
Title
（第3回）フォートラン・プログラミングにおける
バッグ（誤り）とデバッグ（修正） : ｛DIMENSION文
COMMON文 EQUIVALENCE文 EXTERNAL文｝

Author(s) 磯本, 征雄

Citation 大阪大学大型計算機センターニュース. 1974, 15, p.
19-63

Version Type VoR

URL https://hdl.handle.net/11094/65252

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

大阪大学大型社算機センター・ ニュース (;s.;o,15) 1974-11

プログラム・ノート

（第3回）

フォートラン・プログラミングにおける

バッグ（誤り）とデバッグ（修正）

―

―

―

,

-

文E

文

C

文

ON
文

E
N
A
L

S
I
O
N
A
L
R
N

M
E
N
M
M
U
I
V
T
E

I

O

Q

X

D

C

E

E

’

-

研究開発部硝椅 本こ 1正 広佳

1. はじめに

フォートランは4則演算を主な機能としてもつ計算機言語である。したがって変数や配列要

索の値を定める式や代入文等が重要な役割をはたすことは当然である。しかし，せっかく正し

い値を得ても，それらが正しい取扱いのもとで正しく記憶されていなければ，次の段階でその

変数又は配列要索を引用した時にぱ誤った結果になる。このような変数や配列の取扱い方や記

憶場所を定めるのが宣言文である。

実行文がプログラムの振舞いであるとすれば，非実行文である宣言文はプログラムの振舞い

の場を定める文であるといえる。フォートラン・プログラミングにおいては，とかく実行文の

実行の流れの追跡に注意が向くために，非実行文である が注意力の盲点になりやすい。

このために， 宣言文におけるバッグは， 発見が困難である。またデバッグも実行文との

関連を無視できないためにさらに困難である。宣言文は，副プログラムー副プログラム間，宣

言文一実行文間及び宣言文一宣言文間等のように多くの場合2個所以上の文の間での文法上あ

るいは意味上の矛盾がバッグの原因となる。したがってプログラムにおける局所的検査だけで

はバッグの発見はできず，広範囲にわたって変数や配例の値の振舞いの矛盾を調べなければな

らないことが多い。このことは，プログラム化す／べきもとの式の論理が正しくフォートランで

表現されているか否かということのほかに， さらにプログラムの枠内でフォートランで矛盾す

る事項はないかという点を調べなければならないことになる。

このように宣言文は影の立役者とでも言うべき重要なものである。今回は式や代入文の解説

に先駆けて標題の4宣言文について解説する。文法は JIS-FORTRAN(水準7000)による。ま

た解説の形式と手順はすべて第2回に同じにした。

2. 配列宣言

2. 1 , 配列宣言に関する文法

配列により， 1群の変数を行列として取扱うことができる。フォートラン文法においては，

-19-

配列は次元の数と各次元ごとに定められる寸法により規定される。これらの配列の次元の数と

寸法を規定することを配列宣言という。配列宣言は次の形式でなされる。

配列宜言子 1 例：配列宣言子

配列宣言子(arraydeclarator)は，プロ A(10) B(5, 12) C(7, 8, 3)

配列宣言子は，英字名，次元の数およぴ I
それぞれの次元の寸法を示す。配列宣言子・

ぱ配列宣誤文， DIMENSION文または

グラム単位で使用する配列を規定する。 D(I, 5) E(M)

COMMON文の中に現われることができる

ものとする・。配列宣言子を含む文を配列宣言

子文(arraydeclarator statement)という。

配列宣言子は，つぎの形とする。

v(i)

ここで， vは英字名とし，宣言子名

(declarator name)という。

(i)を宣言子添字(declaratorsubscript)

といい， iは1個， 2個あるいは3個の式

から成り（但し'NEACFORTRAN N-700

では7次元まで許される），それぞれの式は

寸法(dimension)といい，整定数か整数型

の変数名とする。式が2個以上ある場合に

は後続する式との間はコンマで区切る。 i

の中に変数名が含まれていない場合には，

(i)を定数宣言子添字(constantdeclarator

subscript)といい，そうでない場合，すな

わち一つでも変数名が含まれているならば

(i)を整合宣言子添字(adjustable<leclara-

tor subscript)といい，その変数を整合寸

法(adjustabledimension)という。

配列宣言子における次元の数及び寸法は次の規則に従う。

配列宣言子文の中に現われる宣言子添字は，その宣言子名が配列名であることを処理系

に知らせるものとする。宣言子添字の式の個数は，その配列の次元の数を示す。宣言子添

字のそれぞれの寸法の値は，配列要索名の中でそれぞれの添字式がとりうる最大値を示す。

実行可能プログラムの実行中には，配列要索名は1未満あるいは配列宣言子で指定され

た寸法より大きな値を持つ添字式を持つことはできない。

配列宣言子における次元の数と宣言子添子は配列要索の数を与える。それらは次の規則による。

-20-

配列要素関数と添字の値 次元の数，宣 例：配列要素関数と添字の値

言子添字，添字が与えられたとき，それに 配列宣言子F(2, 3)によって規定され

対応する添字の値および添字がとりうる最 た配列Fの配列要索は，つぎの順序に並ん

大値を表に示す。添字式の値は1以上でな でいる。

ければならない。 F(l, 1), F(2, 1), F(l, 2), F(2, 2), F(l, 3),

F(2, 3)

配列要索関数 (arrayelement successor function)の値は，添字の値に 1を加えたもの

とする。ある配列要索の配列要索関数の値と等しい値の添字をもつ配列要索を，はじめの

配列要索の直後の要索とする。配列の要後の要索時，添字の値が最大のものとし，これに

は直後の要索はない。

表添字の値

次元の数 宣言子添字 添字 添字の値 添字の最大値

1 (A) (a) a A

2 (A,B) (a, b) a+A・(b-1) A・B

3 (A, B,C) (a, b, c) a+A・(b-l)+A・B・(c-1) A・B・C

ここで， a,b,cは添字式とし， A,B,Cは寸法を示す。

配列宣言のみをその機能としてもつ宣言文が， DIMENSION文である。 DIMENSION文は次

の形式で表現される。

DIMENSION文 DIMENSION文(DIMEN-1 例： DIMENSION文

SION statement)は，つぎの形とする。 DIMENSION A(lO), C(7, 8, 3)

DIMENSION V1 (i,), V2伍），…， Vn缶）

ここで， vi(ii),…， Vn応）は，いずれも配

列宣言子とする。

2.2 コンパイル時における配列宣言に関するエラー・メッセージ

以下， FORTRAN-700によるエラー・メッセージについて具体的例を添えて説明する。

2. 2. 1 WARNING

（例）

メッセージ

番 号

060

内部文番号

0002

0003

説 明

WARNING: ARRAY ELEMENT OF "name" USED IN

STATEMENT FUNCTION EXPRESSION-ACCEPTED

0文関数定義文の中で配列要索を引用している。そのままコンパイル

される。

（プログラム コードー 02s)

フォートラン文

D I MENS I ON F(1 0 , 1 0)

G (I, J, X) =F (I, J) *X*FLDAT (I+J)

- 21

配列要索を文関数（内部文番号 0003)内で使う時は，添字は整定数のみゆるされる。したが

って上記例題はF(I, J)の使用の点でまちがいである。

2.2.2 FATAL ERROR

（例）

（例1)

240 NON-DAT A NAME USED ON LEET SIDE OF ASSIGNMENT

STATEMENT

0代入文の左辺にデータ名を表わす英字名以外のものが現われた。こ

の代入文は削除されてコンパイルされる。プログラムの実行時にこ

の文の実行に制御が渡ると UEPになる。

内部文番号

0001

フォートラン文

DIMENSION B (10)

0010 A (I) =FLOAT (I十10)

配列宣言のなされていない配列要索A (I)が代入文の左辺にあらわれている。

そのほか，次の場合にも上記エラー・メッセージが出力される。

例： EXTERNAL SUB

SUB= A* B + C

例： REAL A (1 0)

256

A/5) = SIN (X)

VARIABLE NAME. "name" FOLLOWED BY LEFT

PARENTHESES

O変数名の後に左かっこがある。実行文の場合にはその文が削除され

てコンパイルされる。プログラムの実行時にその文に実行の制御が

渡ると UEPになる。非実行文の場合にはその文が削除されてコン

パイルされるが，その文を含むプログラム単位はGOファイル上に

出力されない。デバッグ文の場合にはそのデバッグ文は削除されて

コンパイルされ，プログラムの実行時にそのデパッグ文により指定

された範囲内の文に実行の制御が渡ると UEPになる。

内部文番号

0008

フォートラン文

DOlO I=l,10

o o o 9 A = I (J)

0 0 2 0 1 0 CONT I NUE

-22-

（例2)

（例 1)

（例2)

例では当然配列要索にはなり得ない DO文の制御変数に添字がつけられて誤りと

なった。このほか，配列直含を落したために配列要索が変数とみなされ I:,記エラ

ーを生じる場合もある。

内部文番号

0001

0010

フォートラン文

DIMENSION A (5, 10

A (I, J) =B (I, J)

DIMENSION文の A (5, 10が誤りである。 したがって配列宣言は無視される。

これは，配列 A についての配列宣言が欠落した場合の誤りと li•J じ結果になる。

276 MORE THAN 7 SUBSCRIPTS OR SYNTAX ERROR IN

REFERENCE TO ELEMENT OF ARRAY "name"

内部文番号

0010

07次元を越える添字があるか，配列要索の参照に文法述反がある。

DATA文における場合は，この配列要索を含む並ぴとそれに対応

する定数の並ぴがないものとしてコンパイルされ， EQUIVALEN CE

文における場合は，この配列要索を含む並びがないものとしてコン

パイルされ，いずれの場合もこの文を含むプログラム単位はGOフ

ァイル上に出力されない。実行文における場合は、その実行文は削

除されてコンパイルされ，プログラムの実行時にその文に実行の制

御が渡ると UEPになる。デバッグ文における場合は，そのデバッ

グ文は削除され，プログラムの実行時にそのデパッグ文により指定

された範囲内の実行文に実行の制御が渡ると UEPになる。

フォートラン文

X=A (I 1, I 2, I 3, I 4, I 5, I 6, I 7, I 8)

配列要索が8次元として代人文の右辺に用いられている。配列は 7次元までしか

許されない。

内部文番号 フォートラン文

0011 X=A (I 1, I 2, I 3,)

配列要索において添字の第4番Hが欠けているか又は最後のコンマが余分につい

ている。

23-

（例）

（例）

277

内部文番号

0001

0010

THE NUMBER OF SUBSCRIPTS USED EXCEEDS THE

NUMBER OF DIMENSIONS OF ARRAY "name"

O配列要索の使用で，添字が定義した次元の数を越えている。 DATA

文における場合は、その配列要索を含む並ぴとそれに対応する定数

の並ぴがないものとしてコンパイルされ， EQUIVALENCE文にお

ける場合は，その配列要索を含む並ぴがないものとしてコンパイル

され，いずれの場合もその文を含むプログラム単位はGOファイル

上に出力されない。実行文中における場合は，その文が削除されて

コンパイルされ，プログラムの実行時にその文に実行の制御が渡る

とUEPになる。デパッグ文における場合は，そのデバッグ文は削

除されてコンパイルされ，プログラムの実行時にそのデバッグ文に

より指定された範囲内の実行文に実行の制御が渡ると UEPになる。

フォートラン文

DIMENSION B (2, 3, 4)

X=B (I 1, I 2, I 3, I 4)

配列B (2,3,4) において配列宣言は 3次元であるのに文番号 0010において

4次元として使用している。但し内部文番号 0010が X=B(I 1 , I 2)の場合は

FATAL ERRORにならない。

280

内部文番号

0001

0010

CONSTANT SUBSCRIPT EXCEEDS RANGE OF ARRAY

．．
name "

O定数だけの添字式をもつ配列要索の使用で，添字の値が配列宣言子

により定められた大きさを越えている。 DATA文における場合は．

その配列要素を含む並ぴとそれに対応する定数の並びがないものと

してコンパイルされ，その文を含むプログラム単位はGOファイル

に出力されない。実行文中における場合は，その文が削除されてコ

ンパイルされ，プログラムの実行時にその文に実行の制御が渡ると

UEPになる。デバッグ文中における場合は，そのデバッグ文は削

除されてコンパイルされ，プログラムの実行時にそのデバッグ文に

より指定された範囲内の実行文に実行の制御が渡ると UEPになる。

フォートラン文

DIMENSION A (10)

