ideal and let T be a non-negative linear functional. Similarly, we can introduce a countably additive measure on $\mathcal{P}(K)$ as follows.

Let G be any set in $\mathcal{P}(K)$. We define the measure $\gamma(G)$ as $\sup T(f)$,
where \(f \) runs through the set of all functions in \(K \) such that \(0 \leq f \leq \varphi_G \).

By the similar method as Hewitt [10], we have

1. a) \(G \subseteq H \) implies that \(\gamma(G) \leq \gamma(H) \),
 b) \(0 \leq \gamma(G) < +\infty \)
 c) \(\gamma(0) = 0 \),
 \(G \) and \(H \) being arbitrary sets in \(\Psi(K) \).
2. \(\gamma(G \cup H) \leq \gamma(G) + \gamma(H) \) for any \(G, H \) in \(\Psi(K) \).
3. If \(G, H \in \Psi(K) \) and \(G \cap H = 0 \), then \(\gamma(G \cup H) = \gamma(G) + \gamma(H) \).
4. Let \(G_n, G \) be in \(\Psi(K) \) and let \(G \subseteq \bigcap_{n=1}^{\infty} G_n \). Then \(\gamma(G) \leq \sum_{n=1}^{\infty} \gamma(G_n) \).
 For any subset \(A \subseteq X \), we put
 \[
 \gamma^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \gamma(G_n), A \subseteq \bigcap_{n=1}^{\infty} G_n, G_n \in \Psi(K) \right\}
 \]
 if this set is non-empty, and \(\gamma^*(A) = +\infty \) otherwise.

 Then we have
5. a) \(0 \leq \gamma^*(A) \) for any \(A \subseteq X \),
 b) \(\gamma^*(A) \leq \gamma^*(B) \) if \(A \subseteq B \),
 c) \(\gamma^*\left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \gamma^*(A_n) \) for all \(\{A_1, A_2, \ldots, A_n, \ldots\} \),
 d) \(\gamma^*(G) = \gamma(G) \) for any \(G \in \Psi(K) \).
6. Every set in \(\Psi(K) \) is measurable with respect to the outer measure \(\gamma^* \).
7. The outer measure \(\gamma^* \) is countably additive on the family \(\overline{\Psi(K)} \),
 where \(\overline{\Psi(K)} \) is the smallest family which contains \(\Psi(K) \) and closed under the formation of complements and of countable unions.
8. For any non-negative function \(f \in K \), there exists some \(a > 0 \) such that \(\gamma[x \in X, 0 < f(x) \leq a] = \gamma(P(f)) \).
 If \(X \) is a locally compact space and if \(N \) is the set of all continuous functions on \(X \) whose carriers are compact, then we easily see that \(\gamma(G) = \mu(G) \) for any \(G \in \Psi(N) = \Psi(K) \), whose \(\mu \) is the measure introduced by Halmos ([8], p. 247, Theorem 8).

 By the similar method as Hewitt, we have that for any \(\alpha \)-ideal \(N \) and for any \(f \in K \), \(T(f) = \int f(x) \, d\gamma(x) \). If \(T \) satisfies the condition \((MA') \) and if \(f \) is a non-negative function in \(N \), then \(g_n = f - f \wedge n^{-1} \uparrow f \) and \(g_n \in K \), so \(T(f) = \int f(x) \, d\gamma(x) \). Therefore we have

 Let \(N \) be an \(\alpha \)-ideal. Then a non-negative linear functional \(T \) satisfies the condition \((MA') \) if and only if there exists a countably additive measure \(\gamma \) on \(\overline{\Psi(K)} \) for which

\[
T(f) = \int f(x) \, d\gamma(x) \quad (f \in N).
\]
Let X be a space and let $\mathcal{O}(X)$ be the set of all open subsets in X. By a Borel measure, we shall mean a real-valued function γ defined on $\mathcal{O}(X)$ which is countably additive, where $\mathcal{O}(X)$ is the smallest family which contains $\mathcal{O}(X)$ and closed under the formation of complements and of countable unions.

Let N be a set of continuous functions such that (i) N is a linear lattice, (ii) if $f \in N$, then $1 \land f \in N$ and (iii) for any closed subset F and for any point p with $p \notin F$, there is an $f \in N$ such that $f(F) = 0$, $f(p) = 1$ and $0 \leq f(x) \leq 1$. Then Ishii [11] proved the following: Let T be a positive linear functional on N having the condition (MA). Then there is a reducible 5 Borel measure γ on X such that $T(f) = \int f(x) d\gamma(x) \ (f \in N)$.

Similarly, we have

Let N be an ideal and let T be a positive linear functional on N having the condition (MA). Then there is a reducible Borel measure γ on $Y = X - Z(N)$ such that

$$T(f) = \int_Y f(x) d\gamma(x) \quad (f \in N).$$

§ 2. Property (A).

