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Introduction

We shall use the following notations.

M= {x|x=(x &', 2%, x°)} : Minkowski’s space-time, the real variables
x° and (x, %, ¥*) being the time coordinate and the space coordinates
respectively.

0=1(0,0,0,0): the origin of M.

(%) = ()= (') —(**)"— (*°)".

M= {xjxeM, (x*=0, 2*=0}.

I~ = {x|xeM, (x)*=0, x*<0}.

€ = {A} : the homogeneous proper Lorentz group i.e. the group of
homogeneous linear transformations of Y onto 9 which leave (x)°
invariant, have determinants equal to 1 and transform each of I'" and

I'" onto itself. In the following we shall call & simply Lorentz group.
The terms Lorentz invariance etc. are used in this sense.

In the relativistic quantum theory of fields, one frequently meets
the following situation. Let a Lorentz invariant® field S(x) in MM of
quantities obeying some representation of the Lorentz group be given.
If the field S(x) vanishes in the space-like region 0t—I'*—I'", then one
forms a new field 6(x)S(x) by multiplying S(x) by a function €(x) defined
by
1 for =0

o(x) = {0 for 2°<0

1) A field S(x) in M is called Lorentz invariant if PAS(A~1x)=S(x) for all A€ where
P, is the linear transformation induced by A in the linear space of quantities constituting the
field. The mapping A—Pj is a representation of .



100 T. Kasuca

and claims 6(x)S(x) to be a Lorentz invariant field”.

But the components of the fields which appear in the relativistic
quantum theory of fields are usually distributions in the sense of L.
Schwartz which are highly singular in the neighbourhood of the origin
O of M. Hence the above procedure can not always be justified. So
we put the following question. Given a Lorentz invariant distribution
field® S(x) in M which vanishes in the space-like region Wt—I*"—1"", is
there always a Lorentz invariant distribution field S*(x) in MM which
coincides with S(x) in M —1I"~ and vanishes in M —I'* ? The answer is
“yes” as it is shown in Theorem 2.1* though in general such S*(x) is
not uniquely determined.

For simplicity, we shall state the proof of this result only for a
scalar distribution field. But the proof of the result goes quite similarly
for a distribution field of quantities obeying any representation of the
Lorentz group. Also similar result can be established for the extended
Lorentz group which is generated by the Lorentz group ¥ and the space
inversion.

In a fixed Lorentz frame, a scalar distribution field can be regarded
as a distribution in the sense of L. Schwartz and we shall denote it by
S instead of S(x) in the following.

§1. In this section, we prove Theorem 1. 1.

We begin with some notations.

D : The linear space of infinitely differentiable complex-valued func-
tions with compact carriers in 9. Its topology is that given in L.
Schwartz [1].

@’ : the linear space of distributions in 9 i.e. the dual space of .

& : the linear space of infinitely differentiable complex-valued func-
tions in M. Its topology is that given in L. Schwartz [1].

@ : the linear space of distributions in 9 with compact carriers. It
is well-known that & can be regarded as the dual space of €.

&, : the linear subspace of & which is composed of the functions
@(x) belonging to € and vanishing in some neighbourhoods of the origin
O of M. Of course this neighbourhood depends on @(x). €, is endowed
with the topology induced on it by €.

2) In the relativistic quantum theory of fields, generally, Lorentz invariant fields in the
direct sum MNP I--- DM come into question and the manners of cutting off are more com-
plicated. We treat here the simplest case.

3) Wecall a field S(x) in 9 a distribution field if its components in a coordinate system
are distributions in the sense of L. Schwartz.

4) Also Cf, Theorem 1.1.
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Lemma 1.1. Given a distrvibution S, €& with its carrier contained in
r*url”, we can form a distribution S¥ €& with its carrier contained in
' which coincides with S, in M—1T".

Proof. The order m of the distribution S, is finite since S, belongs
to . We take an open sphere U(O) in M with its center O and with
a sufficiently large radius so that it contains the carrier of S,.

Let p(#) be an infinitely differentiable real function defined for
—1<u<1 such that

pw) =1 for 1=u=K/9 ) '—¢€
p) =0 for —(/g) +6=u=—1

where € a positive number <'(v/2 )™*. We put

_ x°/r)y if r==0
"(")_{ 0 if r=0

where 7=((x°?+(x')*+(2®)°+(x*)®). Then o(x) is infinitely differentiable

in M —(0) and the absolute values of all its partial derivatives of order

<m can be bounded from above by Mr ? on U(O) except at the origin

O of M where M is a positive constant and ¢ is a natural number.
Now we prove that the linear functional S, on &, defined by

Sl: ¢_‘)SI(°-¢) (7)6@0)
is continuous.