X=A (12)

-24ー・

（例1)

配列宣言での配列Aの添字の大きさは 10であるのに，代入文ではA(12)で，

を越える定数添字が用いられている。但し Aは手続き副プログラムの仮引数

ではない。

408 CONFLICTING USE OF NAME "name"

内部文番号

0001

0050

0051

O矛盾した名前の使用がある。これらの文を含むプログラム単位がは

GOファイル上に出力されない。

フォートラン文

DIMENSION L (5, 10)

L (I, J) =K (I, J)

K (I, J) =I*J+2*I+3*J+l

配列要索K(I , J)は配列宣言がなされていない。したがって内部文番号 0050

における Kは関数副プログラムであるとみなされる。しかし内部文番号0051に

おいて K(I , J)が代入文の左辺にあらわれた。エラ一番号 256に類似している

が，文の前後の状態が異なる。ここでは外部関数Kが一つのプログラム内で引用

されると同時に代入文の左辺にもあらわれたものとみなされる。そのほか次の場

合もエラー 408の誤りである。

（例2) NAMEL I ST/ A/ B, C

COMMON/DIA

ブロック Dとその要素AはCOMMON文にないものとしてコンパイルされる。

（例3) EXTERNAL MYFUNC

DATA MYFUNC/ 1. 51 /

外部手続き名 MYFUNCと定数 1.51はDATA文にないものとしてコンパイルされる。

（例4) EXTERNAL A, B

NAMELI ST /C/ A, B

NAMELIST名Cとその要索A,Bは NAMELIST文にないものとしてコンパイ

ルされる。

25-

(f列）

（例）

（例）

410 MORE THAN 7 DIMENSIONS ARE DECLARED FOR "name"

O配列宣言子で次元の数が7を越えている。

内部文番号

0001

その配列宣言子の7次元までの寸法をとり， 8つ目以降の寸法を無1

視してコンパイルされるが，この配列宣言子を含むプログラム単位

はGOファイル上に出力されない。

フォートラン文

DI MENS I ON A (1, 2, 3, 4, 5, 6, 7, 8)

配列は7次元までしか許されない。上記配列宣言は8次元として宣言されている。

411 ILLEGAL DIMENSION DECLARED FOR ARRAY "name"

内部文番号

0001

O配列宣言子文の宣言子添字に誤りがある。即ち寸法に整定数か整定

数以外のものが使用されているか，あるいは寸法の区切り記号に誤

りがある。この配列宣言子はないものとしてコンパイルされるが，

この配列宣言子を含むプログラム単位はGOファイル上に出力され

ない。

フォートラン文

DIMENSION ARRAY (20, 20. 10)

配列宣言において ARRAY(2 0 , 2 0 , 1 0)とすべき部分で，コンマについて誤

りがある。

414

内部文番号

0001

0002

CONFLICTING USE OF DECLARATOR NAME "name"

O宣言子名としてNAMELIST名か手続き名と同じ名前が使われてい

る。この配列宣言子はないものとしてコンパイルされるが，この配

列宣言子を含むプログラム単位は GOファイル上に出力されない。

フォートラン文

,DIMENSION A (10)

EXTERNAL A

外部手続き名 Aに対して配列宣言がなされている。配列宣言は配列に対してのみ

有効である。

-26-

（例）

（例）

415 ARRAY "name" IS DOUBLY DECLARED WITH REDUi'¥DA:¥'T

OR CONFLICTING DIMENSIONS

内部文番号

0001

0 同一の宣言子名をもつ配列宣言—fが 2 回以上現われた。 2 番 H以降

に現われた配列宣言子はないものとしてコンパイルされるが，この

プログラム単位はGO ファイル上に出力されない。

フォートラン文

DIMENSION A (10, 10), A (100)

同じ配列名について 2度配列宣言がなされている。配列宣言は 1つの主プログラ

ム又は副プログラムに 1回のみでなければならない。

＊＊
416

内部文番号

0001

SIZE OF ARRAY "name" IS TOO LARGE

O配列宣言子の添字の値が大きすぎる。許される最大の大きさは整数

型，実数型，論理型と文字型の場合は216-1, 倍精度実数型と複索

数型の場合は217-1, 倍精度複索数型の場合は216-1である。この配

列には許される最大の語数が割付けられてコンパイルされるが，こ

の配列宣言子を含むプログラム単位はGO ファイル上に出力され

ない。

フォートラン文

D I MENS I ON A (1 0 0 8 1 0 0)

配列の大きさ A (1008000)が大きすぎる。但し上の例はA(l00,100)をミ

ス・パンチにより誤ったものであり ELーコードでは同じ鎚盤上に「，」と「8」

があることから時々生ずる誤りであるげ。

421 ILLEGAL DIMENSION STATEMENT SYNTAX

ODIMENSION文に文法違反がある。適当な仮定のもとにコンパイル

されるが，いずれの場合においてもこの DIMENSION文を含むプロ

グラム単位はGO ファイル上に出力されない。

（例） DIMENSION文についての表現上の誤りである。

(1) DI MENS I ON は文を削除される。

(2) DIMENSION A (15), 2B (20), C (50)は

DIMENSION A (1 5) , B (2 0) , C (5 0)と仮定される。

-27-

(3) DIMENSION A (15). B (50)は

DIMENSION A (15), B (50)と仮定される。

このようにエラー・番号421は表現形式上の誤りに関するものである。

2.3 リンクロード時，実行時における配列宣言の誤り

配列要索の表現形式には2つの点であいまいさがある。第 1に文関数や外部関数と同じ形式

で表現されていることである。すなわち，英字名の後にカッコがついて，カッコの中に変数（

但し整数型）がコンマで区切られて配置されている。第2に配列要索は次元の数と寸法により

表現されているにもかかわらず，計算機の主記憶に記憶されているのは一次元的に並べられた

（数）値の列であるにすぎない。

プログラミングの手順の上からみて，第1番目の問題点は概ねリンクロード時までに何らか

の形でエラー・メッセージが出力されて発見できる。したがってバッグ発見のための困難度は

低い。第2番目の問題点は，プログラム作成者自身のプログラムに対する意味付けとの関連が

非常に強い。配列が記憶される場合に，要列要素は1列に並べられるにすぎない。したがって

配列要索の全体の数が重要であって，寸法のみ又は次元の数のみについては文法上及び計算機

の機能上から見て一概に誤りとはいえない。すなわち，配列宣言について問題が生じた場合に

は，配列要素や配列宣言子の添字の数や寸法がフォートラン文法としてでなく，プログラムで

実行したい事項の意味を考えた上で，主記憶上の配列要素の記憶場所との関係において配列要

索や変数の記憶や引用が正しく処理されているか否かを確かめる必要がある。特に文法につい

ての誤解や配列要索の記憶されている状況についての誤解は， しばしば“ァルゴリズムは正し

いけれども最終結果がおかしい”といった種類の誤りになっている。

誤りについて解説に入る前に配列について，各要素の記憶場所のようすを示しておく。文法

説明のところでも述べたように例えば配列 !ARRAY(8, 3)は図2.1で示された

図 2.1 配列宣言子 IARRAY(8, 3)に対する配列要素の記憶

IARRAY (1, 1) I IARRAY (2, 1) I IARRAY (3, 1)

!ARRAY (7, 3) I !ARRAY (8, 3)

順序で一列に (1本のテープ上に並べられたように）配置される。仮りに配列を !ARRAY

(2 4)としたならば，配列要素の値は図2.2に示された順序に 1列に配置される。上記図2.1

と図2.2に示された 2つの手法は値の記憶という点からは全く同じである。

したがって配列宣言子が例え 2次元で記述されていても，文法で示された添字の相対的位置

が同じであれば，実行文中で1次元配列として用いることができる。但し，この逆は誤りであ

る。
-28ー

図2.2 配列宜言—f- !ARRAY (24)に対する配列要索の記1意/I偵序

IARRAY (1) !ARRAY (2) !ARRAY (3)

IARRAY (23) !ARRAY (24)

図2.3は配列宣言 IARRAY(8, 3)が2次元でなされた配列を， 実行文中で2次元配列と

して用いた場合と 1次元配列として用いた場合の効果が同等である事を示す例である。 プログ

ラム中で配列宣言は DIMENSION I ARRAY (8, 3)とされている。．内部文番号0002-

0004において 2次元配列に数値を代人する。内部文番号0005-0006で IARRAY (I 1,

I 2)として2次元配列のままで出力をおこなう。

次に内部文番号 0008-0011において配列を IARRAY(I)として 1次元配列に兄立て

てWRITE文で出力した。内部文番号 0009-0010は， 出力結果が上記2次元配列と詞じ

にするための添字の変換式と考えてよい。図2.3の下部には 2つの WRITE文による出力結

果を示す。添字について調整することにより全く同じ結果を役ることがわかる。

図 2.3 2次元配列と 1次元配列の比較

1
2
3
4
5
6
7
8
9
0
1
2
3
4

o
o
o
o
o
o
o
o
o
l
l
l
l
l

o
o
o
c
o
o
o
:
:
:
:
:
c
o
 0
0
0
0

0
0
0
 c;::,:::::o
い

0
C
C
C
:
:
:
 C::,C

DIMENSION IARRAY (8 ,3)
DO 10 I l=l , 8
DO 10 I2=1 ,3

10 IAR!{AY 01 ,I2)=l0>1<ll+I2
DO :rn I l = l , 8 _

:30 WHlTE(fl,1000) ((Jl,I2,IARRAY(Il,I2)) ,!2=1,:,l
100 FORMAT(lll ,:; ('(',fl, , ,II,) ,IX,12, _: ,:,Xl)
DO 40 I=l, 8
I 2,=J+o
1:-l=l+l 6

40 WRITE (6. 200) I, !ARRAY (li , I 2, IARR,¥Y (I 2j . 1 :, , !ARRAY (I: ぅ＼
200 FORMAT(ll-l ,:3 ((I:3,) ,IX,I2, : ,3X))
STOP
END

WRITE文による出力結果

(1,1) 11: (1, 2)
(2,1) 21: (2,2)
(3,1) 31: (3,2)
(4 , l) 4 1 : (4 , 2)
(:, , 1) 5 1 : (G , 2)
ifi , l) G 1 : (ti , 2)
(7, Ii 7 I : (7, 2)
(8,1) 81: (8,2)
(1 J 1 l : (9)
(2) 2 l : (1 U)
(3) 31: (11) 、.、
(4) 41 : (12)
(5) 51 : (13)
(6) 61: (14)
(7) 7 1 : (1 5)
(8) 81 : (16)

••••••••••••.•••••••••••••••••
N
2
2
2
2
2
2
2
2
2
}
2
2
2
2
2
2

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

i
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

ヽ
I

‘
~
)
）
ヽ

j
)

）
ヽ

l
)

）
ヽ
ー
／
ヽ

l
)

、
)
‘

`
l
\
j

3
3
3
3
3
3
3
3
7
8
9
0
1
2
3
4

.
，
'
，
'
，

'
,
1
1
1
2
2
2
2
2

け
⑫
似
⑭
⑮
⑯
げ
侶
(
(
(
（
•
(
（
（
（

-29-

以I:のことを念頭において，配列に関するバッグについて次の事項を調べる。

1) 配列名に対して，その配列宣言を落した場合。

2) 配列宣言子において，次元の数を誤った場合。

3) 配列宣言子において，添字の寸法を誤った場合。

宣言文はどちらかといえば実行文に対して従属的役割を果たす。したがって配列宣言自体の誤

りもさることながら，多くの場合実行文との関係において誤りであるか否かの判定を下すこと

ができる。つまり，上記の誤りは必ずしも宣言文の誤りではないかもしれない。時には実行文

が誤っていることもある。しかしここでは実行文は正しく，必ずしも修正する必要のない事を

想定して解説する。

配列宣言を落した場合

これは配列宣言子が非常に多いためにうっかりそれらの内の1つを落すことにより犯す誤り

である。また時には配列であることを忘れてしまったり，他のデバッグをおこなっているうち

に配列宣言の部分を（手違いのため）消してしまう等の比較的索朴な理由で犯すことも多い。

具体的にあらわれる現象としては大きく 2つに分けることができる。まず第 1に

(1) 配列要索が代入文の右辺にあらわれているにもかかわらず配列宣言がなされていない，

場合である。コンパイルは主プログラム又は1つの副プログラムの範囲内でおこなわれ，副プ

ログラム間の関係は見ない。しかも配列要素と関数は代入文の右辺では全く同じ形式で表現さ

れる。このために

(2) 配列は関数副プログラムとして処理される。

この結果リンクロードの時点で

(3) リンクロード時エラー・メッセージ

LLIO 7 I***** UNRESOLVED ENTRIES Y

LLK38I***** UNRESOLVED SUBPROGRAM

が出力される。

図2.4 配列名Yについての配列宣言を落とした場合のプログラム例。
リンクロード時にエラー・メッセージが出力される。

c
 DIMENSION A (10)
DD 10 l=l, 10

A (I) =FLOAT 0* (I+l)) *y (I)

