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0. Introduction

In [2] and [4] Drinfeld and Jimbo independently noticed that there exists
an algebraic object behind the theory of the quantum Yang-Baxter equation.
This is the quantum algebra, which is a quantization of the enveloping algebra
U(Q) of a finite dimensional semisimple Lie algebra g. Their formulations,
however, are slightly different; Drinfeld's t/^(g) is an algebra over the formal
power series ring &[[#]], and Jimbo's Uq(q) is an algebra over the rational fun-
ction field k(q1/2)y where k is a field of characteristic zero. The indeterminates
% and q are related by qι/2=e^.

One of the purposes of this paper is to give a counter part for U^(Q) of the
results of Lusztig [6] and Rosso [7] concerning finite diemnsional £/4(g)-modules,
by fully using the advantage that f/̂ (g) is a topologically free &[[S]]-module
satisfying t/ft(β) U=0— U(Q) (the indeterminate % can be directly specialized to 0).

Let P (resp. P + + ) be the set of integral (resp. dominant integral) weights.
As in the case for U(Q) and Uq(Q) we can construct a "finite dimensional highest
weight module" L(X) for λ ^ P + + . It is a [/^(g)-module which is free of finite
rank over i?=&[[ί]] such that L(λ)|^=o is isomorphic to the finite dimensional
irreducible [/(g)-module with highest weight λ. Let Jί be the category of
£/^(g)-modules which are free of finite rank over R. A Ϊ7^(g)-module in Jί is
said to be ^-irreducible if it has no nontrivial quotients which belong to Jl.

Theorem A. (i) Any U^(Q)-module in Jl is a direct sum of Jl-irredu-
cίble C/̂ (g)-modules.

(ii) A Ufι(Q)-module in Jί is Jl-irreducible if and only if it is isomorphic
to L(\)for some λ e P + + .

Let G be a connected split semisimple algebraic group defined over k with
Lie(G)—g. Assume that G is simply connected for simplicity. Let A%[G]
be the "dual" Hopf algebra of ί/^(g) (see Section 2 below). Since it can be
regarded as a quantization of the coordinate algebra k[G] of G, we call it the
quantum group (see Drinfeld [3], Woronowicz [10]). We have the following
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analogue of the Peter-Weyl theorem:

Theorem B. The tnatirx coefficients of L(X) for λ e J P + + form a free R-

basis of An[G]. Hence we have an isomorphism

, Un(Q))-bimodules.

Let B be a Borel subgroup of G and let k[B] be its coordinate algebra.

We have an induction functor Ind from the category of A[2ϊ]-comodules to that

of &[G]-comodules. We can define a quantization A%[B] of k[B] as a quotient

Hopf algebra of A%[G] and the induction functor Ind^ from the category of

^[jB]-comodules to that of ̂ 4#[G]-comodules is similarly defined. For μ^P let

Rμ. (resp. kμ) be the one dimensional -4#[B] (resp. &[JB])-comodule correspond-

ing to μ. The following theorem implies that the analouge of the Borel-Weil-

Bott theorem holds for quantum groups.

Theorem C. For μ^P the An[G]-comodule R{ lndn(Rμ) is a free R-

moduleandtheh\G\-comodulek®RRi\τΛ%(Rv) is isomorphic to R11 lnd(kμ), where

Rι denotes the right derived functors.

1. Irreducible Highest Weight Modules

1.1. Let g be a finite dimensional split semisimple Lie algebra over a field

k of characteristic zero. Let A^(aij)1^iJ^ι be the Cartan matrix of g and

choose positive integres d19 •••, dx satisfying ^ α ^ —d^a^. The quantum algebra

Ufi(Q) is the associative algebra over the formal power series ring i?=&[[#]] with

1, which is S-adically generated by 3/ elements t^e^f{ ( ί = l , •••,/) satisfying

the following fundamental relations:

(l.i . i) tftj^tjt, ( * , i = i , , / ) ,

(1.1.2) tiej-ejt~diaiie} (i, j=l,-,l),

(1.1.3) hfHih = -d,at,f} (i,j = 1, - , /),

αi4ϊ cf f c -s s i n h(^./2) a , = i ... /)

(1.1.5) i f ί - l f Γ 1 J ' Ί *ί-«-«β,«f = 0 (ίΦ;),

(1.1.6) Σ ' ί- irΓ 1 ^! /}-«--///? = 0

where ί,=exp (ίrf, /2)ei?* (ί==l, •••, /), and
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(Drinfeld [2], Jimbo [4]).
Let N+ (resp. N~f resp. T) be the subalgebra of L^(g) generated by ev •••, et

(resp./j, •••,//, resp. tv •••, tt) and let U£(Q) be the subalgebra generated by iV+,
N~, T, where barring denotes the ί-adic closure.

