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Abstract
Vortex filament equation in the Euclidean space has a long 8olution for any
closed initial data, because it can be converted into a atdndgonlinear Schrédinger
equation. While the Riemannian version of vortex filameniagipn is not integrable
at all, we prove that it has a long time solution for any clogstal data.

1. Introduction and preliminaries

The vortex filament equation is an equation of a cumg,t) in the three-
dimensional Euclidean space:

V) =W X Yo Ikl =1,

where x is the exterior product. H. Hasimoto [1] proved the wholediaxistence of so-
lutions of (V), provided that the solution has non-vanighaurvature. T. Nishiyama and
A. Tani [5] proved the whole time existence of solutions o} (Mthout such an assump-
tion. A key step in [1] is a transformation of (V) to a standamahlinear Schrodinger
equation, while [5] uses a perturbation to a 4-th order parakequation.

Later, the present author showed that the method of [1] cappked without the as-
sumption on the curvature [2], and generalized to the caSediinensional space forms,
i.e., the projective spacB3(R) and the hyperbolic spadd® with Riemannian metric of
constant sectional curvature. The generalization is gtyorelated to the “non-linear in-
tegrable system”, and cannot be applied to the case of dedimensional Riemannian
manifolds. Here, vortex filament equation in oriented 3-@sional Riemannian mani-
fold (M, g) is given by simple replacement of differentiation to coaat differentiation:

(VM) = X Vv, Il = L

Recently, the present author found a proof of short timeteste for general
Riemannian manifold [3], using perturbation to a parabeligiation: y; = yx x Viyx +
eVyyx (e > 0). It is natural to conjecture that the solution will divergn finite time,
because it seems that (V) has infinite-time solutions sdbelyause of its integrability.

2000 Mathematics Subject Classification. Primary 53C44pSdary 35Q35, 35B25.



266 N. Koiso

(V) possesses infinitely many conserved quantities, whiée gerturbed equation (VM)
cannot have such quantities, because the curvature of graRnian manifold varies.
In fact, as we will see in Example, we can easily construct mplete Riemannian
manifold where a solution of (VM) blows up at finite time.

However, in this paper, we will prove that, the conjecturdailse under a curva-
ture condition.

Theorem. Let (M, g) be an oriented3-dimensional complete Riemannian mani-
fold with bounded sectional curvaturdhen equation(VM) has a unique whole time
(—o0 < t < 00) solution for any C° closed initial curveyy(x) with |Viyol = 1.

We summarize notations. We denote py| the norm, byV the covariant dif-
ferentiation, byR the curvature tensor, and by the exterior product of each tangent
space ofM. Partial derivation is denoted by subscript &, 9. The manifold, its
structure and all functions are supposed toGse.

By re-scaling, we may assume that the initial length of theveus 1. Therefore,
we may considery as a map fromR/Z) x R>o to M.

We will take function norms only fox-direction. More precisely,

1 n .
(@, B) :=fo g, BYdX, llal® = (o, @), =D IViel?.

i=0
Also, |la]lcn counts onlyx-derivatives and is a function it

2. Proof of Theorem

Let y be a solution of (VM) defined on a finite time interval [D).
Lemma 2.1. Vx|l is bounded from above
Proof. The quantityl| Vxy«|l is estimated as follows,

d
&nvxyxnz = 2(Veyx, VeViak) = 2(Verx, R4, v)¥x + Ve Viok)

= 2(Vx¥x, R(Vx X Vyyy, )/x)]/x) - 2<V>%VXa Yx X V)%VX>
=< C1||Vx7/x||2,

and increases at most exponentially. 0

Lemma 2.2. y is in a compact set of MIn particular, all derivatives of curva-
ture tensor are bounded along.
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Proof. Since|ly]l = llyx x Vx¥«ll is bounded by a constam,,
T T
minf i dit s/ Inll dt < C,T.
xeSt Jo 0

Therefore, taking account of the length pf the distancel(y(x,t), (0, 0)) is bounded
by CiT +2. O

Lemma 2.3. | V2yx| is bounded from above

Proof. Note that|VxR| = [(VR)(y«)| is bounded by Lemma 2.2. The quantity
||nyx|| is estimated as follows:
d 2 2 _ 2 2
aIInyxll = 2(Vivx, Vi Virx)

= 2(V2yy, R, vx) Varx + V(RO ) V) + VEViv)
= Z(V)%)/x, R(Vx X Vy¥xs VX)VXVX+VX(R(VX X Vyx¥x» )/x))/x)"'vatyx)
< Cal VANVl maX Vi + 1 Yyl + IIVEVID) — 20V, Vyx X VEWK).