Let @, €6, (=1, 2, ---) converge in & to 0 as i—>oco. Then @;(x)
and their partial derivatives of order <m-+g¢q converge to O uniformly
on U(O) as i—co. Also each of @,(x) vanishes in some neighbourhood
of the origin O of Y. Hence by the formula of Taylor, we can easily
prove that the absolute values of all partial derivatives of order <<m of
@,(x) can be bounded from above on U(O) by M/»? where the constants
M! =0 depend only on 7 and M/—0 as i— . Therefore by the formula
of Leibniz and by the properties of the function o(x) previsouly stated,
the absolute values of all partial derivatives of order <m of o(x)p;(x)
can be bounded from above by C; on U(O) where the constants C;=0
depend only on ¢ and C;—0 as i—oco. Hence S,(6p;)—0 as i—  be-
cause the order of S, is m and the open sphere U(O) contains the carrier
of S,. Thus the linear functional S, on @, is continuous since @, is a
metrizable locally convex linear space.

Now by Hahn-Banach’s extension theorem we can extend the con-
tinuous linear functional S, on &, to a continuous linear functional on &
i. e. a distribution Si*€®. S, can be regarded as a distribution in M —(O)
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and S coincides with S, in M—(0). Also S, vanishes in M —I* and
coincides with S, in M —1I"~ by the properties of S, and the function o(x).
Therefore S;* has the desired properties. q.e.d.

Theorem 1.1.” Given a distribution S which vanishes in the space-
like region M —I*"—T", we can form a distribution S* which coincides
with S in M—T" and vanishes in M—T'",

Proof. The carrier of the distribution S is contained in I'"vI~. We
take an open sphere U(O) whose center is the origin O of M. The sets
M-+, M-, UO) are open and (M—TH)v(@M—I7)vUO)=M. Also
we have (M-I )N ul)=r*—(0) and M—-THNT"vl")=T"—(0).
Therefore by Theorem 29, chapter 3 of L. Schwartz [1], we can form
three distributions S*, S~ and S, such that their carriers are contained
in "—(0), I''—(0) and UQO)N(I'*vI~) respectively and such that
S=S"+S"+S,.

The distribution S, satisfies the premises of Lemma 1.1. Hence we
can form a distribution Si* with its carrier contained in I'* which coin-
cides with S, in MM —1. Then we can easily see that the distribution
S*=8*+S;* has the desired properties. q.e.d.

§2. Let p€D and A€l
Then we define pA€ D by

(pA)(x) = p(Ax) for all xe WM.
Also let S€¢® and A€® Then we define SA € by
(SA)(@) = S(pA~") for all @eD.

We shall call SA~'® the transformed of S by A and shall call Se &
Lorentz invariant if SA-'=S for all A€X.

Lemma 2.1. Let G=1{g} be a connected semi-simple Lie group and
let P={P,} be a continuous representation of G by linear transformations
of a vector space V={v} of finite dimension over the field of complex
numbers. If f is an infinitely differentiable™ V-valued function on G

5) This theorem follows from Theorem 34, chapter 3 of L. Schwartz [1]. But the proof
of Theorem 34 is not given in L. Schwartz [1]. Hence we prove Theorem 1.1 independently
of it for completeness.

6) SA-!is a rigorous definition of the distribution S(A~!x).

7) A connected Lie group G has a unique real analytic structure which makes it an analytic
group. The differentiability or the analyticity of functions on G is considered with respect to
this structure.
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satisfying the following condition

(2 1) f(gzgl) = szf(gl) +f(g2)
for all g,, g,€G, then there is an element ve V such that

f(g) = Po—v for all geG.

Proof.® Let T, be the operation of left translation assigned to
g€ G on a V-valued differential form ® on G and

. / /
Ty: o - ao'T,.

If we regard f as a V-valued differential form of order O on G, the con-
dition (2.1) can be written as

2.2) fT,=P,f+f(g) for all geG.

If we differentiate both sides of (2.2) fixing g€ G and put df=w, then
we have

oT, =P for all ge€G

since the operation d commutes with the operations 7, and P, for a
fixed g€G. Also we have de=d(df)=0. Hence ® is a closed equivariant
V-valued differential form of order 1 on G.

Now we denote the Lie algebra of the group G by L={y} and
denote the localization of the differential form ® by [@] i.e. [®] is a
V-valued linear form on L defined by

[](y) = ©(y.) for all yeL

where ®, and y, are the values of » and y at the identity element e of
G respectively. We denote by the same notation P the representation
of the Lie algebra L induced in V by the representation P of the Lie
group G and also denote by P(y) the linear transformation in V assigned
to y € L in the representation P of the Lie algebra L. Then by Theorem
10.1® of C. Chevalley and S. Eilenberg [2], we have

@3)  Ld0ranD+ 5 PPN~ PO} =0

for all y,, y,€L.

8) In the proof of Lemma 2.1, we shall follow the terminology and the notations in C.
Chevalley and S. Eilenberg [2].

9) In C. Chevalley and S. Eilenberg [2], Theorem 10.1 is proved for a representation of
G in a real vector space V but the proof goes quite similarly for a representation of G in a
complex vector space V.
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We denote by L, the Lie algebra obtained from L by extending the
ground field to the field of complex numbers. L, is semi-simple since
the Lie group G is semi-simple. Also we extend the representation P
of L to that of L, and extend the V-valued linear form [®] on L to
that on L.. For simplicity, we shall denote the P and the [@] thus
extended by the same notations P and [®]. The ground field being thus
extended, we can easily prove that (2.3) holds also for all y,, y,€L,.
Hence [®] is a one-dimensional P-cocyle in L,. The cohomology group
HYL,, P) of L, over P reduces to {0} by Theorem 25.1 of C. Chevalley
and S. Eilenberg [2] since L, is semi-simple. Therefore [@] is a one-
dimensional P-coboundary in L,. Hence there is an element v € V such
that

[©]1(») = P(»)v for all yeL.
Now we put '

f (g) = P, 00
and regard f as a V-valued differential form of order 0 and we put
&=df.