Proposition 1.1.1 ([9], see also [2]). (i) N+ (resp. N") is a free R-module,
and the relation (1.1.5) (resp. (1.1.6)) is a fundamental relation among the genera-
tors el9 •••, eι (respjv ..-,/,) of N+ (resp. N").

(ii) T is jiaturally isomorphic to the polynomial ring R[tv •••, tt]f and the
inclusion T^T is the %-adic completion.

(iii) We have the following isomorphism of R-modules:

(1.1.7) N~®T®N+^ l//(fl) (u®v®w^uvw).

(iv) Γ/ze inclusion U^Q^U^Q) is the %-adic completion.

By [8] we see that the β-algebra k®R U-^(Q) is naturally isomorphic to the
enveloping algebra U(Q) of g, where the ring homomorphism R->k is given by
/ϊι->0. The natural Hopf algebra structure on ί/(g) lifts to the topological Hopf
algebra structure on U^(Q) given by the following:

(1.1.8) Δ(f,) = f,®l + l®f, (i = 1, -., / ) ,

(1.1.9) A(e{) = ^ β e x p ί - ί ί ^ + e x p ί f e ^ ) ® ^ (ί = 1, -., / ) ,

(1.1.10) Δ(/ι) = Λ®exp(-*ί ί/4)+e3φ(*ί,/4)®// (i = 1, -., /) ,

(1.1.11) Sfr) = £{€,) = £(/,) = 0 (i = 1, - . , / ) ,

(1.1.12) <$(*,)=-*, ( i = l , - , / ) ,

(1.1.13) S ( ^ ) = - 4 Γ 1 ^ ( i = l , - , Z ) ,

(1.1.14) S(fi)=-qJi ( i = l , - , / ) ,

where Δ, 6, 5 are the coproduct, the counit and the antipode, respectively
(see [2], [4]).

Lemma 1.1.2. £/#(g) is a noetherian ring; i.e., the ascending chain condi-
tions for left and right ideals are satisfied.

Proof. It is known that the enveloping algebra £/(g) is a noetherian ring
and by Proposition 1.1.1 we have

Hence the assertion is proved similarly to the well known fact that the formal
power series ring over a noetherian ring is noetherian. •

Let t (resp. t0) be the i?-submodule (resp. ft-subspace) of T generated by
t19 •••, t;. By Proposition 1.1.1 {tv •••, tt} is a basis of the ^-vector space t0 and
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we have t=R®kt0. Set t*=Horn*(t, R) and t?-HomΛ(to, k). Via the ring
homomorphisms k^->R->kwe have:

We will identify tjf with a subspace of t* and the natural homomorphism t*->tcf
is denoted by λι-> λ°. We will also identify t0 (c=zk®R t) with a split Cartan sub-
algebra of g. We define a^tf ( t=l , •••, /) by α, (ίy)=rf/%. Then {c ,̂ •••, α;}
is a set of simple roots of the root system Δ of (g, t0). We denote the set of
positive roots by Δ+. Set

(1.1.15)

(1.1.16) δ+ = θί.i^»α ί,

(1.1.17) P = {λet?|λ(2*f/α,.(ί,.))eZ ( ί =

(1.1.18) P++ = {λ

We denote by W the Weyl group of (g, t0). It is a finite subgroup of GL(tQ)
generated by the reflections s{ (i=l, •••,/) given by

The iί-lattices P, Q in t* are preserved under the contragredient action of

PFontf.

1.2. Let JL be the category of [/^(g)-modules which are free of finite
rank as Λ-modules. This is not an abelian category but an exact category.
Let M be a t/#(g)-module in Jl. A £/^(g)-submodule Mx of M is called a
strict submodule if M/Mι belongs to Jl. A non-zero [/^(g)-module in Jl is
said to be ^-irreducible if it does not contain non-zero proper strict sub-
modules.