10 CONTINUE

リンクロード時に出力されるエラー・メッセージ

LLK17I*****UNRES0LVED ENTRIES Y

LLK38I*****UNRES0LVED SUBPROGRAM

-30-

図2.4にその具体例を示した。この誤りは配列宣言子がCOMMON文に現われるはずである

場合にしばしば経験するものである。

第 2に考えられるのは

(4) 配列要索が代入文の左辺または入出力文にあらわれているにもかかわらず，配列貨貨

がなされていない，

場合である。この時にはコンパイル時エラー・メッセージが

(5) コンパイル時エラ

256 VARIABLE NAME "name" FOLLOWED BY LEFT PAREN

PARENTHESES

で出力される。

以上を図式化すれば図2.5の流れ図になる。

図2.5 配列宣言を落した場合に生ずる誤りの症状

(1) 配列要索の代入文の

右辺にあらわれている

にもかかわらず，配列

宣言がなされていない。

(2) 配列は関数副プログ

ラムとして処理されて

いる。

(3) リンク・ロード時エ

ラー

(LLKl 7 I
LLK38 I)

配列宣言子の次元の数を誤った場合

(4) 配列要索が代入文の

左辺又は入出力文にあ

らわれているにもかか

わらず，配列宣言がな

されていない。

(5) コンパイル時エラー

エラー・メッセージ
番号256

誤りについて解説する前に配列の次元の数と配列要索の対応関係について触れておく。文法

説明でも示されたように配列要索はすべて（次元の数に関係なく） 1次元的に 1列に並べて記

憶されている。 3頁の表に見るように配列要素の添字の値を見ることにより，配列の最初のも

のから数えて何番目にあるかを知ることができる。しかも，配列宣言において次元の高い配列

はより次元の低い配列として実行文中で使う事が可能である。

図2.4には配列宣言子 IARRAY (8, 3)に対して実行文中で IARRAY (I, J)なる 2次

元配列と !ARRAY(I)なる 1次元配列の2例について使いわけた例を示した。 2次元配列

として使った場合については宣言文との関係が明解なので説明を省略する。

図2.4のプログラムでは， 2次元配列において配列要素を 1列に並べた時の各々の相対的位

-31-

置を知っておればそれはいつでも 1次元配列でおきかえることが可能であることを示した。

このように配列宣言よりも低い次元の数で実行文中で配列要索を用いることが可能であるた

めに，次の誤りを生ずることがある。

(6) 配列宣言において配列宣言子の次元の数を誤って多くとりすぎた。

もし正しい次元の数のところまでの寸法が誤っていなければ，上記のことは実行文へ直接影響

しないかもしれない。ところが COMMON文や EQUIVALENCE文等により変数や配列の間

に結合がもたらされ，この点が重要な意味をもつ場合にはやはり(6)の誤りは重大である。

図2.6には配列 IA (3, 3)と IB (3)をEQUIVALENCE文により配列 IC(12)に結

合させた時の例を示した。 WRITE文による出力結果で見るように，配列 A (3, 3) , B (3)

は配列 C (1 2)と同じ値をもっている。

図2.6 配列宣言文及ぴ EQUIVALENCE文が使われたプログラムの例

C MAIN PROGRAM

DIMENSION IA (3, 3) , IB (3) , IC (12) , ID (10)

EQUIVALENCE (IA(l,l), IC(l)), (IB(l), IC(lO))

DATA (ID (I), I=l, 10) /41,42 ,43 ,44 ,45 ,46 ,47 ,48 ,49 ,50/

DO 10 I=l, 3

IB (I) =I

DO 10 J=l, 3

10 IA (I) =lO*I+J

DO 20 I=l3, 22

20 IA (I) =I-9

WRITE (6, 100) (IA (I, J), I=l, 3), J=l, 3), (IB (I), I=l, 3)

(IC (I), I=l, 12), (ID (I), I=l, 10)

100 FORMAT(lHl,'IA(I)=',s (12,'f,,), I2, ▽．：△ IB (I) ='I, 2 (I 2, l . l)

l, I2, V.l/lX llC(I)=l,9 (12, ,,,), s:x; 2 (12,'lf,l), I2, Y.l

2 /1 :x; l ID (I) =', 9 (I 2, l ,'t) , I 2, l .')

STOP

END

WRITE文による出力結果

IA(I)=ll, 21, 31, 12, 22, 32, 33, 23, 33,: lB(I)=l,2,3.

IC (I) =l l, 2 1, 3 1, 1 2, 2 2, 3 2, 1 3, 2 3, 3 3, 1 , 2 , 3 .

ID (I)= 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

図2.6のプログラム例では，配列 ID(1 0)は配列要素 IB (3)又は IC(1 2)の直後の番

地に配列要索 ID(1)がおかれ，以後に ID(2), ID (3)…ID (1 0)とつづいている。した

がって

DD 20 !=13, 22

2 0 I A (I) = I-9

-32-

を強引に実行すれば，これら右辺の数値は ID(l),ID(2),…, ID (1 0)へ代入される。（

このプログラム例は，フォートラン 700では必ずしも誤りとはならない。逆に特殊な手法で

はあるが，有効な場合もある。）

図2.6がプログラム作成者の意図どうりに正しくつくられたプログラムであるとの仮定のも

とで次の例を考える。

プログラム図2.6において配列宣言子が

I A (3, 3) → I A (3, 3, 3)

でおきかえられた例を図2.7に示した。配列宣言文以外は図2.6と全く同じである。 WRITE

文による出力結果は図中下部に示した。配列 ID(1 0)の要素の値が初期のままである点が図

2.6と異なる。

図2.7 プログラム図2.6において，配列宣言子を

A (3, 3)→ A (3, 3, 3)

でおきかえた場合の例

DIMENSION I A (3, 3, 3) , IB (3) , I C (1 2) , ID (1 0)

STOP

END

WRIT欧による出力結果

IA(I)=ll, 21, 31, 12, 22, 32, 13, 23, 33.: IB(I)=l, 2, 3.

IC(I)=ll, 21, 31, 12, 22, 32, 13, 23, 33, 1, 2, 3.

ID (I) =41, 42, 43, 44, 45, 46, 47, 48, 49, 50

図2.6と図2.7は，配列宣言子A(3, 3)を A(3, 3, 3)に変えてしまったために，配列間

の対応関係が変ってしまった。

図2.8では，これら両プログラムにおける対応関係の比較を示した。このように，配列宣言

子の次元の誤りは， (IBに対するように）全く表面にあらわれない場合もあるが，多くの場合

I Dに対するように何らかの形で副作用をおよぼす。

さて，以上の症状をもとに整理してみれば次のようになる。まず，エラー (6)と密接な関

係にある誤りとして次のものがある。

(7) COMMON文や EQUIVALENCE文による配列の結合に誤りがある。

この誤りの結果として次のことがおこる。

(8) 配列要素の（数）値が正しく入っていない。

-33-

図2.8 プログラム図2.6及ぴプログラム図2.7における配列の対応関係とWRITE文

直前の数値

プログラム図2.6 プログラム図2.7

対応 数値 対応

IB (1, 1) IC (1) 11 IA (1, 1, 1) - IC (1)

IA (2, 2) - IC (2) 21 IA (2, 1, 1) - IC (2)

IA (3, 1) - IC (3) 31 IA (3, 1, 1) - IC (3)

IA (1, 2) - IC (4) 12 I A (1, 2, 1) IC (4)

IA (2, 2) - IC (5) 22 IA (2, 2, 1) - IC (5)

IA (3, 2) --:-IC (6) 32 IA (3, 2, 1) - IC (6)

IA (1, 3) - IC (7) 13 I A (1, 3, 1) - IC (7)

I A (2, 3) IC (8) 23 I A (2, 3, 1) - I C (8)

IA (3, 3) IC (8) 33 IA (3, 3, 1) - IC (9)

I B (1) - IC (10) 1 IA (1, 1, 2) - IC (10) - IB (1)

1B (2) - IC (11) 2 I A (2, 1, 2) - IC (1 1) - IB (2)

IB (3) IC (12) 3 IA (3, 1, 2) - IC (12) - IB (3)

ID (1) 4 IA (1, 1, 3)

ID (2) 5 IA (2, 1, 3)

ID (3) 6 IA (3, 1, 3)

IA (3, 3, 3)

ID (10) 13 ID (1)

ID (10)

次に考えられるのは，誤り (6)とは逆に

(9) 配列宣言において配列の次元の数を誤って少なくとった，

場合である。この結果，実行文中での配列要索の次元の数が宣言文と一致しなくなり，

(10) 実行文中において，配列宣言より多い次元の数の配列を用いた，

結果になる。但しこの場合には

(11) コンパイル時エラー・メッセージが番号 277で出力，

されるので発見は早い時点でなされる。

数値

11

21

31

12

22

32

13

23

33

1

2

3

4

5

6

4゚1

50

一方，エラー(9)にもかかわらず実行文中で用いられた配列要索の次元がなおかつ宣言文より

少いこともあり得る。この時にはエラー(7)へつながる。以上の結果を流れ図で図式化したのが

図 2.9である。

-34-

図2.9 配列宣言において配列の次元の数を誤った場合に生ずる症状

(6) 配列宣言において配

列の次元の数を誤って

多くとりすぎた。

(7) COMMON文，

EQUIVALENCE文で

の配列や変数の結合に

誤りがある。

(8) 配列要索の（数）値が

正しく入っていない。

配列宣言子の添字の寸法を誤った場合

(9) 配列宣言において配

列の次元の数を誤って

少くとった。

(10) 実行文中で配列宣言

より多い次元の数で配

列を用いた。

(11) コンパイル時エラー

エラー・メッセージ番

号 277

寸法の誤りは記憶場所を占有する状況の面から見た場合には次元の数の誤りと同じである。

したがってエラー(7)へ関連する場合もある。

一方，寸法の誤り方としては“大きすぎる”場合と“小さすぎる”場合が考えられる。

(12) 配列宣言において配列の寸法を誤って大きくとりすぎた，

場合には，もし

(13) 配列の寸法がz1s_1を越えている，

ならば

(14) コンパイル時にエラー・メッセージが番号 416で出力される。

大型計算機といえども記憶できる語数は有限である。したがって配列が大きすぎれば，全体と

して

(15) プログラムのサイズが大きすぎる。

ために

(16) リンクロード時又は実行時にエラー・メッセージが出力される。

LLIO 3 I***** CORE EXCEEDED ; リンクロード時

MRMOOI UEP INSUF MEMORY ；実行開始時

配列の寸法を誤ってもそれがただちにエラー・メッセージに結びつくとは限らない。むしろ多

くの場合，数値上の異常として検出される。

-35-

図2.10 配列宣言子 IA(4, 3)と IA(3, 3)の記憶される状態の比較

配列宣言子 IA(4, 3)の主記憶上

での配列要索の順序の順序

IA (1, 1)

IA (2, 1)

IA (3, 1)

IA (4, 1)

IA (1, 2)

IA (2, 2)

iA (3, 2)

IA (4, 2)

IA (1, 3)

IA (2, 3)

配列宣言子 IA(3, 3)の主記憶上

での配列要索の順序

IA (1, 1)

IA (2, 1)

IA (3, 1)

IA (1, 2)

IA (2, 2)

IA (3, 2)

IA (1, 3)

IA (2, 3)

IA (3, 3)

図 2.10には配列宣言子 IA(4, 3)又は IA(3, 3)が主記憶上に記憶される場合の各配列

要素の位置関係を示したものである。

図でもわかるように，配列宣言子が違った場合には，実行文で

K=IA (I, J)

