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Introduction

We shall use the following notations.
9Jί = {x I x = (x°y x\ x\ x3)} : Minkowski's space-time, the real variables

x° and (x1, x2, x3) being the time coordinate and the space coordinates
respectively.

O = (0, 0, 0, 0) : the origin of 9JΪ.

(x)2 = (x°)2-(xλ)2-{x2)2-(xy.

r + = {x\

8 = {Λ} : the homogeneous proper Lorentz group i. e. the group of
homogeneous linear transformations of TO onto TO which leave (x)2

invariant, have determinants equal to 1 and transform each of Γ+ and
Γ" onto itself. In the following we shall call 8 simply Lorentz group.
The terms Lorentz invariance etc. are used in this sense.

In the relativistic quantum theory of fields, one frequently meets
the following situation. Let a Lorentz invariant1} field S(x) in TO of
quantities obeying some representation of the Lorentz group be given.
If the field S(x) vanishes in the space-like region sDΐ —Γ+ —Γ~, then one
forms a new field θ(x)S(x) by multiplying S(x) by a function θ(x) defined
by

for * ° ^ 0
0 for

1) A field SO) in Wl is called Lorentz invariant if PAS(Λ-1x) = S(x) for all Λ£2 where
PA is the linear transformation induced by A in the linear space of quantities constituting the
field. The mapping Λ-+P& is a representation of 2.



100 T. KASUGA

and claims Θ(x)S(x) to be a Lorentz invariant field 2\
But the components of the fields which appear in the relativistic

quantum theory of fields are usually distributions in the sense of L.
Schwartz which are highly singular in the neighbourhood of the origin
O of Wl. Hence the above procedure can not always be justified. So
we put the following question. Given a Lorentz invariant distribution
field3) S(x) in ςJJi which vanishes in the space-like region Ήl — Γ+ — Γ", is
there always a Lorentz invariant distribution field S*(x) in 2JΪ which
coincides with S(x) in 501 —Γ" and vanishes in sJft — Γ+ ? The answer is
"yes" as it is shown in Theorem 2 .1 4 ) though in general such S*(x) is
not uniquely determined.

For simplicity, we shall state the proof of this result only for a
scalar distribution field. But the proof of the result goes quite similarly
for a distribution field of quantities obeying any representation of the
Lorentz group. Also similar result can be established for the extended
Lorentz group which is generated by the Lorentz group 8 and the space
inversion.

In a fixed Lorentz frame, a scalar distribution field can be regarded
as a distribution in the sense of L. Schwartz and we shall denote it by
S instead of S(x) in the following.

§ 1. In this section, we prove Theorem 1.1.

We begin with some notations.
® : The linear space of infinitely differentiable complex-valued func-

tions with compact carriers in 90ΐ. Its topology is that given in L.
Schwartz [1].

® 7 : the linear space of distributions in 501 i. e. the dual space of 3λ
Gc: the linear space of infinitely differentiable complex-valued func-

tions in 9Jΐ. Its topology is that given in L. Schwartz [1].
Gf7: the linear space of distributions in 2Ji with compact carriers. It

is well-known that ©'can be regarded as the dual space of Gf.
Gr0: the linear subspace of Gf which is composed of the functions

φ(x) belonging to G? and vanishing in some neighbourhoods of the origin
O of Wl. Of course this neighbourhood depends on φ(x). Gf0 is endowed
with the topology induced on it by Gf.

2) In the relativistic quantum theory of fields, generally, Lorentz invariant fields in the

direct sum 3Q£03# 09Ή come into question and the manners of cutting off are more com-

plicated. We treat here the simplest case.

3) We call a field S(ΛΓ) in 3D? a distribution field if its components in a coordinate system

are distributions in the sense of L. Schwartz.

4) Also Cf. Theorem 1.1.
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Lemma 1.1. Given a distribution SΛ £ & with its carrier contained in
Γ + wΓ, we can form a distribution SfG®' with its carrier contained in
Γ+ which coincides with S1 in sUϊ — Γ".