Lemma 1.2.1. If Mv M2 are U^)-modules in Jl, we have

Proof. By the exact sequence:

0 ^ M, - i . M2 -* M2/fiM2 -* 0

of ί7^(g)-modules we have:

ExtU (fl)(M1( M2) > ExtU ( g )(M1 ( M2) -> Ext' ( g )(M 1 ; M2/ίM2) (exact).
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Since U^Q) is a noetherian ring, we see that Ext^ fa\(Mv M2) is a finitely gen-

erated jR-module. Thus it is sufficient to show Ext^ / x(M1,M2/ίM2)=0. By

the exact sequence:

we have

MJΛMx 5 = 0

0 ? φ θ .

Therefore, by the spectral sequence:

we have

ΐv M2IHM2) =

The right-hand side is zero since any finite dimensional [/(g)-module is com-
pletely reducible. We are done. •

Corollary 1.2.2. Any U%{ς^-module in Jl is a direct sum of Jl-irreducίble
Ufi(Q)-modules.

1.3. For λ e t * let ξλ: T->R be the unique algebra homomorphism satisfy-
ing ξλ(t)=X{t) for ί e t . For a T-module M and λ ^ t * we set

Afλ = {m<ZΞM\t-m = ξλ(t)m (t<=T)} .

We define an ordering on t* by

λ ^ μ if and only if λ-/

For λ e t * we define a [/^(g)-module M(λ), called the Verma module with
highest weight λ, by

(1.3.1) Λf(λ) = E/£(fl)/(Σ U^Q)e{+ Uffa) ker ζλ) =
ί = l

where wλ is the canonical generator corresponding to the class of 1. By Proposi-
tion 1.1.1 we have M(λ)=0/*ssίλM(λ)μ and each M^λ),* is a free i?-module of
finite rank. Moreover we have the character formula:

(1.3.2)

Lemma 1.3.1. // K is a U£(Q)-submodule of M(λ), we have:
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Proof. Assume that we have m = Σ ! . i ^ , ^K with m{ e M(λ)/t.,

(i φ j). We will show that each m, is an element of i£ by induction on n. The

case n=l being trivial, we assume that n^2 and the assertion holds for n— 1.

Since μ?, •••, μ,° are mutually different elements of tf, there exists some £G

Aplf •••, ί j c f satisfying f^$(0= — = f#ΐ-1W=° a n d &ϊ(*)=l T h e n w e h a v e

ξμ..(t)=tiai ( ί = l , " ,n—1) and £/*„(*)=l+ί f l* f°r s o m e aly-- ,an^R. Hence we

have

Since l+#(αΛ—Λ, ) is an invertible element of /?, we have m^K ( ί = l , « ,n—1)

and hence mnEzK. •

Let UC(λ) be the sum of all ϊ/^(g)-submodules of M(λ) contained in

©μ < λM(λ)μ, and set

(1.3.3) L(λ) - M(\)IK(\).

L e m m a 1.3.2. (i) Wl? have L(X) = (Bμ£χL(\)μ and each L{X)μ is a free

R-module of finite rank,

(ii) If K is a proper U^(Q)-submodule of L(\) such that L(X)/K is a torsion

free R-module, we have K=0.

Proof, (i) Set K'= {m^M{\) \ fim^K{X)}. Then Kr is a [/^(g)-submodule

satisfying K(X)dKfC0KλM(λV. Hence we have K'=K(\) and L(λ) is a

torsion free i?-module. Therefore the assertion follows from Lemma 1.3.1.

(ii) Let Kx be a proper [/^(g)-submodule of M(λ) such that M(λ)IKλ is a

torsion free Λ-module. By Lemma 1.3.1 we have Kx=®^x (M(X)μ,Γ\Kι) and

hence M(λ)j*/M(λ)μ Π J^i is a torsion free jR-module for each μ^X. Since M(λ)λ

is a free jR-module of rank 1, we have Λf(λ)λ Π Kλ=M(X)λ or 0. If M(X)λ Π Kx=

M(λ)λ, then i^t contains the generator mλ, and hence we have K1=M(X), which

contradicts with the assumption. Therefore we have M(X)λΓ\Kx=0 and hence

Kxc:K(\). The assertion is proved. •

We define p e t f by p(2tilai(ti))=l ( i = l , —, /). For

/(«;) = min {^|ZU = siv •••, ^ for some /υ ••-, ̂ e [ l , /]} .

Lemma 1.3.3 ([6]). (i) L(X) is finitely generated as an R-module if and

ifX^P++.

(ii) For λ e P + + , k(g)R L(X) is an irreducible U(Q)-module and we have

<U.4>
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(iii) // λ e P + + , any U%&)-submodule of L(X) is of the form finL(X) for

some non-negative integer n.