を実行する時に， Kの値が違ってくる。すなわち，

(17) 配列宣言におい•て配列宣言子の寸法を誤って小さくとりすぎた

場合においても，またエラー(12)の場合においてもいずれも

(18) 配列要索の引用又は配列要素への代入において，誤った配列要索の引用又は代入をおこ

なっている。

また，配列宣言子の次元の数と寸法は主記憶上では混みにして取扱われていることから，計算

機としては区別できない。したがってエラー(17)はエラー(7)へ結びつくこともある。

また，配列はDDループの中でしばしば用いられるため， DD文エラー番号(16)(第 2回参照）

ヘ結びつくこともある。

以上を流れ図で示せば図2.11になる。

-36-

図 2.11 配列宣言において添字の寸法を誤った場合に生ずる症状

(12) 配列宣言において

配列宣言子の寸法を

誤って大きくとりす

ぎた.°

-1をこえている。

(14) コンパイ時エラー

エラー・メッ．セージ

番号 416

3. COMMON文

(15) プログラムのサイズ

ズが大きすぎる。

(16) リンクロード時又は

実行時にエラー・メッ

セージが出力される

• LLKl 3 I

（リンクロード時）

• MRMOO I

（実行時）

(17) 配列宣言におし)て

配列霞言十の寸法を

において誤った要索

に引用又は代人をお

こなう

COMMON文は，いくつかの副プログラムと主プログラムからなるプログラムに対して， こ

れらの間に共通な変数や配列を定め，共通の場所に記憶しておくための宣言文である。このほ

かに配列宣言の機能ももつ。

3 .1 COMMON文に関する文法

COMMON文の表現形式は次のように規定される。

(2) COMMON文 COMMON文(COMMON

statement)は，つぎの形とする。

COMMON/x, /a,/…/ Xn / an

ここで， aぃ…， anは，いずれも変数名や

配列名や配列宣言子の並ぴとし，空では

なく，その中に仮引数を含まないものと

する。 x,.…, Xnはいずれも英字名かまた

例： COMMON文

COtvlMON/G/H, I, B (5, 13) / /K

COMMON L (1 O) /G/C

この例で, H, I, B, Cはこの順で共通プ

ロック Gの中にある。 K,Lはこの順で

無名共通プロックの中にある。

は空とし，英字名の場合にはプロック名 (blockname)という。 x,が空の場合には最初

の 2個の斜線はなくてもよい。プロック名は，これと同じ名前を持つ変数や配列がどこ

にあっても．たとえ同じプログラム単位内にあっても，それとは何の関係もない。

このように定められた COMMON文において，斜線及び英字名はそれぞれの位置により次のよ

うに意味づけられる。

COMMON文において，プロック名 xの直後の斜線からつぎの斜線までの間の，また直

後の斜線のあとに斜線がない場合には，その文の終りまでの，並びの要索は共通ブロック

(common block) xの中にあると宣言されるものとする。 COMMON文の最初からプロッ

-37-

ク名が現われるまでの，またはプロック名が現われない場合には，文の中のすべての，並

びの要索は無名共通プロック (blankcommonまたはunlabeledcommon)の中にあると宣

言されるものとする。さらに， 2個の斜線の間にプロック名がないものが現われた場合に

は，その斜線に続く並びの要素も無名共通プロックの中にあると宣言されるものとする。

無名共通プロックに対して，プロック名を持つ共通プロックを名前付共通プロック (labeled

common block)という。

特定の共通プロック名が一つのCOMMON文あるいは一つのプログラム単位内に何度現

われてもよい。処理系は，それらに続く並びの要素のすべてを，現われる順序につなぎ合

わせて，一つの共通プロックにするものとする。無名共通プロックについても同様とする。

共通プロックは，変数や配列要素の列で構成され，配列の中の配列要索の並び方は，配列

要索関数によるものとする。

プログラム単位内の共通プロックの大きさは， COMMON文およぴEQUIVALENCE文

で持ち込まれた要索が必要とする記憶単位全体の個数とする。一つの実行可能プログラム

内のいくつかのプログラム単位に同一のプロック名を持つ名前付共通プロックがある場合

には，それらのプロックの大きさは同じでなければならない。無名共通プロックの大きさ

は，プログラム単位ごとに異なってもよい。

共通ブロックはいくつかの副プログラムに対して配列及ぴ変数の共通の記憶場所を指定するも

のである。したがって副プログラム間で相互につじつまの合う共通ブロックの表現（宣言）を

おこなわなければならない。それらについては次のように定められている。

共通ブロック問の対応：いくつかのプロ 例：共通ブロック問の対応

グラム単位に同一のプロック名をもつ名前 使用例：

付共通プロックがある場合には，それらは SUBROUTINE SUB1

互いに対応している (correspond)といい， COMMON A ,B, C/BL/D, E

同一の記憶場所を共有する。また，いくつ

かのプログラム単位に無名共通プロックが

ある場合には，それらは互に対応している

といい，それらの大きさが同じならば同一

の記憶場所を共有し，大きさが違うならば，

小さい方は大きい方の記憶場所の一部を共

有する。

共通プロック内では整数型や実数型や論

理型の変数や配列要索は一つの記憶単位を

占め，倍精度実数型や複索数型の変数や配

列要素は連続した二つの記億単位を占め，

それらは共通プロック内での並ぴ方に従っ

て記憶場所に割当てられるものとする。対

応する共通プロックでは，それらの先頭の

要索の占める記憶場所は同一とする。

同一の記憶場所を共有する二つ以上の変

数や配列要索は，互いに結合されていると

38-

END

SUBROUTINE SUB2

COMMON X, Y (3) /BL/ Z (2)

END

上の例で， A,B, C, D, E, X, Y, Z

がすべて実数型であれば， AとX,Bと

Y (1), CとY (2), DとZ(1), Eと

Z (2)は互いに結合されている。

上の例で， Xだけが複索数型で他は

実数型であれば， A,BとX,Cとy(1) が

結合されている。

ここで， AはXの実数部と， BはXの虚

数部と，同じ記憶場所を占める。

上の例でDが倍精度実数型で， E,Zが

実数型であれば，副プログラム SUB1で

いう。互いに結合されている二つの要索に の共通プロノクBLの大きさは :1'記憶単位

おいて，両方の型が同じならば，一方が確 --c SUB 2でのそれは 2,記憶単位であるか
定のときは他方も確定とし，一方が不定の ら誤りである。

ときは他方も不定とする。また型が違えば

一方が確定のときは他方は不定とする。

COMMON文は，それのもつ機能の点でもまた宣言された内容の点でも共に広範囲に影郭をお

よぼすので，デバッグにおいては広い範囲にわたって調べなければならない。上記文法につい

ては，宣言の形式よりもその効果の大きさに注目するのが良いと思われる。

3 .2 COMMON文のコンパイル時エラー・メッセージ

3. 2.1 WARNING

（例）

002 WARNING: ADJUSTABLE DIMENSION "name" IN COMMO;-.;

O整合寸法を示す整数型の変数名がCOMMON文中に含まれている。

内部文番号

0001

0002

0003

（プログラム コードー00.)

フォートラン文

SUBROUTINE SUB (A)

COMMON B (10) , I

DIMENSION A (I)

内部文番号 0003における配列 Aの整合寸法がCOMMON文中に含まれている。

整合寸法を示す変数は仮引数にする事が原則であるため WARNINGになった。

3.2.2 FATAL ERROR

（例）

431

内部文番号

0002

0003

ILLEGAL COMMON ST A TEMENT SYNTAX

OCOMMON文中に文法違反がある。適当な仮定のもとにコンパイル

されるが，この COMMON文を含むプログラム単位は GOファイル

上に出力されない。

フォートラン文

COMMON

COMMON/A/B,C/3P/Q,R

第 1行目は COMMON文中に変数及び配列を含まない。この誤りの文はないものと

してコンパイルはつづけられる。

第 2行目は LABELEDCOMMON / 3PQ, , Rの名前が誤りである。名前付

き共通プロックの名前は英字かははじめなければならない。この文は COMMONら

-39-

（例）

/A/B,Cとしてコンパイルされる。

432 "name" IS A DUPLICATE COMMON ELEMENT OR IS

DECLARED IN MORE THAN ONE COMMON BLOCK

内部文番号

0002

OCOMMON文において同一の要素が2つ以上のプロックに含まれて

いるか，あるいは同一のプロックに 2回以上にわたって含まれてい

る。これらのプロックはないものとしてコンパイルされるが，こ

のCOMMON文を含むプログラム単位はGOファイル上に出力され

な,;,0

フォートラン文

COMMON U , V , U

COMMON文中に同じ英字名 Uが 2回あらわれているため誤りである。同ープロ

グラム単位内で， 1つの英字名についての宣言は 1度でよい。

433 MORE THAN 47 LABELED COMMON BLOCKS ARE

DECLARED

0名前付き共通プロックの個数が47を越えた。 48個目以降に現われた

名前付き共通プロックはないものとしてコンパイルされるが，この

プログラム単位はGOファイル上に出力されない。

（例） COMMON/COMl /Al ,Bl /COM2/A2 ,B2/・・・

COMMON/COM46/A46,B46/C0M47/A47,B47/C0M48/A48,B48/

LABELED COMMON BLOCKが48個あるため誤りである。

434 TOO LARGE COMMON BLOCK "name"

0無名共通プロックか 1つの名前つき共通プロックの大きさが2'・-

1 語を越えた。 21•- 1語までの要索には主記憶装謹が割付けられ

てコンパイルされるが，この文を含むプログラム単位はGOファ

イル上に出力されない。 EQUIVALENCE文によって持ち込まれた

要索によってこのエラーが検出された場合も含む。無名共通プロ

ックの場合は， "name"の部分は "BLANK-CM"になる。

（プログラム コードー 10.)

このエラーは，計算機システムとして予め共通プロックだけのために予約された

記憶領域があり，この領域の大きさの制限を越えたための誤りである。

40-

（例）

（例）

（例）

537 LABELED COMMON BLOCK INITIALIZED IN NOi'¥ -BLOCK

DATA SUBPROGRAM

内部文番号

0001

0002

0003

0初期値設定副プログラム以外で名前付共通プロック内の要索に初期

値が割付けられている。初期値の割付けられた変数窃の含まれる並

ぴとそれに対応する定数等の並びはないものとしてコンパイルされ

るが，このプログラム単位はGOファイル I:に出力されない。

（プログラム コードー 10.)

フォートラン文

SUBROUTINE SUB

COMMON /COMl/A,B,C/

DATA A,B,C/1 .2,2 .0,3 .0/

初期値設定副プログラム以外で名前付共通プロック内の要索に初期値の割付をおこ

なってはいけない。もし初期値の割付けが必要ならば代入文でするとよい。

538

内部文番号

0002

0003

"name" IN BLANK COMMON INITIALIZED

ODATA文あるいは型宣言文により，無名共通プロック内の要索に初

期値を設定している。その要索には初期値は人れられないものとし

てコンパイルされるが，そのプログラム単位はGOファイル上に出

力されない。

（プログラム コードー 10.)

フォートラン文

COMMON A,B,C

DATA A,B,C/1.0,2.0,3.0/

無名共通ブロック内の変数 A,B,CにDATA文で初期値設定をやってはいけない。

もし初期値設定が必要ならば代入文でおこなう。

576 I DUMMY ARGUMENT "name" IS IN COMMON

内部文番号

0001

0002

0仮引数として使用されている英字名が， COMMON文中にも現われ

ている。そのままコンパイルされるが，このCOMMON文を含むプ

ログラム単位はGOファイル上に出力されない。
（プログラム コードー 10.)