Proof. The order m of the distribution S1 is finite since S1 belongs
to Gf. We take an open sphere U(O) in 3Ji with its center O and with
a sufficiently large radius so that it contains the carrier of Slβ

Let p(u) be an infinitely differentiate real function defined for
such that

p(u) = 1 for l^u

p(u) = 0 for - h / j Π ^ + e ^ u ^ - 1

where β a positive number ^(N/JΓ")" 1- We put

(*°/r) if r Φ 0

0 if r = 0

where r = ((x°)2 + (x1)2 + (x2)2 + (x3)ψ2. Then <r{x) is infinitely differentiate
in yjl — (θ) and the absolute values of all its partial derivatives of order
^Lrn can be bounded from above by Mr~q on U(O) except at the origin
O of 27Ϊ where M i s a positive constant and q is a natural number.

Now we prove that the linear functional Sx on 6?0 defined by

is continuous.
Let 9>f €©0 (ί = l, 2, •••) converge in @0 to 0 as ί-»oo. Then <pf(#)

and their partial derivatives of order <,m + q converge to 0 uniformly
on U(P) as i->oo. Also each of <Pi(x) vanishes in some neighbourhood
of the origin O of 9JZ. Hence by the formula of Taylor, we can easily
prove that the absolute values of all partial derivatives of order ^ m of
<Pi(x) can be bounded from above on U(O) by M[rq where the constants
M/^0 depend only on i and M/-*0 as /->co. Therefore by the formula
of Leibniz and by the properties of the function σ(χ) previsouly stated,
the absolute values of all partial derivatives of order ^ m of σ(x)Φi(χ)
can be bounded from above by Q on U(O) where the constants Qϊ^O
depend only on / and C, —>0 as i-^oo. Hence S^σ-φ^-^0 as /-»oo be-
cause the order of S1 is m and the open sphere U(O) contains the carrier
of Slβ Thus the linear functional S1 on Gf0 is continuous since @0 is a
metrizable locally convex linear space.

Now by Hahn-Banach's extension theorem we can extend the con-
tinuous linear functional S1 on @0 to a continuous linear functional on @
i. e. a distribution Si* €0?. SJ can be regarded as a distribution in 5DΪ —(O)
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and Sf coincides with S1 in ςUί-(O). Also Sx vanishes in 2ft — Γ+ and
coincides with Sx in 2JI —Γ~ by the properties of Sx and the function <φ;).
Therefore Si* has the desired properties, q. e. d.

Theorem 1.1.5) Given a distribution S which vanishes in the space-
like region Wl — Γ+ — Γ", we can form a distribution S* which coincides
with S in 3JΪ — Γ~ and vanishes in 2JI —Γ+.

Proof. The carrier of the distribution S is contained in Γ + υ Γ . We
take an open sphere U(O) whose center is the origin O of 3Jί. The sets
m-Γ+, 5DI-Γ-, U(O) are open and CJR-Γ+)w(TO-Γ-)uί/(O) = 2Jl. Also
we have ( 5 K - Γ ) Λ ( Γ + U Γ ) = Γ + - ( O ) and P - Γ + ) Λ ( Γ + U Γ ) = Γ - ( 0 ) .

Therefore by Theorem 29, chapter 3 of L. Schwartz [1], we can form
three distributions S+, S~ and St such that their carriers are contained
in Γ+-(O), Γ--(O) and f/(0)Λ(r+υΓ) respectively and such that

s=s++s-+s1.
The distribution St satisfies the premises of Lemma 1.1. Hence we

can form a distribution Si* with its carrier contained in Γ+ which coin-
cides with Sx in 2JΪ —Γ~. Then we can easily see that the distribution
S^=S+ + S* has the desired properties, q. e. d.

§2. Let 9?G® and ΛeS.

Then we define φA € ® by

(φA)(x) = φ(Ax) for all xeSΰl.

Also let SeSy and ΛG8. Then we define SAe&' by

(SA)(φ) = SiφA'1) for all <p€ ® .