Proof. By the arguments of [6] we see that L(X) is integrable (i.e., the
elements eiy f{ (i—l, •••,/) act on L(X) locally nilpotently) if and only if λ E P + + .
If L(X) is finitely generated as an i?-module, then it is integrable and hence we
have λ e P + + . If λ e P + + , then L(X) is integrable, and hence k®RL(X) is
an integrable highest weight module of U(Q) with highest weight λ. Thus
k®RL(X) is the (finite dimensional) irreducible £/(g)-module with highest weight
λ. Therefore L(X) is finitely generated as an ϋ-module, and WeyΓs character
formula implies (1.3.4). The statements (i) and (ii) are proved. Let us show
(iii). Let X^P++ and let K be a non zero t/^(g)-submodule of L(λ). Take a
non-negative integer n such that KdfinL(X) and K <tfίn+1L(X). Then we have
K^^K, for some L^(g)-submodule Kx of L(λ). Since {Kx+fiL{X))lfiL{X) is a
non-zero [/(g)-submodule of the irreducible £/(g)-module L(X)lfiL(\)=A®RL(X),
we have i ( λ ) = i ^ 1 + ^ ί'(λ). Since L(X) is a finitely generated iϊ-module, we
have ϋ: i=Ir(λ), and hence K=finL(X). Π

For λ G P + + the action of U^(Q) on L(X) uniquely lifts to that of C/̂ (g) on
L(X). In the following we regard L(X) for λ 6 P + + as a £/#(g)-module.

Corollary 1.3.4. L(X) is an Jί-irreducible XJ^j-module for λ e P + + .

2. Quantum Groups

2.1. Define a (ί/(g), (7(g))-bimodule structure on ί7(g)*=HomΛ(C7(g), k)
by

((«!•/•«,))(«) =f(u2uUl) ( / e E/(fl)*, «,

and set

It is an elementary fact concerning Hopf algebras that U(Q)° is also endowed
with a Hopf algebra structure whose product, coproduct, unit, counit are
induced by the coproduct, the product, the counit, the unit of C/(g), respecti-
vely.

Set C4(g)*=Homi?(ί7^(g), R). By Proposition 1.1.1. we see that ί/^(g) is
the ^-adic completion of a free i?-submodule M=N~®T(g)N+. Hence we
have ί7^(g)*^^Homi?(M, i?)=(a product of rank 1 free i?-modules). Therefore
any i?-submodule of £/^(g)* is torsion free and separated. Define a
E/ft(β))-bimodule structure on £/^(g)* by

, u,

and set
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= ί / e Un(Q)*\Un(2)fUn(a) ^ a finitely generated Λ-module} .

For a £/#(g)-module V in <J! we have a natural right t/^(g)-module structure

on F*=Hom*(F, i?) by

where < , > is the natural pairing. Define Φ 7 : F ® F * - > E/̂ (g)* by (
Ϊ;*))(W)=<^*, κ ^ ) . Then it is easily seen that Φv is a homomorphism of
(U-H{Q), £/#(g))-bimodules and that C/̂ (g)° is the sum of Image(Φv) for £/#(g)-
modules V in Jl (i.e., the i?-module £/#(g)° is generated by the matrix coeffici-
ents of £7#(g)-modules in Jΐ). Moreover the topological Hopf algebra structure on
Ufi(Q) defined by (1.1.8), •••, (1.1.14) induces a Hopf algebra structure on U^(Q)°.

2.2. The purpose of this subsection is to prove the following:

Proposition 2.2.1. For λ G P + + the homomorphism ΦL(λ) is injective and
we have

Un(Q)° = θ λ e p + + Image ΦLω .

Since C/̂ (g) is topologically free and since Ufι(Q)lfiUfι(Q)—U(Q), we have
^(9)*M^(fl)*—£^(9)* We denote the natural homomorphism C/#(g)*-^ C/(g)*
by/-*/". We first show the following:

Lemma 2.2.2. For λ G P + + the homomorphism ΦL(χ) is injective and we have

Σ Image Φ z ( λ ) = 0 λ e P + + Image Φ I ( λ ) .