フォートラン文

SUBROUTINE SUB1 (C, I)

COMMON A, B (10) , I

-41-

英字名 Iは仮引数であると同時にCOMMON文中にもあらわれたため誤りである。

COMMON文又は仮引数のいずれか 1方のみとする。

3.3 リンクロード時，実行時における COMMON文の誤り

COMMON文は配列や変数の記憶場所をいくつかの副プログラム間で共有することを宣言す

る文である。したがって単純な誤りはコンパイル時に発見されるが，プログラムの意味にかか

わる重大な影響をもつ誤りは概ねリンクロード時以後に発見される。

無名共通プロックと名前付き共通プロックのいずれにおいても，各々の副プログラム間で変

数や配列の記憶場所が相互に矛盾することなく宣言されていなければならない。また変数や配

列の値については，それらの記憶されている場所（主記憶上の番地）が重要であり，英字名は

プログラム単位内でのみ意味をもつ副次的役割をもつのみである。但し，型はすべて統一され

ていなければならない。これらは， COMMON文の欠落やCOMMON文中の変数名・配列名の

欠落のみでは文法の面から見て必ずしも誤りとは断定できないことになるため，デバッグの際

の困難さの重大な一因になる。

以上のことから COMMON文に関して誤りを犯すとしたら，次の 3つの場合が考えられる。

(19) COMMON文中である変数名又は配列名を落した。

(20) COMMON文中で配列宣言子の次元の数又は寸法をまちがえた。

(21) 1つのプログラム単位内でCOMMON文全体を落した。

すでに述べたように，上記の(19)-(21)がプログラムとして誤りであるか否かは 1概に判定できず，

それはプログラム作成者の判断によるしかない。つまり，作成意図通りに処理されたことをも

って正しいと言う以外にないことに注意していただきたい。

以下の具体例を見ることにより COMMON文の振舞いを示す。但し，以下で八シケ（誤り）

と言う表現は，常に正しし・ヽといっている部分と対にして見ることが大切である。

COMMON文における変数名又は配列名の欠落

共通プロックは無名と名前付きのいずれも，その共通ブロックを参照した主プログラム又は

副プログラムの内で最初に主記憶にロードされるものによってサイプが定められる。一度サイ

ズの定められた共通ブロックは，次に参照される時にはその大きさを越えてはならない。逆に，

一度定められた共通プロックが別の副プログラムで参照される時に，すでに定められた大きさ

より小さければ文法上は誤りとならない。

図 3.1は主プログラムに対して副プログラムの共通プロックが小さくとられた例である。こ

の場合には，エラー・メッセージの出力はなかった。但し変数名と配列名において，主プログ

ラムと副プログラム間に次の対応関係がある。

-42-

図 3.1 サイズの異なる共通プロックの例

（エラー・メッセージの出力なし）

C MAIN

C

COMMON /COMl/A,B,C (10) ,D (10)

CALL SUB

STOP

END

SUBROUTINE SUB

COMMON /COMl /A, B, D (10)

RETURN

END

エラー・メッセージなし

主プログラム側

共通ブロック

A

B

C (1 0)

D (1 0)

図3.2 サイズの誤なる共通プロックの例
（エラー・メッセージが出力された）

C MAIN

C

疇.

~ ~

< •

. .

COMMON /COMl/A.B,D (10)

CALL SUB

STOP

END

SUBROUTINE SUB

COMMON/COMl/A,B,C (10) ,D (10)

RETURN

END

リンクロード・時エラー・メッセージ

LLK67I

副プログラム側

共通プロック

A

B

D (10)

なし

図 3.2は主プログラムに対して副プログラムの共通プロックが大きくとられた場合の例であ

る。この場合には，主プログラムの共通プロックのサイズが優先され（すなわち先にロードさ

れるため）副プログラム側の誤りとなる。この時，リンクロード時に

LLK67I****LABELD COMMON SIZE ERROR ICOMl

が出力される。

図 3.1のプログラムにおいては，共通プロックを通じて共有される変数名又は配列名の値が，

プログラム単位間で正しく対応関係が守られているか否かの点で，プログラムの意味上の問題

点を含む。

共通プロックによって変数又は配列要素の値が共有されているようすを見るために，図 3.3

にテスト用プログラムの例を示した。副プログラム SUBへ主プログラムから値が移るようす

は， WRITE文による出力結果を見ることによりわかる。

さて，共通ブロックによって値が共有されるようすをもっとくわしく見るために図3.3にお

いて副プログラムの COMMON文を変えてみる。

① 変数Bを落した場合。

COMMON/COM! I A, C (10) , D (10)

-43-

図3.3 共通プロック内の変数と配列要素の値が副プログラム間で共有されていることを

示すためのテスト用プログラム

C MAIN

C

C

COMMON/COMl /A, B, C (10), D (10)

A=l .0

B=2 .0

DD 10 I=l , 10

C (I) =FLOAT (I)

10 D (I) =FLOAT (I) +10 .0

CALL SUB

STOP

END

SUBROUTINE SUB

COMMON/COMl I A, B, C (10), D (10)

WRITE(6,100) A,B, (C(I), I=l,10), (D(I), I=l, 10)

100 FORMAT (1H3,'ouT-PUT IN SUB'/

1 TA= T, F3 . 1 , T, △△ B=l,F3 .1, T.T/

2 TC (I) =.T, 9 (F4. 1 , T, T), F4 . 1 , T. T /

3 TD(I)=T,9 (F4.l,T,T), F4.l,T.T)

RETURN

END

WRITE文による出力結果

OUT-PUT IN .SUB

A=l.O, B=2.0.

C (I) = 1 . 0 , 2 . 0 , 3 . O , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 9 . 0 , 10 . 0 .

D (I) =11 . 0 , 12 . 0, 13 . 0, 14 . 0, 15 . 0 , 16 . 0 , 1 7 . 0, 18 . 0, 19. 0 , 2 0 . 0 .

もし実行文において変数Bがあらわれていれば

0 2 5 WARN I NG: UNDEFINED VAR I ABLE B

が出力される。また WRITE文による出力結果は図 3.4のとうりである。

図3.4 プログラム図3.3において副プログラム SUBのCOMMON文を

COMMON /COMl /A, C (10), D (10)

としたときの出力結果

OUT-PUT IN SUB

A=l .0, B=O .0

C (I) = 2 . 0 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 9 . 0 .

D (I) =l O . O , 11 . O , 12 . O , 13 . 0 , 14 . 0 , 15 . 0 , 16 . 0 , 1 7 . 0 , 18 . 0 , 1 9 . 0 .

② 配列 C (1 0)を落した場合

-'-44-

COMl¥/lON / COM 1 / A , B , D (1 0)

DIMENSION C (10)

DIMENSION文において配列 C(1 0)を定義した理由は，テスト用の WRITE文の所でコンハ

イル時にエラー・メッセージ

178 SYNTAX ERROR IN 1/0 LIST

256 VARIABLE NAME "C" FOLLOWED BY LEFT PARENTHESES

にひっかからないためである。もし実行文中で配列名 C(1 O)が1度も現われなかったならば，

エラー・メッセージの出力はない。

さて，このように変えられた COMMON文に対して， WRITE文による出力結果は図 3.5の

とおりである。

図3.5 プログラム図3.3において副プログラム SUBのCOMMON文を
COMMON/COMl / A ,B ,D (10)
DIMENSION C (10)

にした時のWRITE文による出力結果

OUT-PUT IN SUB

A=l.O, B=2.0

C (I)= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0.

D (I) = 1 .0, 2 .0, 3 .0, 4 .0, 5 .O, 6 .0, 7 .0, 8 .0, 9 .0, 10 .0.

上記，場合① （図 3.4) と場合② （図 3.5) を図 3.3に示されたプログラムの出力結果と比較

することにより次のような結論を得る。

すなわち，

(19) COMMON文中で，ある変数名又は配列名が落ちた，

場合には，もしそれらが実行文で使われていれば，コンパイル時に

(22) 変数名に対して

025 WARNING: UNDEFINED VARIABLE'name

が出力される。また

(23) 配列要素名に対して FATAL ERRORとなり

2 5 6 VAR I ABLE NAME "name" FOLLOWED BY LEFT

PARENTHESES

が出力される。

COMMON文中から落ちた変数名又は配列名が実行文中で使われることもない場合に

は，エラー・メッセージはない。しかしプログラムの意味の上から誤りであった場合には，数

値に異常を生ずる。 COMMON文中で変数名又は配列名が落ちた場合には，英字名には無関係

にCOMMON文中で左づめに，共通プロック領域に配置された値がそれぞれの位臨に応じて割

りあてられる。，

すなわち

(24) COMMON文中で配列又は変数の値が相互に対応しない英字名の所にわりあてられている。

-45-

この結果，誤りの症状として表面にあらわれるのは，

(25) COMMON文中に有る （又は有るはずの）配列又は変数の値が異常である。

(26) COMMON文中にあるべき配列又は変数の値がゼロである。

(27) 副プログラム引用の際に正しい値の受け渡しができない。

(28) COMMON文中に有る（又は有るはずの）配列又は変数の値が正しく記憶されていない。

等のさまざまな形態をとる。

最初にも述べたように， COMMON領域の広さは最初にロードされるプログラム単位の中の

COMMON文により決められる。したがって COMMON文中の変数名又は配列名の落ちたプロ

グラム単位が先きにロードされれば，後にロードされたプログラム単位において矛盾が生ずる。

このために

(29) リンクロード時にエラー・メッセージ

LLK671*****

が出力される。また， COMMON文では配列宣言の機能も備えているので， COMMON文中の

配列名の欠落がエラー(1)やエラー(4)につながる場合もある。

COMMON文中の配列宣言子の添字の誤り

共通ブロックとして取られた領域内には，配列と変数の区別はなく，単に値が 1列に記憶さ

れていて，それをいくつかの副プログラムで共有しているにすぎない。したがって，配列又は

変数として共通ブロックからそれらの値を引用する際には，前から数えて何番目の値を引用す

るかが重要になる。このために前にも見たように，変数名又は配列名が欠落した時には，落ち

た部分は無視してすべて左づめにしてそれらの値が対応させられる。このことは，特に配列名

において配列宣言子の添字を誤った場合にも全く同じである。ここで次の例を調べてみよう。

③ 配列宣言子 C (10)を誤って C (5)とした場合

図 3.3のプログラムにおいて COMMON文が次の文でおきかえられる

COMMON/COMl/A,B,C (5) ,D (10) /

この場合には，実行文中で配列要素 C(I)に5以上の定数添字が使われていなければ，エラ

ー・メッセージの出力はない。 （この例題では副プログラム文中のWRITE文において配列

C (5)の出力を (C(I), I=l , 5)とした。）

図3.6 プログラム図3.3において副プログラム SUBのCOMMON文を

COMMON/COMl / A ,B, C (5), D (1 O)

とした場合の WRITE文による出力結果

OUT-PUT IN SUB

A=l.O, B=2.0.

C(I)=l.O, 2.0, 3.0, 4.0, 5.0.

D 0)=6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0.

-46

じプログラムと副プログラムにおける COMMO:'¥文中の変数及び配列の値の対応関係：t次の

ようになっている。

主プログラム

A

B

C (1)

C (2)

C (5)

C (6)

C (7)

C (10)

D (1)

副フログラム

）
、
｀
ー

1

2

A

B

(

（

c
c

C (5)

D (1)

D (2)

D (1 0)

このように

(20) COMMON文中の配列宣言チ添字を誤った

場合であっても，見掛け上エラー(19)と全く同じ症状を示す。このためにエラー(20)はエラー(24)及

び(29)へつながる。

COMMON文全体の欠落

1つの副プログラムにおいて COMMON文が全く無い場合には，他の副プログラムとの間で

変数や配列の授受はおこなわれない。また配列宣言子を含む COMMON文が欠落した場合には

配列に関するエラーがおこる。

すなわち

(21) 1つのプログラム単位内で COMMON文全体を欠落した

場合には，エラー(26)へつながる。また， COMMON文中にあるべきはずの変数や配列が実行文

中にあらわれれば，エラー(22)又はエラー(23)につながる。

図.3.7 プログラム図 3.3において副プログラム SUBのCOMMON文を完全に落
してしまった場合の WRITE文による出力結果

OUT-PUT IN SUB

A=O . 0 , B=O. 0

C (I) =0 . O , 0 . 0 , 0 . O , 0 . 0, O . 0 , 0 . 0 , O . 0 , 0 . O , O . 0 , 0 . O .