We first prove the following lemmas.

Lemma 1. Let N be an α-ideal and let T be a non-negative functional on N. Then the restriction T_0 on K of T satisfies the condition (MA').

Proof. By § 1, there is a measure γ such that for any $f \in K$ $T_0(f) = \int f(x) d\gamma(x)$, so the lemma is clear.

This lemma can also be proved directly.

Lemma 2. If N is an α-ideal, then it is a ring, i.e. if $f, g \in N$, then $fg \in N$.

Proof. Let $f \in N$ $f \geq 0$ and let m be a natural number. Then $mf - (f^2 \land m) \geq mf - (f \land m) = (m - f) \land m \geq 0$, or $mf \geq f^2 \land m$. Since $f \in N$ and N is an α-ideal, $f^2 \in N$. If $f, g \in N$, then $fg \in N$ since $(|f| + |g|)^2 \geq 4|fg|.$

We can prove the following theorem.

Theorem 1. Let N be an α-ideal. Then the following conditions are equivalent:

5) A measure γ on X is said to be reducible if there is a closed subset F in X such that F is measurable and $\gamma(X - F) = 0$. (Cf. [13]).
(1) N satisfies the property (A).

(2) If T is a non-negative functional on N such that $T(K^*)=0$, then T is identically zero.

(3) If T is a non-negative functional on N such that $T(K)=0$, then T is identically zero.

Proof. (1)\rightarrow(2). Suppose that there is a positive functional T on N such that $T(K^*)=0$ and $T(f)=1$ for some $f\in N$, $f\geq 0$. Put $f_n=(f-n)\lor(f\land n^{-1})$. Then $f_n\downarrow 0$. We easily see that $\varphi_{p,f-f_n}<nf\in N$ and $0\leq f-f_n\leq n$, so $f-f_n\in K^*$ and $T(f)-T(f_n)=0$, or $T(f_n)=T(f)=1$ for any n. This shows that (1) does not hold.

(2)\rightarrow(3). Clear.

(3)\rightarrow(1). Let T be a non-negative linear functional on N. For any $f\in N$, $f\geq 0$, we put $T'(f)=\inf\lim_{n,\to\infty}T(f_n)$, where $f_n\geq 0$ ($n=1,2,3,\ldots$) and $f_n\uparrow f$, and the infimum is taken for all sequences $\{f_n\}$ such that $f_n\uparrow f$, $f_n\geq 0$ and $f_n\in N$. Then we have that for any f, $g\in N$, $g\geq 0$, $T'(f+g)=T'(f)+T'(g)$ and for any real number $t\geq 0$, $T'(tf)=tT'(f)$. For any arbitrary function $f\in N$, we define $T'(f)=T'(f^+)-T'(f^-)$, where f^+ and f^- denotes $f\lor 0$ and $(-f)\lor 0$ respectively. Then T' is a linear functional on N and $T\geq T'$. Put $T''=T-T'$, then T'' is non-negative linear functional on N. But, by Lemma 1, $T''(K)=0$ and by (2) $T''\equiv 0$, so $T'=T$. This shows that N has the property $(A)^0$.

If N is an ideal which is not an α-ideal, we can easily see that Theorem 1 does not always hold.

DEFINITION. An ideal $N(=N_{f_0})$ will be called a principal ideal if there exist a non-negative function $f_0\in N$ such that $N=\{g|g\in C(X), |g|\leq \alpha f_0$ for some $\alpha\geq 0\}$. An ideal N will be called a 0-principal (resp. ∞-principal) if there exists a non-negative s-function (resp. an unbounded function) f_0 such that $N=\{g|g\in C(X), |g(x)|\leq \alpha f_0(x)$ on U_m for some $\alpha>0$ and some natural number $m\}$ (resp. $N=\{g|g\in C(X), |g(x)|\geq \alpha f_0(x)$ on V_m for some $\alpha>0$ and $m\}$), where $U_m=\{x|x\in X, 0\leq f(x)<m^{-1}\}$ and $V_m=\{x|x\in X, f(x)>m\}$. A positive function f is said to be an s-function if it admits any small value, i.e. U_m is not empty for any m. If X is compact, then any 0-principal ideal is principal, but it is not true in general.

Theorem 2. (1) A principal ideal $N(=N_{f_0})$ fulfills the condition (A) if and only if $Z(f_0)$ is open, $Y=X-Z(f_0)$ is pseudo-compact\(^6\) and $N=\{f|f\in C(X), f(Z(f_0))=0\}$ (it is lattice-isomorphic to $C(Y)$).

\(^6\) A topological space X is said to be pseudo-compact if any continuous function on X is bounded.
(2) Any 0-principal (or ∞-principal) ideal \(N (=N_{f_0}) \) does not fulfill the condition (A).