Proof. For λ e P + + let {f)j \ 1 ̂  i, j ^ rank L(λ)} be the set of matrix
coefficients of L(λ) with respect to some Λ-basis of L(λ). It is sufficient to show
that

{f)j I λ e P + + , 1 ̂  f, j ^ rank L(λ)}

is linearly independent over R. The set

{/ίj I λ e P + + , 1 ̂  i, j ^ rank L(λ)}

is linearly independent over ft, since it consists of the matrix coeficients of
irreducible [/(g)-modules. Therefore the assertion follows from the fact that

is torsion free. •

Set F(λ)=L(λ)®L(λ)* for λ E P + + .

Lemma 2.2.3. Let Xu •••, λM fo? mutually different elements in P++ and let
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be the projection. If V is a (C7 (̂g), U^(Q))-submodule of φ j β l F(λ, ) such that
pj(V)Φθ for each j , there exist non-negative integers mlf' ,mn satisfying V=

Proof. Set 17=07.. i F(λ, ). Sinceps(V) is a non zero (C/Λ(fl), C7Λ(g))-sub-
module of F(λ, ) and since V(Xj)lfiV(\j) is an irreducible (J7(g), £/(g))-bimodule,
the argument in the proof of Lemma 1.3.3 (iii) implies that there exists some
non-negative integer m$ such that pj(V)=ΆmJV(Xj). Let F: U-*U be the

)> C/^(g))-homomorphism defined by

Then there exist a (L^(g), ?7^(g))-submodule F^ of ©?„! F(λ,) such that
JI(Γ1) = F and ίXK1) = F(λy). Since F ^ O / ^ F ^ ) ( ί = 1, - , n) are mutually
non-isomorphic (Ϊ7(g), ί7(g))-bimodules, we see that (F1+ΛC/)/Λί7=[//Λϊ7, and
hence £/— I^+^C/. Since t/ is a finitely generated i?-module we have Vx—U
and hence P r=ί i(Γ 1) = ®J.i ^ F ( λ t ). D

Set D = © λ e p + + Image Φ L ( λ ) .

Lemma 2.2.4. (i) U*{Q)°=D+iiHUti(Q)0 for any n.
(ii) nnD=nnUn(Q) ΓiDfor any n.

Proof, (i) Let /6ί/Λ(g)°. Then we have /eJ7(g)° and hence there
exists some fx£ΞD such that f=fv Therefore we have /=/i+^/2 f°r some
/ 2 £t^(g)* . Since / and /,_ are elements of f/ (̂g)° and since t/^(g)* is torsion
free, we have/2G ?7^(g)°. Thus we have

(ii) Let/be an element of C/(g)° such that f / G U . Set V=
Let {ϋx,

 β ,^} be an Λ-basis of V and let {of, m

 9vf} be the dual basis of
V*. Regarding V as a left £/^(g)-module we have

p

Vi = Σ Vy(l)Φy(ϋf-®ί;f)eImage Φ 7 .

Especially we have /GImage Φ 7 . Since ^ M F is a (C/#(g), ί7^(g))-submodule of

D, we see from Lemma 2.2.3 that

V ^ n'V - ΘLi Λ-Wλ.OΘLίλ,.)*) = θ ί .

for some Xv •••, λ f G P + + and ŵ , •••, mrG:Z^0. Hence we have /GImage Φ 7 =

Σ ί . i Image Φ £ ( λ ί ) cZ). D

Proof of Proposition 2.2.1. By Lemma 2.2.2 it is sufficient to show D=
By Lemma 2.2.4 the natural i?-homomorphism
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ύ Λ ( = Urn

is an isomorphism. Therefore we can regard U%(Q)° as an i?-submodule of D
containing Zλ Since the (£/^(g), E/#(g))-bimodule structures on D and £/#(g)°
uniquely lift to the same (C/ (̂g), Ϊ7#(g))-bimodule structure on D, it suffices to
prove that if Vis a (t/^(g), ϊ/^(g))-submodule of (θλei>++ V(\))A which is finitely
generated over i?, then F i s contained in Θ λ e p + + ^(^) Let q^: ( φ λ e P + + F(λ))Λ

-»F(μ) be the unique extention of the projection 0 λ ep++ V(\)->V(μ). We
have only to show that qlι(V)=0 except for finitely many μ,eP + + . Assume that
there exists an infinite sequence μv μ2, •••, of mutually different elements in P++

such that q^JTjφO. Let rn: (0 λ e P ++ F(λ))Λ-» 0?«i ^(A6,) be the unique exten-
sion of the projection. By Lemma 2.2.3 we have rn(V)=(Bϊ~ιfitniV(μi) for some
non-negative integers mx,~ ,mn. Therefore we have rank V^rankrn(V)^n for
any n. This contradicts with the assumption. We are done. •

Corollary 2.2.5. Any Jl-irreducible U^(Q)-module is isomorphic to L(X) for
some λ G P + + .