D (I) =O . 0, 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

参考のため，図 3.3において副プログラム中の COMMON文全体を落した場合の例を図 3.7

に示した。

-47-

但し，配列名については FATALERRORを避けるために

DIMENSION C (10), D (10)

を追加した。

以 f:COMMON文についての誤りの状態の因果関係をまとめたものが図3.8である。

図3.8 COMMON文における誤りの症状

(20) COMMON文中で配

列宣言'fの次元の数又

は寸法をまちがえた。

(19) COMMON文中にあ

るべき変数名又は配列

名を落した。

(21) 1つのプログラム単

位内でCOMMON文全体

体を落した。

(41) リンクロード時エラ

LLK67I*****

(24) COMMON文中で配

列又は変数の値が相互

に対応しない英字名の

所にわりあてられてい

る。

(25) COMMON文中に有

る（又は有るはずの）

配列又は変数の値が異

常である。

(26) COMMON文中にあ

るべき配列又は変数の

値がゼロである。

4. EQUIVALENCE文

4. 1 EQUIV ALEN CE文に関する文法

(22) コンパイル時エラ

02 5 WARING:

(23) コンパイル時

FATAL ERROR番号

256

(27) 副プログラム引用の

際に正しい値の受け渡

しができていない

(28) COMMON文中に有

る（又は有るべきはず

の）配列又は変数の値

が正しく記憶されてい

ない。

EQUIV ALEN CE文は違った英字名の変数又は配列に対して，共通の記憶場所を割当てるた

めのものである。特に配列に関しては EQUIVAL ENCEで関連ずけられた状態が直接に配列

要素の主記憶上での列び方に影響するので充分な注意が必要である。

48-

EQUIV ALEN CE文は次の形式で表現される c

EQUIV ALEN CE文 EQUIVALENCE文(EQUIVALENCEstatement)は，つぎの形と

する。

EQUIVALENCE (k,), (k2), …，恥）

ここで， k,,k2, …，柘は，いずれもつぎの形とする。

a,, a2, ・・・， am

ここで， a,,a,, ・・・amは，いずれも変数名か配列要索名で仮引数は許されない。配列要索名

の添字として許されるのは定数だけとし， mは2より大きいか等しくなければならない。

配列要索名の添字式の数は，配列宣言子の次元の数に等しいかあるいは 1でなければなら

ない。後者の場合，添字式の値を添字の1直とみなして配列要素を識別する。

このように記述された EQUIVALEN CE文は具体的に変数又は配列の間に次の位置関係を定

める。

EQUIVALENCE文は，記憶場所を二つ 例： EQUIV ALEN CE文

以上の要索で共有させるのに使う。処理系 使用例：

によって並びの中の各要索は，同じ記憶場 DIMENSION B (5), C (2 ,3)

所に割当てられるものとする。二つの記憶 EQUIVALENCE (A,B (2) ,C (5))

単位を占める要索が一つの記憶単位を占め この例で， A, B, Cがすべて実数型

る要索に対応した場合には，後者は前者の のときはAとB(2)とC(5)とが同じ記

記憶場所のうち最初の記憶単位を共有する。 憶場所を占める。したがって B (3)とC

(2 , 3)も同じ記憶場所を占める。図示す

るとつぎのようになる。

C (1 , 1)

C (2, 1)

C (1, 2)

B(l) C(2,2)

A-B (2) -C (1 , 3)…C (5)
B (3) C (2, 3)

B (4)

B (5)

また，使用例のEQUIVALENCEの代わ

りに

EQUIVALENCE (A, B (2)), (B (3),

C (2, 3))

としても同じ結果になる。

使用例でさらに

COMMON /X/B

となっていて B (1)が共通プロック Xの

最初の要索であるときは，上のEQUIVA・

LENCE文によって，共通プロック Xが

最初の要索の前に伸びることになるから

誤りである。

以上のように定められた EQUIVALEN CE文については，さらに次の補足的事項がある。

49

備考 EQUIV ALEN CE文は，二つ以上の要索を数学的に等しくするのに使用すべきで

ない。

配列における配列要素の並び方は，その添字の値 (7.2. 2参照）によって決められてい

るので， EQUIVALENCE文の並びの要索の中に配列要索名が現われたときには，その配

列の他の配列要索の占める記憶場所も自動的に決められているものとする。

備考 そのため EQUIVALENCE文で直接内かれた要索間の対応のほかに間接的な対応

が•JI 起こされることがある。 EQUIVALENCE文による問接的な対応が共通プロックの大

きさを長くする場合， COMMON文で直接~内かれた共通プロックの最後の要索のあとに伸

びることしか許されない。

EQUIV ALEN CE文を使ったために二つの変数や配列要索が記憶場所を共有している場

所には，これらの変数や配列の名前が両方とも同ープログラム単位内にある COMMON文

の中に現われてはならない。

直接的にせよ，一つの記憶単位に同一の配列の二つ以上の配列要索を割当ててはならな

し'a

4. 2 EQUIV ALEN CE文に関するコンパイル時エラー・メッセージ

4. 2.1 FATAL ERROR

（例）

（例）

281 CONSTANT SUBSCRIPT EXCEEDS RANGE OF ARRAY'

"name" IN EQUIVALENCE

内部文番号

0 0 0 5i

0006

0 EQUIVALENCE文中において，配列要索の添字の1直が配列宣言子

により定められた大きさを越えている。この配列要索を含む並びは

ないものとしてコンパイルされるが，このプログラム単位は GO

ファイル上に出力されない。

（フ＇ログラム コードー 10.)

フォートラン文

DI MENS I ON A (1 0) , B (1 0)

EQUIVALENCE (A (1), B (11))

配列宣言において B(10)であるにもかかわらずEQUIVALENCE文において

B (11)が与えられている。

-473 UNDEFINED ARRAY REFERENCE "name"

内部文番号

0005

0006

OEQUIVALENCE文において，配列宣言されていない配列要索名が

現われた。その配列要索名を含むグ）レープはないものとしてコンパ

イルされるが，この文を含むプログラム単位はGOファイル上に出

力されない。

（フ’ログラム コードー 10.)

フォートラン文

D I MENS I ON A (1 0)

EQUIVALENCE (A (1), B (2))

50

（例）

配列宣言において B (10)であるにもかかわらずEQUIVAL ENCE文において

られている。

473 UNDEFINED ARRAY REFERENCE "name"

OEQUIVALENCE文において，配列宣言されていない配列要索名が

現われた。その配列要索名を含むグループはないものとしてコンパ

イルされるが，この文を含むプログラム単位はGOファイル上に

出力されない。

（プログラム コードー 10.)

内部文番号

0005

0006

フォートラン文

DIMENSION A (10)

EQUIVALENCE (A (1), B (2))

配列Bは配列宣言されていないにもかかわらずEQUIVALENCE文中にあらわれた。

451 ILLEGAL EQUIVALENCE STATEMENT SYNTAX

O EQUIVALENCE文に文法違反がある。適当な仮定のもとにコンパ

イルされるが，このEQUIVALENCE文を含むプログラム単位は

GO ファイル上に出力されない。

このエラー・メッセージは文法に違反した形式の表現をおこなった場合に出力さ

れる。誤りのようすによりコンパイル時の処置は違ってくる。例えば，次のよう

な処置がなされる。

(1) EQUIVALENCE (A (1), B (5)), (C (1), D (J))は

EQUIVALENCE (A (1), B (5))と仮定される。

(2) EQUIVALENCE (A (1) /B (5)) (C (10), D (30))は

EQUIVALENCE (C (10), D (30))と仮定される。

452 PROCEDURE NAME "name" USED IN EQUIVALENCE

0手続き名と NAMELIST名で使用された名前がEQUIVALENCE文

でも使用されている。この名前を含む並びがないものとしてコンパ

イルされるが，このEQUIVALENCE文を含むプログラム単位は

GOファイル上に出力されない。

- 51-

（例）

（例）

（例）

内部文番号

0001

0002

フォートラン文

SUBROUTINE S UBO (X , Y)

EQUIVALENCE (SUBO ,X)

サブルーチン名 SUBOが変数Xと EQUIVALENCEで結合されている。文法違

反である。

453 DUMMY ARGUMENT "name" USED IN EQUIVALENCE

内部文番号

0001

0004

O EQUIVALENCE文中において仮引数名が使用されている。その名

前の含まれる並ぴがないものとしてコンパイルされるが，この

EQUIV ALEN CE文の含まれるプログラム単位はGOファイル上に

出力されない。

フォートラン文

SUBROUTINE SUB1 (I)

EQUIVALENCE (I, K)

仮引数 IがEQUIVALENCE文中にある。仮引数はEQUIVALEN CE文にあらわ

れてはいげない。

454 CONFLICTING EQUIVALENCE DECLARATION FOR "name"

O EQUIVALENCE文に矛盾した定義がある。その名前を含む並びは

ないものとしてコンパイルされるが，その文を含むプログラム単位

はGO ファイル上に出力されない。

内部文番号

0002

0003

フォートラン文

DIMENSION A (20)

EQUIVALENCE (A (1), A (15))

DIMENSION文では配列Aが

A(l), A(2), …, A (2 0)

の順で主記憶上に記憶されることを示している。 EQUIVALENCE文は A (1 O)

とA (15)を主記憶の同じ場所に記憶することを示している。これらは矛盾である。

-52-

（例）

455 EQUI VALENCE ALTERS THE BASE OF COMMON

内部文番号

0005

0006

0007

O EQUIVALENCE文により，共通プロックがその最初の要索の前に

向って拡張されている。この誤りを引き起した並ぴがないものとし

てコンパイルされるが，このEQUIVALEN CE文を含むプログラム

単位は GO ファイル上に出力されない。

フォートラン文

REAL A (10)

COMMON/MYCOM/B,C

EQUIVALENCE (A (10), C)

に記宣言文による配列A及び変数 B,Cの記憶場所は次図のとおりである c しか i

しCOMMON領域は変数 Bより Kにはとられていない。このため誤りとなる。

(EQUIVALENCE文についての文法説明を参照。）

A (1)

A (2)

A (3)

A (8)

B-A (9)

C-A (10)

4.3 リンクロード時，実行時における EQUIVALENCE文の誤り

EQUIVALENCE文は変数名又は配列名について共通の記憶場所を割当てる。また，

COMMON文とは違って 1つの副プログラム単位内でのみその効果は有効である。しかし，

EQUIV ALEN CE文中にあらわれた変数名又は配列名がCOMMON文中にも現れる場合には，

副作用として記節場所が前後に伸びる効果があるために，他の副プログラムヘその効果が派生

する場合もあり得る。その他， EQUIVALEN CE文では 配列要索に対して記憶場所の対応関

係を誤ることから，大きなバッグになることが多い。以下では EQUIVALENCE文により結合

された変数や配列要索の記憶場所についての相対的位慨関係を調べる。

図 4.1はEQUIVALEN CE文を用いたプログラムの例である。

配列 A(3 ,3) ,B (3)と配列C(12)はEQUIVALEN CE文により図 4.2の如くに結合さ

れている。これらが」E しく配置されている •Ji- は WRITE文の出力結果を兄ればわかる。配列 A

(:-l':-i)は配列 C(l)-C(9)が対応しており，配列B(3)には C(lO)-C(l2)が対応し

ている。図 4. 1のプログラムにおいて誤りとなる場合として 2つの場合が考えられる。 1つは

EQUIVALENCE宣言を落した場合であり，もう 1つは EQUIVALENCE宣言屯の配列の添

字を誤ったために対応関係が壊れる場合である。

53-

内部文番砂

()()() 1

0002

ooo: ぅ

C

0004

0005

0006

0007

C

0008

0009

0010

0011

0012

図/4• 1 EQUIV ALEN CE文を)flいたブログラムの例

フォートラン文

SUBROUTINE SUB

DIMENSION IA (3 ,:-¥), IB {:-¥), IC (12)

EQUIVALENCE (IA(l,l), IC(l)), (IB(l), IC(l2))

DO 1 O I=l , :,

18 (!)=I

DO 1 o .J=l , 3

10 IA(I,.J)=lO*l+.J

WR I TE (6 , 1 0 0) ((I A (I , J) , J = 1 , :,) , I= 1 , 3) , (I B (I) , I= 1 , 3) ,
1 (IC(I),I=l,12)

100 FORMAT(lH2,3X,VIA(I)='f,s (I2,'f,'f), 12,'f.:IB(I)=V,z (12,

1'f, V) , I 2,'f .'f /

2 3 X , I C (I) = , 9 (I 2 ,'f ,'f) , 7 X , 2 (I 2,'f','f) , I 2 ,'f .'f)

RETURN

END

WRITE文による出力結果

I A (I) =11 , 12 , 13 , 21 , 2 2 , 2 3 , 31 , 3 2 , 3 :3 . : IB (I) =l , 2 , 3 .