Then we can easily prove that

Po=aT, for all geG
[&]y = P(»)v for all yelL.

Hence & is a one-dimensional equivariant V-valued differential form of
order 1 and

[o]=T[a].

Since the correspondence between an equivariant V-valued differential
form o’ and its localization [®’] is one to one, we have

2. 4) df —w =& —df.
Putting g,=e in (2.1), we have
fle)=0
Also from the definition of f, we have
fle) = 0 = fle)

Hence from (2.4), we have f=#, since the Lie group G is connected.
Therefore we have

(g = Pov—v for all geG. q.e.d
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Theorem 2.1. Given a Lorentz invariant distribution S€Y which
vanishes in the space-like region M—1"—I'", we can form a Lorentz
invariant distribution S* €Y which coincides with S in M —1T" and vani-
shes in M-I,

Proof. We shall use the following abbreviation. If &/ is a sym-
metric contravariant'® tensor of order / whose (i, --- i;)-component in
(2% «', 2%, ¥°)-coordinate system is a complex number aiii’, we write

S qiveir @

Gyip oxit ... Oxil

A Lorentz transformation A induces a linear transformation P,(/) in the
complex linear space of symmetric contravariant tensors of order /. The
mapping

A — Py()

is a continuous representation of the Lorentz group . If R is a distri-
bution in M, we can easily prove that

(@'D,R)A™" = (Pp(!)a") DRA™)

for all Ae€g.

By Theorem 1.1, we can form a distribution S** with its carrier in
I which coincides with S in M —I". S**A-! which arises from S** by
a Lorentz transformation A €% coincides with S** in I —(0), since S is
Lorentz invariant and a Lorentz transformation transforms each of the
regions M—T" and M-I onto itself. Also if m is the order of S**
in a relatively compact neighbourhood V(O) of O, then m is finite and
we can easily prove that S**A-' is of order m in the neighbourhood
AV(O) of O. Hence by Theorem 35, chapter 3 of L. Schwartz [1], we
have

(2.5) SHRA- = SFk L SV g(A)D,S

1=0
where a’(A) is a symmetric contravariant tensor of order / depending on
A€,

We prove that each of &’(A) is uniquely determined by A and an
infinitely differentiable function of A on the Lorentz group ¥'». We put

Yr(x) = p(x) X 21X -+ X %71

10) We shall regard (x° x!, x2, x*) as components of a contravariant vector.
11) Here ¢ is the four-dimensional Dirac’s 4.
12) Cf. foot note 7).
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where p(x) is an infinitely differentiable function of x with compact
carrier which is equal to 1 in a neighbourhood of the origin O of IN.
Then we have from (2.5)

SHHPA) = SFFAT(P) = SHF() +(— Lllar(A)

where a’ri(A) is the (i, ---i,)-component of a’(A). S**(YrA) is an in-
finitely differentiable function of A on € from Theorem 2, chapter 4 of
L. Schwartz [1]. From this, we have the desired result.

Now we have from (2.5)

S*¥E(AA) T = (S¥*AT) AT = S¥*A +

(2.6) 2} (@(A)DA) AT = S¥+ 31 (@A) +
Py, () @(A.)) D3

for all A,, A,€%, since 6 is a Lorentz invariant distribution. On the
other hand, we have from (2.5)

2.7) S*H(AN,) T =S¥+ 3V aH(AN,) DB
1=
From (2.6) and (2.7), we have
al(AzAl) = PAz(l)al(Al) +al(A2)

for all /=0 and for all A,, A,€% since a’(A) is uniquely determined by
A for each /=0 in (2.5). Therefore by Lemma 2.1, for each /=0, there
is a symmetric contravariant tensor ¢’ of order / such that

(2.8) a’(A) = Py(l)c!—c! for all A€l

since the Lorentz group ¥ is a connected semi-simple Lie group and
a'(A) are infinitely differentiable on 2.
Now we put

S* = Sk ; ¢'D,S
Then we have by (2.5) and (2. 8)
SHA™ = SHEA-I— g ((c'D,)8) A~
— S+ 3Y(@(8)~ Py()e)DS

— S S ¢ID,5 = S
i=0
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for all A €®. Also S* coincides with S** in M —(0). Therefore S* has
the desired properties. q.e.d.

REMARK. S* in Theorem 2.1 is not uniquely determined by S. If
S* is such one, any other distribution having the desired properties is
given by

S*+ 31d,1%8

where [] is the d’Alembertian —o°/(0x°)’+2°/(0x')’ +*/(0x°)* + [ (0x®)
and d, are constants and # is a non-negative integer.

OsakA UNIVERSITY
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