We shall call SΛ 1 6 ) the transformed of S by Λ and shall call S € ® '
Lorentz invariant if SA~2 = S for all ΛGδ.

Lemma 2.1. Let G = {g} be a connected semi-simple Lie group and
let P= {Pg} be a continuous representation of G by linear transformations
of a vector space V= {v} of finite dimension over the field of complex
numbers. If f is an infinitely dijferentiable1^ V-valued function on G

5) This theorem follows from Theorem 34, chapter 3 of L. Schwartz [1]. But the proof

of Theorem 34 is not given in L. Schwartz [1]. Hence we prove Theorem 1.1 independently

of it for completeness.

6) SΛ"1 is a rigorous definition of the distribution S(Λ~Lx).

7) A connected Lie group G has a unique real analytic structure which makes it an analytic

group. The differentiability or the analyticity of functions on G is considered with respect to

this structure.
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satisfying the following condition

(2.1) f(g2gι)=Pg2f(g1)+f(g2)

for all g19 g2β G, then there is an element υ€ V such that

f(g) = Pgv-v for all g€ G .

Proof.8) Let Tg be the operation of left translation assigned to
geG on a V-valued differential form ω' on G and

Tg: ω'-*ω>Tg.

If we regard / as a V-valued differential form of order 0 on G, the con-
dition (2.1) can be written as

(2.2) fTM = Pgf+f(g) for all geG.

If we differentiate both sides of (2.2) fixing geG and put df=ωy then
we have

a>Tg = Pgω for all geG

since the operation d commutes with the operations Tg and Pg for a
fixed geG. Also we have dω = d(df)=0. Hence ω is a closed equivariant
F-valued differential form of order 1 on G.

Now we denote the Lie algebra of the group G by L={y) and
denote the localization of the differential form ω by [ω] i. e. [ω] is a
F-valued linear form on L defined by

[_ω](y) = ωe(ye) for all j G L

where ωe and j e are the values of ω and y at the identity element e of
G respectively. We denote by the same notation P the representation
of the Lie algebra L induced in V by the representation P of the Lie
group G and also denote by P(y) the linear transformation in V assigned
to yeL in the representation P of the Lie algebra L. Then by Theorem
10.19) of C. Chevalley and S. Eilenberg [2], we have

(2.3) | W ( [ Λ J 2 ] ) 4 {P(y^Jy2)-P(y2)ί^(y,)) = o
Δ Δ

for all y19 y2eL.

8) In the proof of Lemma 2.1, we shall follow the terminology and the notations in C.
Chevalley and S. Eilenberg [2].

9) In C. Chevalley and S. Eilenberg £2], Theorem 10.1 is proved for a representation of
G in a real vector space V but the proof goes quite similarly for a representation of G in a
complex vector space V.



104 T. KASUGA

We denote by Lc the Lie algebra obtained from L by extending the
ground field to the field of complex numbers. Lc is semi-simple since
the Lie group G is semi-simple. Also we extend the representation P
of L to that of Lc and extend the F-valued linear form [ω] on L to
that on Lc. For simplicity, we shall denote the P and the [ω] thus
extended by the same notations P and [ω]. The ground field being thus
extended, we can easily prove that (2. 3) holds also for all yly y2€Lc.
Hence [ω] is a one-dimensional P-cocyle in Lc. The cohomology group
H\Ley P) of Lc over P reduces to {0} by Theorem 25.1 of C. Chevalley
and S. Eilenberg [2] since Lc is semi-simple. Therefore [ω] is a one-
dimensional P-coboundary in Lc. Hence there is an element v € V such
that

lω-](y) = P(y)v for all yeL.

Now we put

f(g) = Pjo-υ

and regard / as a F-valued differential form of order 0 and we put

Then we can easily prove that

Pgώ = ώTg for all geG

[ώ]jv = P(y)v for all

Hence ώ is a one-dimensional equivariant F-valued differential form of
order 1 and

Since the correspondence between an equivariant F-valued differential
form ω7 and its localization [<</] is one to one, we have

(2.4) df = ω = ω = df.