IC (I) =11 ,21 ,31, 12 ,22 ,32, 13 ,23 ,33, 1 , 2 , 3 .

EQUIVALENCE宣言を落した場合

EQUIV ALEN CE によって結合された変数又は配列においてそれらの内の 1つに値が与

えられれば，他の結合された変数名又は配列名にも同時に!11Jじ値が与えられる。これらのこと

を逆に考えれば，次のようになる。

(29) 変数又は配列間の結合に使われた QUIVALENCE宣言が落ちた，

場合には，その変数名又は配列名が代入文の左辺のみにあらわれるか又は右辺のみにあらわれ

ぶか，あるいは両辺にあらわれるがによって次の症状を示す。

(30) 変数又は配列の EQUIVALENCE宣言が落ちていて， しかもそれらが代人文の右辺又は

人出力文中にのみあらわれている，

場合においては，エラー(22)になる。

しかし，

(31) 変数名又は配列名の EQUIVALEN CE が落ちて， しかも宣言されなかった変数又は

配列が代人文の左辺のみ，又は左辺と右辺の両方にあらわれる，

場合には，フォートラン文法上は誤りではない。すなわち EQUIVALEN CE宣言が落ちている

か否かはプログラム作成者の判断によるしかない。

今， ここではEQUIVALEN CE宣言が落ちだものと仮定するならば，

-54一

図/4.2 フログラム図/4.Iにおける配列裳i索の結合の状態

女寸I必 数/11'1.

IA(l,l) - IC<l) :JI

I A (2 , 1 J - IC (2) : 2 I

I A (:, , l J - I C U J : :n

IA(l,2) - IC(/4) :12

I A (2, 2) JC (GJ :22

I A (:-1, 2) JC (fi) : :, 2

I A (1 , :,) IC (7) : 1: ぅ

I A (2, :,) IC (8) : 2 :1

I A (:-l , :,) - I C (9) : :, :-1

JB(l) -JC(lO): 1

!8(2) -IC(ll): 2

I B C-l) - l C (12) : :-1

(32) EQUIV ALEN CE査言文中にあるべきはずの変数名又は配列名の値が相hに結合されて

いない。

結果になる。エラー(32)はさらに具体的には，

(33) 変数又は配列の値が初期値（多くの場合ゼロ）のままで全く変らない。

QUIVALENCE宣言文中の配列要素の対応の誤り

配列名に対して QUIVALENCE宣言をする場合には，配列添字がつけられる。配列名の添字

は記憶場所の対応を与えるために重要な役割をもつ。図 4.3には，プログラム図 4. 1の

QUUIV ALECCE宣言において EQUIVALENCE

(IBO), IC(lO))• (IB(l), IC(l2))
沢き換

とおき換えた場合のプログラム例及びWRITE文による出力結果を示してある。図 4. 1の場合

との述いは C (10), C (11), C (12)の値にある。

図 4.3のプログラムにおける配列の対応関係及び数値は図 4.4に示したとおりである。

内部文吊砂

ooo: ぅ

図4.3 プログラム図2.6におしヽ て EQUIVALEN CE宜嗜を誤って

(IB(l), IC(lO))→ (IBO), !CO2))

とした場合の症状

フォートラン文

EQUIVALENCE(IA(J,J) ,JC(!)), (IB(J), IC(J2))

WRITE文による出力結果

IA(I)=ll, 12, 13, 21, 22, 2:,,:n,:,2,:,:0.:IB(I)=l,2,:L

I C (I) = 1 1 , 2 1 , :o 1 , 1 2 , 2 2 , :-l 2 , 1 :, , 2 :-l , 3 :i , O , 0 , 1.

-55-

図 1.-l フログラム図/4• :, における配列の対応及びそれらの数f直

対応 値

A(!,!) -CO) 11

A(2,l)-C(2) 21

A (:,'I) - C rn :n
A (I, 2) - C (4) 12

A(2,l) -C(:,) 22

A(:,, 2) - C (6) :,2

A (I,:,) - C (7) 1:,

A (2 ,:,) - C (8) 2:,

A(:,,:,) - C (9) :,:,

-C(IO) O

- C (11) 0

13 (I) - C (12)

13 (2) - 2

13 (:)) - :,

以 Kの結果から兄て次のことがいえる。

(34) EQUIVALENCE

場合には

において，配列の添字を誤った，

図4. 5 EQUIVALENCE 『~i：言における誤りの症状

(29) EQUIVALENCE宜；"{

が落ちた。

(30) 変数又は配列の

EQUIV ALEN CE宜註が

落ちていて， しかもそれ

らが代人文の右辺又は人

出力文中にのみあらわれ

ている。

(31) 変数又は配列の

EQUIV ALEN CE宜心が

落ち， しかも宜，iされな
った変数又は配列が代人

文の左辺のみ，又は左辺

と右辺の両）jにあらわれ

る。

(32) EQUIVALENCE『畠

文中にあるべきはずの変

数又は配列の値が相互に

結合されていない。

(33) 変数又は配列の値が初

期値（多くの場合ゼロ）

のままで全く変らない。

56

(34) EQUIV ALEN CE宣註．

において配列の添字を誤

った。

(35) Equiv ALEN CE :,'(;s
文中にあるぺき変数又は

配列の対応関係を誤った

(36) EQUIV ALEN CE宜ぷ

文中の変数又は配列の値

が滉常になる。

(35) EQUIV ALEN CE宣言文中にあるべき変数又は配列の結合閃係（対応関係）を翡¥-,た

ことになり，エラー(33)に帰杵するか又は

(36) EQUIVALENCE宣言文中の変数又は配列の1直が異常になる。

以Kの結果を流れ図にまとめたものが図 4,5である。

5. EXTERNAL文

フォートラン・プログラムは次の 4種類の手続きからなる。

文関数

組込み関数

外部関数

外部サブルーチン

特に外部関数と外部サプルーチンをまとめて外部手続きという。詳細は以後のlnJに譲ることに

する。 EXTERNAL文は外部手続きの引数として外部手続きを使用する時に，その手続きを

変数と区別するための直言文である。

5 .1 EXTERNAL文の文法

EXTERNAL文は次の形式で表現される。

EXTERNAL文 EXTERNAL文(EXTER- 例： EXTERNAL文

NAL statement)は，つぎの形とする。 使用例：

EXTERNAL v,, v2, ... , vn C MAIN PROGRAM

ここで， Vi, V2, …， Vnは，いずれも外部手 EXTERNAL SIN

続き名とする。

EXTERNAL文の中に現われた名前は．

その名前が外部手続き名として宜言される

ものとする。外部手続き名を他の外部手続

きの引数として使用する場合には，この外

部手続き名はその使用されるプログラム単

位内の EXTERNAL文の中に現われなけれ

ばならない。

-57-

1 0 Y=R+ABLE (SIN , R , T)

END

FUN CT I ON ABLE (XFUN , A , B)

ABLE=XFUN (A)+B**2

RETURN

END

主プログラムの中の番号10を持つ文の

実行中にABLEという名前を持つ関数副

プログラムが呼ばれ，その中の邸術代人文

ABLE=XFU(A)+B**2

は

ABLE=SIN (R)+T**2

として実行される。

5. 2 EXTERNAL文のコンパイル時エラー・メッセージ

5. ::'.. l WARNING

（例）

030

内部文番号

003

WARNING: REDUNDANT DECLARATION FOR "name" IN

EXTERNAL ST A TEMENT

0 1つの EXTERNAL文で同じ英字名が2回以上宣言されているか，

または2つ以 KのEXTERNAL文で同じ英字名が2回以K霞言され

ている。そのままコンパイルされる。

(フ'ログラム コードー Ols)

フォートラン文

EXTERNAL COS ,SIN,COS

関数 cosが2度 されている。

5.L.L FATAL ERROR

（例 1)

471 ¥LLEGAL EXTERNAL STATEMENT SYNTAX

OEXTERNAL文に文法違反がある。適当な仮定のもとにコンパイル

されるが，この EXTERNAL文を含むプログラム単位はGOファイ

ル上に出力されない。

EXTERNAL文における外部手続き名の宣言のしかたが文法に違反する場合に

出力されるエラー・メッセージである。誤りは適当な仮定のもとにコンパイルされる。

EXTERNAL A.B

EXTERNAL A,B

は

と仮定される。

（冽 2) EXTERNAL 2 A , B , 3 C は

（例）

EXTERNAL A,B,C と仮定される。

472 DATA NAME "name" USED IN EXTERNAL

内部文番号

0002

0003

0データ名が EXTERNAL文に現われた。その名前は EXTERNAL

文にはないものとしてコンパイルされるが，この EXTERNAL文

を含むプログラム単位はGOファイル上に出力されない。

フォートラン文

REAL A (1 0)

EXTERNAL A

Aは配列宣言子で配列名であると宣言されている。しかし EXTERNAL文で再度，外部手続き

の宣言がなされている。これら両者は矛盾する。

58-

5.3 リンクロード時及び実行時における EXTERNAL文の誤り

EXTERNAL文は外部手続きを引数として引用するためのものである。したがって，

EXTERNAL宣言された外部手続き名が誤りであるか否かはリンクロード以後になるまで確定

できない。特に EXTERNAL宣言は外部手続きが最小限 2段階以上の引用がなされるもので

あるため，一般に複雑な様相を示す。

以ド，具体例により，誤りの症状を示す。図 5.1には，

sin2 X + cos2 x= f

を各 argument xについて計罪するためのプログラムを示した。

（このプログラムは sinxと COSX を混みにした，全体の誤差を兄るためのものである。）この

プログラムは正しく目的を達成したプログラムである。 SIN,COSをEXTERNAL宣言する。

そして DOーループにおいて argnmentx を変えながら関数 RADIUSを呼ぶ。関数 RADIUS

において SIN,COSは外部手続き名として引用される。図 5.1のプログラムに対する WRITE

文での出力結果は図 5.2のとおりであった。

図5.1 EXTERNAL文をテストするためのプログラム。このプログラム

は (sin2x+ cos2 x) につい変数 xのいくつかの数値について,it邸

するものである。プログラムは意図通りに正しくつくられている。

CCCC MAIN PROGR虚 FORTHE TEST ABOUT EXTERNAL STATEMENT

0001 EXTERNAL SIN,COS

0002 DIMENSION FR (45)

0 0 0 3 ¥¥'RI TE (6 , 1 0 0)

0 0 0 4 100 FORMAT (1 H3 ,'f THE TEST ABOUT EXTERNAL—ST ATEi'.VlENT . V)

0005 X=2. 0

0 0 0 6 DO 1 0 N= 1 , 4 5

0007 FR (N) =RADIUS (SIN ,COS ,X)

0008 10 X=X+2 .0

0 0 0 9 ¥VR I TE (6 , 2 0 0)

0010 WRITE (6 ,:300) (,FR (N) ,FR (N+l) ,FR (N+2) ,FR (N+3) ,FR (N+4) ,

1 N=l , 4 5, 5)

0011 200 FORMAT (1H2, V OUT-PUT OF THE RES UL TV)

0012 300 FORMAT(lH ,5El8.10)

0013 STOP

0014 END

cc
0001 FUNCTION RADIUS (Fl ,F2 ,X)

0002 RADIUS=Fl (X) **2+F2 (X) **2

0003 RETURN

0004 END

-59-

図:i.と フログラム図 :i.1における出力結果

THE TEST ABOUT EXTER;-.;AL-STATEMENT.