Proof. Let V be an ^-irreducible ί/^(g)-module. Take a non-zero
element v* of F * and define F: V-* ^(g)° by (F(Ό))(U)=<J)*, W T;>. Then F
is a non-zero homomorphism of left [/^(g)-modules. By Proposition 2.3.1 the
left £/^(g)-module C4(g)° is a direct sum of L(λ) for λ G P + + . Considering the
projections we see that there exists a non zero Ϊ7^(g)-homomorphism V->L(\)
for some λ e P + + . It is seen by Lemma 1.3.3 (iii) that L(λ) is a quotient of V.
Since V is o?-irreducible, we have V=L(X). Π

2.3. Let G be a connected split semisimple algebraic group defined over
k such that the Lie algebra consisting of ^-rational points of Lie (G) coincides
with g. Then the coordinate algebra k[G] is naturally endowed with a Hopf
algebra structure and we have a natural injective Hopf algebra homomorphism
from k[G]-+ U(Q)° via the pairing

where rfκ is the left invariant differential operator on G corresponding to u.
The image of this homomorphism is described as follows. Let LG be the set
of elements of t* consisting of weights of finite dimensional [/(g)-modules
coming from G-modules. LG is a ^-lattice satisfying QdLG(ZP. Then the
image of ^[G]—>i7^(g)° is spanned by the matrix coefficients of finite dimen-
sional irreducible [/(g)-modules with highest weight in LG Π P++>

Set

(2.3.1) A*[G\: = θ λ e ^ n p + + ImageΦL ω .

It is easily checked that A^[G] is a Hopf subalgebra of C/̂ (g)°. We call this
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Hopf algebra the quantum group associated to G (see [3], [10]).
Let Jl° be the category of right t/#(g)°-comodules which are free of finite

rank over R and let JlG be the category of right ^4^[G]-comodules which belong
to <A° as right [/^(g)°-comodules. Then the natural functor <_̂ °-><Jί gives an
equivalence of categories <Jl° ^ J [ . Moreover the category <JlG is equivalent to
the full subcategory of <_A consisting of [/^(g)-modules in <Jl whose c^?-irreducible
factors are of the form L(λ) for some λ G i G Γl P*+.

Lemma 2.3.1. Let V be a l]%{^)-module in Jl such that the Z-submodule
of t* generated by the weights of V coincides with LG. Then A^\G\ is generated
by Image Φ F as an R-algebra.

Proof. Let H be the subalgebra of A^[G] generated by Image Φv. We
see by definition that H is a (£/#(g), £/#(g))-submodule of A$G\. Hence by
Lemma 2.2.3 we have

(2.3.2) H - 0 λ e Γ fi^ Image ΦL(λ)

for a subset Γ of P++ and non-negative inetgers nλ. On the other hand we see
by the assumption on V that the representation G^>GL(VjtiV) is injective and
hence the ^-algebra k[G] (—An[G]liAn[G]) is generated by the matrix
coefficients of the G-module VjfiV. Therefore we have

G] and hence

(2.3.3) H+*An[G\ = An[G].

The assertion follows from (2.3.2) and (2.3.3). •

3. Borel-Weil-Bott Theorem

3.1. Let U£(b) be the subalgebra of U^(Q) generated by f, N+ and let
Uft(b) be its ί-adic closure in t/^(g). By Proposition 1.1.1 we have [/̂ (b) —
T®N+ and the inclusion t/̂ (b)CL-» Ϊ7^(b) is the ί-adic completion. Moreover
we have k®R Ufι(b)^^k®R [/^(b)^ ί/(b), where b is a Borel subalgebra of g.
Define Un(b)° ( c f/*(b)*) similarly to Un(Q)°. Since C/Λ(b) is a topological Hopf
subalgebra of C/̂ (g), we also have a natural Hopf algebra structure on C/̂ (b)°.