Proof. (1) Suppose that \(N \) fulfills (A). Then we put \(U_n = \{ x \mid x \in X, 0 < f_0(x) < n^{-1} \} \). If for any \(n \) \(U_n \) is not empty, we can select a point \(x_n \) in \(U_n \). We put \(M = \{ g \mid g \in N, \lim_{n \to \infty} g(x_n)/f_0(x_n) \text{ exists} \} \). For any \(g \in M \), we define \(T(g) = \lim_{n \to \infty} g(x_n)/f_0(x_n) \). Then \(T \) is a positive linear functional on \(M \). For any \(g \in N_{f_0} \) there exists an \(m > 0 \) such that \(|g| \leq mf_0 \). Since \(mf_0 \in M \), \(T \) is extended to a positive linear functional on \(N_{f_0} \) (Cf. [4] p. 20). We denote it again with \(T \). If \(f_n = f_0 \wedge 1/n \), we have that \(f_n \downarrow 0 \) and \(T(f_n) = 1 \) for any \(n \). Since \(T \) satisfies (MA'), it is a contradiction. This fact shows that \(U_m \) is empty for some \(m \), or \(f(x) \geq m^{-1} \) for any \(x \) with \(f(x) = 0 \). Therefore \(Z(f_0) \) is open, so \(Y = X \setminus Z(f_0) \) is open and closed. Let \(f' \) be the restriction of \(f \) on \(Y \). Then \(N_{f'} (\subset C(Y)) \) satisfies the property (A). For any non-negative linear functional \(T^* \) on \(C^*(Y) \) and for any \(h \in N_{f'} \), we define \(T(h) = T^*(h/f') \). Then \(T^*(g) = T_1(f'g) \) for any \(g \in C^*(Y) \). We easily see that \(C^*(Y) \) satisfies (A). By Glucksberg [5], \(Y \) is pseudo-compact and \(N_{f'} = C^*(Y) = C(Y) \). The converse is clear by [5].

(2) We define \(U_n, M \) and \(T \) as (1). Then \(T \) is a positive linear functional on \(M \). For any \(g \in N \), there are a positive integer \(m \) and \(\alpha > 0 \) such that \(|g(x)| \leq \alpha f_0(x) \) on \(U_m \). We put \(h = \alpha f_0 \wedge |g| \). Then \(h \in M \) and \(|g| \leq h \), so \(T \) is extended to a positive functional on \(N \). If \(f_n = f_0 \wedge n^{-1} \), then \(T(f_n) = 1 \) for any \(n \) and \(f_n \downarrow 0 \). This is a contradiction.

REMARK. If \(X \) is an infinite (completely regular) space, then there is an \(\alpha \)-ideal in \(C(X) \) which does not satisfy (A). For, if \(X \) is infinite, then there is an \(\alpha \)-function \(f \in C(X) \), so the 0-principal ideal \(N_f \) does not satisfy (A) (Theorem 2. (2)). We easily see that \(N_f \) is an \(\alpha \)-ideal.

DEFINITION. A directed set \(\{ f_\alpha \}_{\alpha \in A} \) of positive functions (\(\subset N \)) is called a base of an ideal \(N \) if for any \(f \in N \) there is an \(f_\alpha \) such that \(|f| \leq mf_\alpha \) for some \(m \).

Let \(f \) be a positive \(s \)-function in \(C(X) \) and let \(g \) be any function in \(C(X) \). Then we define

\[
\lim_{f \to 0} g/f = \lim_{n \to \infty} \sup_{x \in U_n} g(x)/f(x),
\]

\[
\lim_{f \to 0} g/f = \lim_{n \to \infty} \inf_{x \in U_n} g(x)/f(x),
\]

where \(U_n = \{ x \mid x \in X, 0 < f(x) < n^{-1} \} \).

If \(\lim_{f \to 0} g/f = \lim_{f \to 0} g/f \), we write simply \(\lim_{f \to 0} g/f \) (admits \(+\infty \)).
Theorem 3. Let \(N \) be an \(\alpha \)-ideal and let \(\{f_\alpha\}_{\alpha \in A} \) be a base in \(N \). If for any \(s \)-function \(f_\alpha \) there is an \(f_\beta \) such that \(\lim_{f_\alpha \to 0} f_\beta/f_\alpha = \infty \), then \(N \) satisfies the property (A).

Proof. Suppose that \(N \) does not satisfy (\(A \)). By Theorem 1 there exists a positive functional \(T \) such that \(T(K) = 0 \) and \(T(f) = 1 \) for some positive function \(f \in N \). Since \(\{f_\alpha\}_{\alpha \in A} \) is a base in \(N \), there is an \(f_\alpha \) and a positive constant \(c \) such that \(0 \leq f_\alpha \leq cf_\alpha \). Now let \(f_\alpha \) be an \(s \)-function. Then by the hypothesis, there is an \(f_\beta \) such that \(\lim_{f_\alpha \to 0} f_\beta/f_\alpha = \infty \).