Since | Vxy«|l is already bounded by Lemma 2.1, we see that
—||vxyx||2 < Co(L +IVEylI?) = 2(Vgrx, Vxrx X VW)

We rewrite the last term. Note tha(yx, VZyx) = —|Vxxl? and g(yx, Vi) =
WA V2)) — 9(Vevs V20%) = —(3/2)3«|Vxyx|2. We denote bys: and *' the
yyx-factor and the factor perpendicular 1Q, respectively. The last term becomes

(ij/x, Vxyx X nyx) =((Vy )’x)l"'(V J/x)T Vs x {(Vy Vx)l"'(V VX)T})
= (V)::’Vx) » Vx¥x X nyx> + (Vf)/m Vxyx X (nyX)L
= (Q(nyx. V)V Vx¥x X ViVx) + (VSVXI g(vf)’x: V%) Vx¥x X ¥x)

~ (I Vk 12 Vs Verx X V200 — (V31 [V 2 Vi X )

<8X|VXVX| “Yxs Vx¥x X V)%)/x)"'(V)%VXa 8x|vx)/x|2‘vx)/x X Yx)

I\JIU‘II\)IO\JI\) w

(3¢ V¥ |2 v, Vil X VE¥).
On the other hand,

d
&nwxyxﬁnz- A Veyxl? 9(Verxo ViVss)) = M Vi 2V R4, ) vx + Vi Vi)

> —Ca| Vyxll® maxt Vieyx 12 — 4V (| Ve 2 Vir)s v X VEYK)
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v

—Call Ve I U Vil + V2 — 40x Vil - Vi vx X VEW)
—Cs(1 + I V2yxll) + A Vil - v Vo X VEWK).

\

Therefore, we have
d 2 2 2,2 2 2
&{4IIVXVXII = SIVxyxl“l17) < Ce(L +IVywxl©).

As in the above calculation]|Vxyx|?[|2 < C7(1 + | V2y«])). It implies that
AIV2plI? = Bl Vi 2I1% = 41 VEWI? — Ca(L + 1 V2yxll) = 3lIV2yxll* — Ca(1 +Ca).

Thus, X(t) := 4| V2|2 —5]|| Vxyx|?||? satisfiesX'(t) < Co(1+X(t)), andX(t) is bounded.
Hence, || V2y«|| is bounded. O

REMARK 2.4. When the manifoldN, g) is a space form, i.e., has constant sec-
tional curvature, the quantity|[&2yx||? — 5|||Vxyx|?]|? is preserved.

Lemma 2.5. For each positive integer ,n||Vyyx|| is bounded from above

Proof. We use induction. Take any integer> 2 and suppose thatVky| is
bounded for any non-negative integer n. It implies that|VXyy| is bounded for any
non-negative integek < n.

d
anvx“”yxnz = 2V y,, ViV )

n
= 2<VQ+1)/X, VIV + Z Vi (RO X Vv, )V yx)>.
i=0

Here, the summation term is decomposed into contractioﬁ;&@(@i v, yx) where

>_j bj =n+1. Hence theirL, norms are bounded bg,(1 + [ VI Ly D).

The termV™1V,y, = VI*1(y, x V2y,) is a linear combination o¥fy, x Vx> Py,

(2p < n+3), andL, norm of each term is bounded W»(1 + | Vi) except the
casesp=0,1,2,3. Ifp=3, thenn > 3 and theL, norm of V3y, x V1y is bounded.
If p=2, the termV2y, x VI*ly, is perpendicular tovi*ly,.