0じT-PUTOF THE RESULl

. 9999999999E+o0 . 9999999998E+o0 . 9999999999E+o0 . 9999999999E-t-OO . 9999999999E+-OO

. lOOOOOOOOOE+ol . 9999999997E+-OO . 9999999999E+o0 . 1000000000 F廿-01 . 9999999999E-t-OO

. 9999999998.E+-OO . 1 OOOOOOOOOE-t-01 . 9999999992E+o0 . 9999999998E+oO . 9999999999E+o0

. 9999999999E+o0 . 9999999999E+-OO . 9999999999E+o0 . 9999999990E+o0 . lOOOOOOOOlE+-01

. 9999999988E-t-OO . 9999999998E+o0 . lOOOOOOOOlE+ol . 9999999999E+o0 . 9999999999E+-OO

. 9999999998E+o0 . lOOOOOOOOOE+ol . 1000000003E+ol . 9999999998E+o0 . 9999999982E+o0

. 9999999999E+o0 . 9999999999E+o0 . 9999999998E-!-OO . lOOOOOOOOOE+ol . 9999999970E+-900

. 9999999998E+o0 . lOOOOOOOOlE-t-01 . 9999999999E十00 . 1000000002E+ol . 9999999999E+o0

. 9999999999E+o0 . 9999999999E-t-OO . lOOOOOOOOOE-i-01 . 99999999~98 E+oO . 9999999999E+o0

(sin2x+cos2x)の値は 10-10程度の誤差をもつことがわかった。

さて，ここで誤りの例として

(37) EXTERNAL文又はその他の誤りのために，外部手続き名の EXTERNAL宣言が無効

になる，

場合について調べてみる。図5.1のプログラムにおいて

EXTERNAL SIN, COS

↓

EXTERNAL SIN COS

のように作為的に SINとcosの間のコンマを消してみる。この時 EXTERNAL SIN COS

は外部手続き名 SINCOSがEXTERNAL宣言されたことになり，このこと自体は誤りでない。

しかし外部手続き名 SINとcosは宣言されないことになる。図 5.1のプログラムで， EXTE-

RNAL SIN, COS→ EXTERNAL SIN COSとおきかえた時のプログラム実行結果は，図

5.3のとおりである。 SINCOSはプログラム中で実際に引用されることがないため， リンク

ロード時においてもエラーとならなかった。

結局，実行の際に関数 RADIUSを引用するとプログラムの実行が誤った方法ですすみ，図

5.3に示された結果となった。

この現象は

(38) 外部手続き名に対して，必要とされる EXTERNAL宣言が無い，

図5.3 プログラム図5.1において EXTERNAL文を変えた時の

症状

0001 EXTERNAL SIN COS

実行結果

THE TEST ABOUT EXTERNAL-STATEMENT.

*****MRMOOI UEP 0000000 OP-CODE ERR= 04

-60-

場合にも全<j,i]じである。エラー(37)及び(38)は結／，，｝

(39) 実行時エラー

MRMOOI UEPOOOOOOO OP-CODE ERR=04

となる。

-・)j, . に記の誤りに対して

(40) プログラム中に存在しない外部手続き名がEXTERNAL『むiされ， しかも CALL文に

おいてその外部手続き名が実引数として引用されている，

場合も誤りである。この時は

(7) リンクロード時にエラ

LLI(1 7 I , LLK3 8 I

ヵゞII',力される。

以」：を流れ図にしたものが図5.4である。

図S. 4 EXTERNAL文に関連する誤りの症状

(37) EXTERNAL文又はそ

の他の誤りのために外部

F続き名の EXTERNAL

，り頂が無効になる。

(39) 実行時エラー

(38) 外部 F続き名に対して
必要どされる EXTER-

NAL宜濱がなし'o

MRMOOI UEPOOOOOOO

OP-COPE ERR=04

6. まとめ

(411) プログラム・デック中

に存在しない外部F続き
名がEXTERNAL宜，iさ
れ， しかも CALL文にお

いてその外部F続き名が
実引数として引用されて

しヽる。

に関する誤りのじな特徴は， 2つ以Kのフォートラン文の間での意味の矛盾すること

に1京因することである。このために，誤りを調べる際には広範囲にわたって宣言文と他の文の

間に矛盾のない＇ドを 1つ lつ確かめてゆかなければならない。ここに示した誤りの例は，プロ

グラム作成時に意図していたことを，宣言文において逸脱してしまった時の症状を示した。こ

のようなことは大きなプログラムを作成する時には頻繁に起こることであり，それでいて発兄

困難である。

今後，デバッギングをおこなう際に， 「アルゴリズムは正しくしかも各部分で実行された内

容は同所的に兄る限りは正しいにもかかわらず，プログラムは正しく働かない」場合にはぜひと

とも貨占文に疑いを持って調べることをお推めしたい。

61 -

付
録
宣
言
文
誤
り
の
流
れ
図

6 2

(1
)
配
列
要
索
が
代
人
文
の
右
辺
に
あ
ら
わ
れ
て
い
る
に
も
か
か
わ
ら
ず
，
配
列
宜
ほ
が
な
さ
れ
(28
)
C
O
M
M
O
N
文
中
に
あ
る
（
又
は
あ
る
べ
き
は
ず
の
）
配
列
又
は
変
数
の
i直
が
正
し
＜
，
記
憶

て
い
な
い
。

さ
れ
て
い
な
い
。

(2
)
配
列
名
は
関
数
副
プ
ロ
グ
ラ
ム
名
と
し
て
処
理
さ
れ
る
。

(29
)
E
Q
U
I
V
A
L
E
N
C
E
宜
含
が
落
ち
た
。

(3
)
リ
ン
ク
ロ
ー
ド
時
：
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
る
。

(30
)
変
数
又
は
配
列
の
E
Q
U
I
V
A
L
E
N
 C
E
宣
言
が
落
ち
て
い
て
，
し
か
も
そ
れ
ら
が
代
人
文
の

L
L
K
1
7
1

*
*
*
*
*

右
辺
又
は
人
出
力
文
中
に
の
み
あ
ら
わ
れ
て
い
る
。

L
L
K
:
l
 8
 I
 *
*
*
*
*

(31
)
変
数
又
は
配
列
の
E
Q
U
I
V
A
L
E
N
 C
E
宜
店
が
落
ち
て
，
し
か
も
宜
ぷ
さ
れ
な
か
っ
た
変
数

(1
)
配
列
要
索
が
代
人
文
の
左
辺
又
は
人
出
力
文
に
あ
ら
わ
れ
て
い
る
に
も
か
か
わ
ら
ず
，
配
列

又
は
配
列
が
代
人
文
の
左
辺
の
み
又
は
左
辺
と
,
/
;
辺
の
両
}
j
に
あ
ら
わ
れ
て
い
る
。

宜
ほ
が
な
さ
れ
て
い
な
い
。

(32
)
E
Q
U
I
V
A
L
E
N
C
E
宣
言
文
中
に
あ
る
べ
き
は
ず
の
変
数
又
は
配
列
の
値
が
相
Ii
に
結
合
さ

(5
)
コ
ン
パ
イ
ル
時
：
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
て
い
る
。
（
番
衿
2
5
6
)

れ
て
い
な
い
。

(6
)
配
列
宣
言
に
お
い
て
，
配
列
の
次
元
の
数
を
誤
っ
て
多
く
と
り
す
ぎ
た
。

(33
)
配
列
又
は
変
数
の
値
が
初
期
値
（
多
’
く
の
場
合
ゼ
ロ
）
の
ま
ま
で
令
く
変
ら
な
い
。

(7
)
C
O
M
M
O
N
文，
E
Q
U
I
V
A
L
E
N
 C
E
文
で
の
配
列
や
変
数
の
結
合
に
誤
り
が
あ
る
。

(34
)
E
Q
U
I
V
 A
L
E
N
 C
E
宣
苫
に
お
い
て
配
列
の
添
字
を
誤
っ
た
。

(8
)
配
列
要
索
の
（
数
）
1直
が
正
し
く
人
っ
て
い
な
い
。

(:l
5)
E
Q
U
I
V
 A
L
E
N
 C
E
宜
ぷ
文
中
に
あ
る
べ
き
変
数
又
は
配
列
の
対
応
l関
係
を
誤
っ
た
。

19
)
配
列
宣
言
に
お
い
て
，
配
列
の
次
jc
の
数
を
誤
っ
て
少
く
と
っ
た
。

(1
0)
実
行
文
中
で
配
列
『
信
よ
り
多
い
次
元
の
数
で
配
列
を
用
い
た
。

(1
1)

コ
ン
パ
イ
ル
時
：
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
て
し
ヽ
る
。
（
番
砂
2
7
7
)

(1
2)
配
列
宜
ば
に
お
い
て
，
配
列
宜
:H
f-
の
寸
法
を
誤
っ
て
大
き
く
と
り
す
ぎ
た
。

(1
3)
配
列
の
寸
法
が
2
1
8
-
1
を
こ
え
て
い
る
。

63
(14
)
コ
ン
パ
イ
ル
時
：
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
て
い
る
。
（
番
砂
4
1
6
)

I

nsl

プ
ロ
グ
ラ
ム
の
サ
イ
プ
が
大
き
す
ぎ
る
。

(16
)
リ
ン
ク
ロ
ー
ド
時
又
は
実
行
時
に
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
る
。

リ
ン
ク
ロ
ー
ド
時
：
L
L
K
l
 :,
I
*
*
*
*
*

実
行
時

：
 M
R
M
O
O
I
*
*
*
*
*

(17
)
配
列
/
;讀
に
お
し
ヽ
て
，
配
列
'
,
'
(
?
(
[
-
の
寸
法
を
誤
っ
て
小
さ
く
と
っ
て
し
ヽ
る
。

(18
)
配
列
要
索
の
引
用
又
は
配
列
要
索
へ
の
代
人
に
お
い
て
，
/
;
い
た
製
索
の

•J
I
Ill
又
は
代
人
を
お

こ
な
う
。

(19
)
C
O
M
M
O
N
文
中
に
あ
る
べ
き
変
数
名
又
は
配
列
名
を
落
し
た
。

120
)
C
O
M
M
O
N
文
中
で
配
列
宜
註
rの
次
元
の
数
又
は
寸
法
を
ま
ち
が
え
た
。

(21
)
l
つ
の
プ
ロ
グ
ラ
ム
Jii.
位
内
で
C
O
M
M
O
N
文
令
体
を
落
し
た
。

(22
)
コ
ン
パ
イ
ル
時
：
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
て
い
る
。
(0
2:
i
W
 A
R
N
I
N
C
 :
)

(23
)
コ
ン
パ
イ
ル
時
：
エ
ラ
ー
・
メ
ッ
七
ー
ジ
が
出
力
さ
れ
て
し
ヽ
る
。
（
番
砂
2
5
6
)

124
1
C
O
M
M
O
N
文
中
で
配
列
又
は
変
数
の
値
が
相
ti:
に
対
応
し
な
い
英

'j•
:
名
の
所
に
わ
り
あ
て

ら
れ
て
い
る
。

(25
)
C
O
M
M
O
N
文
中
に
あ
る
（
又
は
あ
る
は
ず
の
）
配
列
又
は
亥
数
の
i直
が
滉
常
で
あ
ぶ

126
)
C
O
M
M
O
N
文
中
に
あ
る
べ
き
配
ダ
lj
文
は
変
数
の
1直
が
ゼ
ロ
で
あ
る
"

(27
)
副
プ
ロ
グ
ラ
ム
引
用
の
際
に
正
し
し
,fi
れ
の
受
け
渡
し
が
で
き
て
tヽ
な
tヽ。

(36
)
E
Q
U
I
V
A
L
E
N
C
E
宜
□
文
中
の
変
数
又
は
配
列
の
値
が
w
常
に
な
る
。

(37
)
E
X
T
E
R
N
A
L
文
又
は
そ
の
他
の
誤
り
の
た
め
に
外
部
r続
き
名
の
E
X
T
E
R
;
-
.
;
A
J
、'
,'
('
f
が

無
効
に
な
る
。

(38
)
外
部
手
続
き
名
に
対
し
て
，
必
要
と
さ
れ
る
E
X
T
E
R
;
-
.
;
A
L
『
(,
f
が
無
し
‘
、
、

(39
)
実
行
時
：
エ
ラ
ー
・
メ
ッ
セ
ー
ジ
が
出
力
さ
れ
る
。

M
R
M
O
O
!

U
E
P
O
O
O
O
O
O
<
l

D
P

-C
O

D
f•

:
E
R
R
=
O
'
.

0.
1

(4l
ll
プ
ロ
グ
ラ
ム
デ
ッ
ク
中
に
仔
在
し
な
し
ヽ
外
部
F
続
き
が
E
X
T
E
R
;
-
.
;
A
I
、
',
'(
'j
'
さ
れ
，
し
か
も

C
A
L
L
文
に
お
し
ヽ
て
そ
の
外
部
F
続
き
名
が
友
引
数
と
し
て
引
用
さ
れ
て
＼
ヽ
る
、
、

(41
)
リ
ン
ク
ロ
ー
ド
時
：
エ
ラ
ー
・
メ
ッ
七
ー
ジ
が
出
力
さ
れ
る
、
、

L
I
.
K
6
7
1
*
*
*
*
*
*
*