Therefore, for any positive number \(M \) there is an \(m \) such that \(f_\beta(x) \geq Mf_\alpha(x) \) if \(x \in U_m \). We set \(W_m = \{x \mid x \in X, 0 \leq f_\alpha(x) < m^{-1}\} \) and \(F = X - W_m \). Then if \(x \in W_m \), \(f_\beta(x) \leq Mf_\alpha(x) \). Let \(h \) be a function in \(K^* \) such that \(h(F) = 1 \). Then we easily see that \(Mf_\alpha h + f_\beta \geq Mf_\alpha \), or \(cMf_\alpha h + cf_\beta \geq cf_\alpha \geq Mf_\alpha \). Since \(f_\alpha h \in K \), \(T(f_\alpha h) = 0 \), so \(cT(f_\beta) \geq M \). But \(M \) is an arbitrary positive number. This is a contradiction.

Next, let \(f_\alpha \) be not an \(s \)-function. Then if \(f_\alpha(x) \neq 0 \), \(f_\alpha(x) \geq \delta \) for some positive number \(\delta \). The set \(P = \{x \mid x \in X, f_\alpha(x) > 0\} \) is open and closed and \(N \supset \{f \mid f \in C(X), f(Z(f_\alpha)) = 0\} \). Since \(N \) is an \(\alpha \)- ideal, \(N \supset N_0 = \{f \mid f \in C(X), f(Z(f_\alpha)) = 0\} \) and \(K \supset N_0 \). Since \(T(K) = 0 \), \(T(N_0) = 0 \). But \(f \in N_0 \) and \(T(f) = 1 \). This is a contradiction.

Finally, we characterize ideals which satisfy the property (\(A \)) under some conditions. We see that these conditions are necessary as the later example shows.

Theorem 4. Let \(N \) be an \(\alpha \)-ideal and let it have a base \(\{f_\alpha\} \) such that for any \(s \)-function \(f_\alpha \) and for any \(f_\beta \) with \(\beta \geq \alpha \) (\(\alpha \) depends on \(f \), \(\lim_{f_\alpha \to 0} f_\beta/f_\alpha \) exists (admits \(+ \infty \)). Then \(N \) satisfies the property (\(A \)) if and only if \(N \) is not \(0 \)-principal.

Proof. If \(N \) satisfies (\(A \)), then by Theorem 2. (2), \(N \) is not \(0 \)-principal. Conversely, suppose that \(N \) is not \(0 \)-principal. Then for any \(f_\alpha \) which is an \(s \)-function, there exists an \(f_\beta \) such that \(\lim_{f_\alpha \to 0} f_\beta/f_\alpha = \infty \). For, otherwise, there would exist an \(s \)-function \(f_\alpha \) such that for any \(f_\gamma \in \{f_\alpha\} \), \(\lim_{f_\alpha \to 0} f_\gamma/f_\alpha \leq \text{some } M_\gamma < + \infty \), i.e. if \(x \in U_m \), then \(f_\gamma(x) \leq M_\gamma f_\alpha(x) \) for some \(m \) and \(M_\gamma > 0 \), so \(N \) would be a \(0 \)-principal ideal \(N_{f_\alpha} \). This is a contradiction. We can here assume that for any \(\alpha \) the above \(\beta \geq \alpha \). Therefore, by the hypothesis, for any \(s \)-function \(f_\alpha \) there is an \(f_\beta \) such that \(\lim_{f_\alpha \to 0} f_\beta/f_\alpha = \infty \). By Theorem 4 \(N \) satisfies (\(A \)).

Let \(X \) be a locally compact space and let \(N \) be the set of all continuous functions on \(X \) whose carriers are compact. Then \(N^c = \{f \mid f \in N, \)
$f \geq 0\} \text{ forms a base which satisfies the hypothesis of Theorem 4. The ordering of the directed system for the base can be defined as follows: } \alpha \succ \beta \text{ if } f_{\alpha} \geq \varphi_{P(f_{\beta})} \text{ for any } f_{\alpha}, f_{\beta} \text{ in } N^+.$