Putting g2 = e in (2. ί), we have

f{e) = 0

Also from the definition of /, we have

/(*) = 0 = f{e)

Hence from (2.4), we have / = / , since the Lie group G is connected.
Therefore we have

f(g) = Pgv-v for all ge G . q. e. d.
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Theorem 2.1. Given a Lorentz invariant distribution S G S / which
vanishes in the space-like region 9JI — Γ+ — Γ", we can form a Lorentz
invariant distribution S*G3X which coincides with S in 501 —Γ~ and vani-
shes in 3Jί-Γ+.

Proof. We shall use the following abbreviation. If a1 is a sym-
metric contra variant10) tensor of order / whose (f\ ••• /^-component in
(x\ x\ x2, #3)-coordinate system is a complex number Λ'Ί *', we write

& = aιDι.2

A Lorentz transformation Λ induces a linear transformation PA(l) in the
complex linear space of symmetric contravariant tensors of order /. The
mapping

Λ->PΛ(/)

is a continuous representation of the Lorentz group 8. If R is a distri-
bution in 9JΪ, we can easily prove that

for all Λe8.
By Theorem 1.1, we can form a distribution S** with its carrier in

Γ+ which coincides with S in 501-Γ". S^Λ"1 which arises from S** by
a Lorentz transformation Λ£δ coincides with S** in sJJl —(O), since S is
Lorentz invariant and a Lorentz transformation transforms each of the
regions 501 —Γ+ and 3Ji —Γ~ onto itself. Also if m is the order of S**
in a relatively compact neighbourhood V(O) of O, then m is finite and
we can easily prove that S^Λ"1 is of order m in the neighbourhood
AV(0) of O. Hence by Theorem 35, chapter 3 of L. Schwartz [1], we
have

(2. 5) S^A'1 = S** 4-
/ = 0

where aι(A) is a symmetric contravariant tensor of order / depending on
ΛG8.

We prove that each of aι{A) is uniquely determined by Λ and an
infinitely differentiate function of Λ on the Lorentz group 812\ We put

10) We shall regard (#°, x1, x2, Λ:4) as components of a contravariant vector.
11) Here δ is the four-dimensional Dirac's δ.
12) Cf. foot note 7).
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where p(x) is an infinitely differentiable function of x with compact
carrier which is equal to 1 in a neighbourhood of the origin O of 2JΪ.
Then we have from (2. 5)

where (x*ι *ι(Λ) is the (ι\ ••• //)-component of a1 (A). S**(ψA) is an in-
finitely differentiable function of A on 8 from Theorem 2, chapter 4 of
L. Schwartz [1]. From this, we have the desired result.

Now we have from (2. 5)

(2. 6) Σ (^(Λ.) A«) AF1 = S** + fj
/0 /0

for all Λj, Λ2e8, since δ is a Lorentz invariant distribution. On the
other hand, we have from (2. 5)

(2. 7) S**(AΛi)-' = S** + Σ e»(AA) Aδ
/0Σ
/=0

From (2. 6) and (2. 7), we have

for all / ^ 0 and for all Aly A2e2 since ^(A) is uniquely determined by
A for each / ^ 0 in (2. 5). Therefore by Lemma 2.1, for each /2gO, there
is a symmetric contravariant tensor cι of order / such that

(2.8) a1 (A) = Pdl)cι-cι for all AGδ

since the Lorentz group 8 is a connected semi-simple Lie group and
a\A) are infinitely differentiable on 8.

Now we put

Then we have by (2. 5) and (2. 8)

s*A-i =

= S**+ Σ ( (
/=0

= S*
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for all Λ<Eδ. Also S* coincides with S** in 2Jl-(O). Therefore S* has
the desired properties, q. e. d.

REMARK. S* in Theorem 2.1 is not uniquely determined by S. If
S* is such one, any other distribution having the desired properties is
given by

where • is the d'Alembertian -
and dp are constants and n is a non-negative integer.

OSAKA UNIVERSITY
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