We calculate the remaining termsi =0, 1. As in the proof of Lemma 2.3,

2(V3  y, vx X Vi Byc+ (0 + 1)V x V)

= _2<V)r(]+l7/X1 Vxyx X VQ+2VX> + Z(n + 1)<V)r(]+l)/x, Vx¥x X V)r(]+2)/x>

= 20(V™ty, Virx X Vi)

= 200V 0t Vi X V20 + 200V Ve x (V3 20)
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= 2n(g(v>r<1+lyx, Yx)¥x» Vx¥x X VQ+2VX) + zn(V;Hle' g(V;(HZVx: ¥x) Vx¥x X ¥x)-

Here, g(Vi*2y, yx) in the second term is expressed by a linear combination of
(VP V2 Py ((n+2)/2 < p < n+ 1), hence the second term is bounded by
Ca(1 + | VI*1y4]12). For the first term, we have similar estimate by using

(Q(VQ”VX, Yx)Vx» Vx¥x X VQ+2VX>
= —(3x(9(v>'2+1]/x, ) * Vx» Vx¥x X V;(Hl)’x) - (Q(VQ+1VX, Yx)¥xo Vi)’x X VQ+1VX>-

Thus, we have proved that

%nv;‘”yxuz < Ca(@ + V1), O
Proof of Theorem. By Theorem 3.1 in [3], there exists a unigueximum so-
lution y. If y is defined only on a finite time interval [@;), y can beC>-ly ex-
tended onto [OT] by Lemma 2.5. Hence, we can extend the solution olveagain
by Theorem 3.1 in [3]. This is a contradiction. Therefogejs defined on the interval
0 <t < o0. Since the equation is invertible, we get a unique solutiorthe real line
(=00, 00). O

3. Example

In this section, we give examples such that the equationcesdtio an ordinary
differential equation. LetM be a S' bundle over a Riemann surfad® We assume
that the projectionr is a Riemannian submersion fronM( g, V) to (B, g, 5). We
denote byX the horizontal lift of a tangent vector oB. Let V be a unit vertical
vector field such thafV, X1, )~(2} becomes positive basis §iX1, X5} is positive. Since
[X, V] is vertical and independent of extension Xfe TyB, we can define a 1-form
on M by n(X)V =[X, V] and n(V) = 0. We assume that is a pull back of a 1-form
£ on B, i.e., [X,V]=&(X)V.

Since Vy V is perpendicular tov and

29(VwV, X) =2V(g(V, X)) — X(g(V, V)) +g(lV, V], X)+29((X, V], V)
= 26(X),

VyV is the dual vector field)* of .
Let {X1, X2} be a positive orthonormal basis &jB. Then,

VWV =0 = £(X1) X1 +E(X2) Xa,
V x WV = —£(Xa)Xq + £(X1) Xa,
[V, V x VyV] = —£(X)[V, X4l +E(X)[V, X2] = 0.
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Therefore, we can define a mag St x R = {(x, t)} = M such thaty, =V and
1 =V x VyV. It means that if the initial data is a fiber, then the solutidrihe vortex
filament equation is a family of fibers. The family is goverrigdthe integral flow of
the vector fieldJ&*, where J is the almost complex structure of the base manifold.

Let (M, g°) be anS! fiber bundle with geodesic fibers. (Hopf fiberin§® — S and
trivial bundle B x St = {(y, 0)} are typical examples.) We denote B the covariant
differentiation andVv® the fiber vector field defined as above. Lktbe a function on
B. We define a new metrig; on M by modifying the fiber metric ta;(V°, V°) =
exp(—2f(y)). Then, the unit fiber vector field is given By =exp f - V°, and

291 (VwV, X) = 2V(gr(V, X)) — X(gr(V, V) + g ([V, V], X) +2g¢([X, V], V)
=2exp2f)g°(X, exp f - VO], exp f - VO) = 2X(f).

Therefore, & = df.

Proposition 3.1. Let (M, g¢) be as abovelf the initial data is a fiber then the
solution of (VM) moves along contour lines of. fin particular, if B is compact then
the solution is periodic with respect to timerovided that the contour line does not
contain critical points of f

ExXAMPLE 3.2. LetB be the Euclidean planR? = {(u, v)} and f the function
tanh@v?). Thendf = (v2, 0) along the contour line = 0, and the solution with initial
data (1, v) = (0, 1) is governed by an ordinary differential equatioit) = v2. This
solutionv(t) = 1/(1 —t) blows up att = 1. Note that the Riemannian manifoM is
complete. This example shows that we cannot omit the assampf boundedness of
curvature in Theorem.

REMARK 3.3. This behaviour of blowing up in Example 3.2 is completeif-
ferent from 1-dimensional Eells-Sampson equatipn= Vyyx. Any solution of Eells-
Sampson equation on a complete Riemannian manifold neegrsblip at finite time,
because

T 2 T T T
(/ ||yt||dt) 5T/ ||yt||2dt:T/ Vil dt = =y 1213
0 0 0

is bounded by the initial energy.
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