Example. The hypothesis in Theorem 4 is necessary. The following example shows it. Let X be the closed interval $[0, 1]$ and let N be an ideal having a base $\{f_n\}$. For any n we define: $f_n(x) = x$ if $x = 2^{-2m}$ or $x = 0 \ (m = 0, 1, 2, \ldots)$, $f_n(x) = x^{1/n}$ if $x = 2^{-(2m^2 + 1)} \ (m = 0, 1, 2, \ldots)$ and it is linear on the intervals $[2^{-(m^2 + 1)}, 2^{-m}] \ (m = 0, 1, 2, \ldots)$. We see that N is an α-ideal (since X is compact) and is not 0-principal. But N does not satisfy (A). For, Put $M = \{f|f \in N, \lim_{n \to \infty} 2^{2n}f(2^{-2n}) \text{ exists}\}$. Define $T(f) = \lim_{n \to \infty} 2^{2n}f(2^{-2n})$ for any $f \in M$. T is extended to a positive linear functional on N (Cf. [4]. p. 20) Set $g_m = f_1 \wedge m^{-1}$. Then we have that $g_m \downarrow 0$ and $T(g_m) = 1$ for any m, so N does not satisfy (A).

§ 3. Ring-ideals.

A subset N in $C(X)$ is called a ring-ideal\(^7\) if it satisfies the following conditions:

(i) if $f, g \in N$, then $f + g \in N$,

(ii) if $f \in N$ and if $h \in C(X)$, then $hf \in N$.

A ring-ideal N is said to be m-closed if N is closed in the m-topology $C(X)$. Any neighborhood of $f \in C(X)$ in the m-topology is the set $\{g|g \in C(X), |g - f| < \pi\}$ for some everywhere positive function $\pi \in C(X)$ according to Hewitt [9]. Shirota [15], and Gillman, Henrikson, and Jerison [7] proved that any m-closed ring-ideal is an intersection of some maximal ring-ideals. We shall show that any m-closed ring-ideal is an α-ideal and it satisfies (A) (Cf. Theorem 5).

The following lemma is proved by [16] in the case where X is compact.

Lemma 3. Let N be an α-ideal and let it have the property such that if $f \in N$ then $|f|^{1/\pi} \in N$. Then N satisfies the property (A).

Proof. Suppose that a positive functional T on N satisfies the property such that $T(K) = 0$ and $T(f) = 1$ for some positive $f \in N$ (Cf. Theorem 1). We put $g_n = (nf - f^{1/\pi}) \vee 0$. Then $nf \geq \varphi_{P(g_n)}$ and $g_n \in K$. $0 = T(g_n) \geq T(nf - f^{1/\pi})$, or $T(f^{1/\pi}) \geq nT(f) = n$ for any n. This contradiction proves the lemma.

We can easily prove the following lemmas.

\(^7\) We use the word "ring-ideal" to avoid the confusion.
Lemma 4. If N is a maximal ideal (=l-ideal), then it satisfies the property (A).

Proof. By Lemma 3, it is sufficient prove that (i) for any positive f in N, $f^{1/2} \in N$ and (ii) N is an α-ideal.

(i) Suppose that $f \in N$ and $f^{1/2} \notin N$. Since N is maximal, the set \{h \in C(X), \lambda f^{1/2} + g \geq |h| \text{ for some positive } g \in N \text{ and for some } \lambda > 0 \} is identical to $C(X)$. Therefore $\lambda f^{1/2} + g \geq f^{1/2}$ for some positive $g \in N$ and for some $\lambda > 0$, or $g \geq f^{1/2} - \lambda f^{1/2} = f^{1/2}(1 - \lambda f^{1/2})$. For any x in X with $f(x) \leq (2\lambda)^{-4}$, $g(x) \geq 1/2 f^{1/2}(x)$, or $2g(x) \geq f^{1/2}(x)$. For any x in X with $f(x) \geq (2\lambda)^{-4}$, $(2\lambda)^3 f(x) - f^{1/2}(x) = f^{1/2}(x)((2\lambda)^3 f^{1/2}(x) - 1) \geq 0$, or $(2\lambda)^3 f(x) \geq f^{1/2}(x)$. Therefore $2g \vee (2\lambda)^3 f \geq f^{1/2}$, and so $f^{1/2} \in N$. By Lemma 2, we have $f^{1/2} \in N$. This contradication proves (i).

(ii) Let f be a positive function in $C(X)$ such that for any n $f \wedge n \in N$ and $f \notin N$. Since N is a maximal ideal, the set \{h \mid \lambda f + g \leq |h| \text{ for some positive } g \in N \text{ and for some } \lambda > 0 \} is identical to $C(X)$. Therefore $\lambda f + g \geq f$ for some positive $g \in N$ and $\lambda > 0$, or $g \geq f - \lambda f = f(\lambda - 1)$. For $x \in X$ with $f(x) \geq 1 + \lambda$, we have $g(x) \geq f(x)$. For $x \in X$ with $f(x) \leq 1 + \lambda$, we can select a natural number n such that $n \geq 1 + \lambda$. If we put $f_n = f \wedge n$, then $(1 + \lambda)^{1/2} f_n^{1/2}(x) \geq f(x)$. Therefore $g \vee (1 + \lambda)^{1/2} f_n^{1/2} \geq f$. Since $f_n^{1/2} \in N$ by (i), $f \in N$.

Lemma 5. A maximal ring-ideal is a maximal ideal.

Proof. Let M be a maximal ring-ideal. Then we must first prove that it is an ideal. We put $M_0 = \{f \mid f \in C(X), |f| \leq \alpha g \text{ for some positive } g \in M \text{ and some } \alpha > 0 \}$. Then M_0 is a proper ring-ideal (for, $M_0 \nsubseteq 1$ since $M \nsubseteq 1$), and $M \subseteq M_0$, so $M_0 = M$, i.e. M is an ideal. To prove the lemma, it is sufficient to show that if N is a maximal ideal, then it is a proper ring-ideal. We put $N_0 = \{f \mid f \in C(X), |f| \leq h g \text{ for some positive } h \in C(X) \text{ and some } g \in N \}$. Then N_0 is an ideal and $N \subseteq N_0$. Therefore it is sufficient to prove that N_0 is proper. Suppose that $N_0 \subseteq C(X)$. Then there exist $h \in C(X)$ and $g \in N$ such that $hg \geq 1$, so g is everywhere positive. If we put $N' = \{fg^{-1} \mid f \in N \}$, then N' is a maximal ideal and $N' \supseteq 1$. By the proof of Lemma 4, N' is an α-ideal, so $N' = C(X)$ and $N = C(X)$. This is a contradiction.

Now we can prove the following theorem.

Theorem 5. Any m-closed ring-ideal is an α-ideal and it satisfies the property (A).

Proof. Let N be an m-closed ring-ideal. Then N is an intersection of some maximal ideals M_α ([15] or [7]). Any M_α is a maximal ideal
(Lemma 5) and by the proof of Lemma 4, any M_α is an α-ideal and has the property such that for any positive $f \in M_\alpha$, $f^{1/2} \in M_\alpha$. Therefore N is an α-ideal and has the property such that for any positive $f \in N$, $f^{1/2} \in N$. By Lemma 3, N satisfies (A).

Remark. If X is a P-space (Cf. Gillman and Henriksen [6]), then any ring-ideal in $C(X)$ satisfies (A) since any ring-ideal is m-closed ([6], p. 345).

Example. An m-closed ideal (not a ring-ideal) does not always satisfy the property (A). Such an example is the following: Let X be the semi-line $[0, \infty)$ and let $N = \{ f | f \in C(X), |f(x)| \leq \alpha x$ for some $\alpha > 0$ and for $x \geq 1 \}$. Then we easily see that N is an m-closed ideal but it does not satisfy (A) since N is ∞-principal (Cf. Theorem 2. (2)).

§ 4. Property (B)

Let X be a locally compact space and let N be the set of all continuous functions whose carriers are compact on X. McShane [14] proved that N has the property (B). We can regard N as an ideal in $C(X)$, where X_0 is the one-point compactification of X. We here consider ideals in $C(X)$, where X is a Q-space. Q-spaces are considered in [9]. Any separable metric space or any locally compact Hausdorff space which is sum of countable compact subsets is always a Q-space [9]. We here show that an α-ideal satisfies the property (B) if it satisfies (A) in the case X is a normal Q-space.

We first prove the following

Lemma 6. Let X be a normal Q-space and let F be a closed subset in X. Let Y be the decomposition space\(^8\) consisting of F and all elements in $X - F$. Then Y is also a Q-space.

Proof. Let φ be the mapping such that $\varphi^{-1}(y_0) = F$ and $\varphi^{-1}(y)$ is a set consisting of only one point for any $y \in Y$, $y \neq y_0$. Then φ is continuous. Now suppose that Y is not a Q-space. Then there exists a family

8) Let X be a topological space and let $\{ F_\alpha \}$ be a division by closed sets of X, i.e. $X = \bigcup F_\alpha$, any F_α is closed and elements of $\{ F_\alpha \}$ are mutually disjoint. We can consider new space Y whose points are $\{ F_\alpha \}$. This space is called the decomposition space of X if for any open set $U \supseteq F_\alpha$, there exists an open set $V \supseteq F_\alpha$ such that $F_\beta \cap V = \emptyset$ implies that $F_\beta \subseteq U$. For any point $y_0 = F_\alpha$ in the decomposition space Y, any neighborhood of y_0 is the set $\{ y | y = F_\beta$, $F_\beta \subseteq U \}$ for some open set U in X (Cf. [1]). Then there exists a continuous mapping from X onto Y.

such that (i) \(\mathcal{F} \) is \(Z \)-maximal, (ii) any countable family of \(\mathcal{F} \) has a non-void intersection and (iii) \(\bigcap B = 0 \) (Cf. [9]). Let \(\mathcal{D} = \{ A \mid A \in \mathcal{B}, A \supseteq \varphi^{-1}B \} \). Then we shall first prove that \(\mathcal{D} \) is \(Z \)-maximal. If \(\mathcal{D} \) is not \(Z \)-maximal, then there exists an \(A_0 \notin \mathcal{D} \) such that \(\varphi^{-1}B \cap A_0 = 0 \) for any \(B \in \mathcal{F} \). Since \(A_0 \notin \mathcal{D} \), \(A_0 \nsubseteq \varphi^{-1}B \) for any \(B \in \mathcal{F} \), so \(\varphi A_0 \supseteq B \) for any \(B \in \mathcal{F} \). For, if \(\varphi A_0 \supseteq B \) for some \(B \in \mathcal{F} \), by (iii), there exists a \(B_1 \in \mathcal{F} \) such that \(\varphi A_0 \supseteq B_1 \) and \(B_1 \nsubseteq y_0 \). Therefore \(A_0 \nsubseteq \varphi^{-1}B_1 \). This is a contradiction, so \(\varphi A_0 \supseteq B \) for any \(B \in \mathcal{F} \). Let \(A_0 = Z(f) \) (\(f \in C^*(C) \)) and let \(V(y_0) \) be a neighborhood of \(y_0 \) in \(Y \). Then \(f \varphi^{-1} \) is continuous on \(Y - V(y_0) \). Let \(g \) be an extended continous function of \(f \varphi^{-1}(Y - V(y_0)) \) on \(Y \) (\(Y \) is a normal space). Then we have \(Z(g) \subseteq \varphi A_0 \lor V(y_0) \). We take a \(B_1 \in \mathcal{F} B_1 \nsubseteq y_0 \) and \(V(y_0) \) such that \(V(y_0) \cap B_1 = 0 \). To prove that \(Z(g) \notin \mathcal{F} \), we suppose that \(Z(g) \in \mathcal{F} \). Then \(\varphi A_0 \supseteq \varphi A_0 \cap B_1 = (\varphi A_0 \lor V(y_0)) \cap B_2 \supseteq Z(g) \cap B_2 \) and \(Z(g) \cap B_2 \in \mathcal{F} \), this is a contradiction. Since \(\mathcal{F} \) is \(Z \)-maximal, there exists a \(B \in \mathcal{F} \) such that \(B \cap V(y_0) = 0 \). We can assume that \(B \nsubseteq y_0 \) and \(B \cap V(y_0) = 0 \). Then \(\varphi^{-1}B \cap \varphi^{-1}(Z(g)) \supseteq \varphi^{-1}B \cap \varphi^{-1}(\varphi A_0 \lor V(y_0)) \cap \varphi^{-1}(B \cap (\varphi A_0 \lor V(y_0))) = \varphi^{-1}(B \cap \varphi A_0) = \varphi^{-1}B \cap A_0 \). But \(\varphi^{-1}B \cap A_0 = 0 \). This contradiction shows that \(\mathcal{D} \) is \(Z \)-maximal. We easily see that any countable family of \(\mathcal{D} \) has non-empty intersection and \(\bigcap A = 0 \). Therefore \(X \) is not a \(Q \)-space. This shows that \(Y \) is a \(Q \)-space.

By this lemma, we have

Theorem 6. Let \(X \) be a normal \(Q \)-space and let \(N \) be an \(\alpha \)-ideal. Then \(N \) satisfies the property (B) if and only if \(N \) satisfies the property (A).

Proof. It is sufficient to prove that if \(N \) satisfies (A), then it satisfies (B). Suppose that \(N \) satisfied (A). Let \(T \) be a positive linear functional on \(N \) and let \(f \) be a positive function \(N \). Then we define \(T'(f) = \inf \lim \alpha T(f_\alpha) \), where any \(f_\alpha \) of a directed set \(\{ f_\alpha \} \) is non-negative and \(f_\alpha \uparrow f \), and the infimum is taken for all directed sets \(\{ f_\alpha \} \) such that \(f_\alpha \uparrow f \), \(f_\alpha \geq 0 \) and \(f_\alpha \in N \). Then we have that for any \(f, g \geq 0 \) in \(N \), \(T'(f + g) = T'(f) + T'(g) \) and \(T'(tf) = t T'(f) \) for any \(t \geq 0 \). For any \(f \in N \), we put \(T'(f) = T'(f^+) - T'(f^-) \). Then \(T' \) is linear functional on \(N \). If we put \(T'' = T - T' \), then \(T'' \geq 0 \). To prove that \(T = T' \), it is sufficient to show that \(T''(K) = 0 \) (Theorem 1). Therefore we have only to show that for any positive function \(f \in K \), \(T|_K \) satisfies the condition (MA), where \(K_f = \{ g \mid g \in K, P(|g|) \subseteq P(f) \} \). Since \(N \) is an \(\alpha \)-ideal, \(K_f = \{ g \mid g \in C(X), P(|g|) \subseteq P(f) \} \). If we put \(F = P(f)^{10} \), we can regard \(K_f \) as the set of

9) For any topological space \(X \), we denote by \(\mathcal{Z}(X) \) the family \(\{ Z(f) \mid f \in C(X) \} \).

10) For any subset \(A \), \(\overline{A} \) denotes the closure of \(A \).
all functions in \(C(F) \) vanishing of \(F-P(f) \). Therefore to prove the
Theorem, we have only to show that if \(M \) is the set of all functions in
\(C(F) \) (\(F \) is a \(Q \)-space) vanishing on a fixed closed subset \(A \) in \(F \), then
\(M \) satisfies \((B)\).

(i) If \(A \) is the empty set, then \(M=C(F) \). If \(T \) is a positive linear
functional on \(M \), then there are a Baire measure \(\gamma \) on \(F \) and a compact
set \(C \subset F \) with \(T(f)=\int_C f(x)d\gamma \) (\(f \in M \)) ([10], Theorem 18). Therefore
\(M \) fulfills \((B)^{11}\).

(ii) Let \(A \) be a set consisting of one point and let \(A=(p) \). Let \(T \) be
a positive linear functional. Then \(T \) is continuous, i.e. \(||T||=\sup_{f \in M} T(f) < +\infty \). We can assume that \(||T||=1 \). We put for any \(f \in C(F) \), \(T^*(f)=T(f-f(p))+f(p) \). We easily see that \(T^* \) is a positive linear functional
on \(C(F) \). By (i) \(T^* \) satisfies \((MA)\) and so does \(T \).

(iii) If \(A \) is an arbitrary closed subset in \(F \), let \(Y \) be the decom-
position space consisting of \(A \) and \(\{x\}_{x \in F-A} \). Then by Lemma 6 \(Y \) is a
\(Q \)-space. Let \(\phi \) be the mapping such that \(\phi^{-1}(y_0)=A \) and \(\phi^{-1}(y) \) is a set
consisting of only one point for any \(y \in Y, y \neq y_0 \). For any \(f \in M \) we put
\(f'(y)=f(\phi^{-1}y) \), then \(f' \) is continuous on \(Y \). \(M^* = \{f'|f \in M\} \) is the set of
all continuous functions vanishing at \(y_0 \). Let \(T \) be a positive linear functional on \(M \) and let \(T_1(f')=T(f) \) for any \(f' \in M^* \). Then \(T_1 \) is positive
on \(M^* \). By (ii) \(T_1 \) satisfies \((MA)\) and so does \(T \).

Let \(N \) be an ideal and let \(T \) be a non-negative linear functional on
\(N \). \(T \) is said to has the property \((D)\) if \(T(f)=T(g) \) for any \(f,g \in N \)
where \(f=g \) on some open set \(U \supset Z(N) \).

In the case where \(X \) is compact, we have

Theorem 7. Let \(X \) be a compact space and let \(N \) be an ideal. Then
\(N \) satisfies the property \((B)\) (or \((A) \)) if and only if any non-negative linear
functional on \(N \) which has the property \((D)\) is identically zero.

Proof. By Theoreme 1 and 6, we have only to show that \(T \) has
the property \((D)\) if and only if \(T(K)=0 \). Since \(X \) is compact, it is clear.

Remark. Any non-negative linear functional \(T \) on \(N \) which has the
property \((D)\) is of the following form. For any \(s \)-function \(f \in N \) we put
\(M=\{g|g \in N, Z(g) \supset Z(f) \} \) and \(\lim_{g \not\to f} g/f \) exists}. Then we have that for
any \(g \in M \)

\[T(g) = c \lim_{f \not\to a} g/f, \text{ where } c \geq 0 \]

For, if we put \(\lim_{f \not\to a} g/f=0 \), then for any \(\varepsilon > 0 \) there is an \(m \) such that

11) This fact is pointed out by [11].
\[(a - \varepsilon)f(x) \leq g(x) \leq (a + \varepsilon)f(x) \text{ if } f(x) \leq m^{-1}. \quad (a - \varepsilon)g \leq g \leq (a + \varepsilon)g \vee g,\]

so \((a - \varepsilon)T(f) = T((a - \varepsilon)f \wedge g) \leq T(g) \leq T((a + \varepsilon)f \vee g) = (a + \varepsilon)T(f)\). Since \(\varepsilon\) is an arbitrary positive number, \(T(g) = aT(f) = c \lim_{f \to g} g/f\), where \(c = T(f)\).

(Received September 17, 1959)

Bibliography