Let G be a connected semisimple split algebraic group defined over k with
Lie(G) = g and let B be the Borel subgroup of G corresponding to b. We
denote by F: U^Q^-^U^b)0 the natural Hopf algebra homomorphism. Then
A fi[B]==F(Afi[G]) is endowed with a natural Hopf algebra structure and it can
be regarded as a quantization of the coordinate algebra k[B] of B by the
following:

Lemma 3.1.1. An[B] is free R-module satisfying k®R At[B]—k[E\.
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Proof. It is easily verified using the results in Section 1 that we have

under the identification U£(b)=T®N+. Hence the assertion follows from the
corresponding fact for k[B], •

3.2. Let tirvΛ[B] (resp. triv^.^]) be the right k[B] (resp. ^J#[B])-comodule

given by the unit and let t r i v ^ (resp. triv^ ^ ) be the left U(b) (resp. £/#(b))-

module given by the counit. For a right k[B] (resp. y!̂ [jB])-comodule V we set

(3.2.1) Ind (V) = Homίtrivrtrt, k[G]®k V)

(3.2.2) (resp. Ίndn(V) - Homίtriv^], An[G]®R V)).

Here k[G\®kV (resp.^[G]®^F) is endowed with a right k[B] (resp. A%[B])-
comodule structure via the right k[B] (resp. ^4#[B])-comodule structure on k[G]
(resp. Aft[G\) and Horn is taken in the category of right k[B] (resp. A%[G])-
comodules. Then the left k[G] (resp. ^[G])-comodules structure on k[G])
induces a left k[G] (resp. yl^[G])-comodule structure on Ind(F) (resp. Ind^(Fr)).
Hence Ind (resp. Ind^) is a left exact functor from the category of right k[B]
(resp. ^[S])-comodules to that of left k[G] (resp. ^[G])-comodules. We
denote by R* Irίd(resρ. i?1' Ind#) its right derived functors.

By the Peter-Weyl theorem for k[G] and by (2.3.1) we have

Ind(F) = θλβLβnp++ Hom(triv,[i?], L°(X)®k

, L\X)®k V)®kL°(X)* ,

], L(\)®R Γ)®^L(λ)* ,

V)®RL(\)* ,

where L°(X)=k®R L(X). Hence we have

(3.2.3) # Ind(V) = θ λ e ^ π p + + E x t ^ t r i v ^ , L\X)®k V)®k L°(λ)* ,

(3.2.4) R lnάt{V)= θ λ e ^ n p + + E x t ^ t r i v ^ , L(X)®R V)®RL(λ)* .

For / iGi G we denote by ςμ: Ufι(b)-+R the i?-algebra homomorphism given
by £μ.(t)=ξμ(t) for ί e f and |μ(g f.)=0 for ί = l , - , /. It is seen that the one di-
mensional left t/^(b)-module induced by tμ. comes from a one dimensional right

Rμ. Set kμ=

Proposition 3.2.1. For μ^LG the left A^G\-comodule RiInd^(Rμ) is free
of finite rank as an R-module and we have
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as a left k[G]-comodule.

Proof. Set F(λ, μ)=L(X)®RRμ. and F°(λ, μ) = L°(X)®kkμ. By (3.2.3)

and (3.2.4) it is sufficient to show that Exit1^ /^(triv^ /̂ x, V(X, μ)) is a free Λ-

module of rank dim^Ext^/^triv^x, F°(λ, μ)). By the argument in the proof

of Lemma 1.2.1 we have

(3.2.5) Ext^ ( B )(triv^ ( 6 ), V\\ μ)) = E x t ^ t r i v ^ , V\\, μ))

Since £7#(b) is noetherian, the i?-module Ext^ /^(triv^ /Bx, F(λ, /̂ )) is finitely

generated, and hence the exact sequence

iv, F(λ, μ)) > Ext^(b)(triv, F(λ, μ)) -> Ext^(b)(triv, F°(λ, μ))

implies that Ext^ ( B )(triv^ ( b ), F(λ, /.)) = 0 if Ext^^triv^x, Γ°(λ, ^)) = 0.

Assume that Ext^^triv^x, F°(λ, μ))Φ0. By the Borel-Weil-Bott theorem

for k[G] there exists at most one such / for each λ, μ. Hence the natural i?-

homomorphism

, μ)) > Ext^(B)(triv, F(λ, μ))

is injective and we have

Ext^ { b ) (triv, V(X, μ))/n Ext^ ( b ) (triv, V(X, μ)) = Ext'u ( b )(triv, V°(X, μ)).

This proves the assertion. •

Appendix

In [3] Drinfeld has given an explicit description of the quantum group

Aft[SLn] by generators and relations. Since [3] contains no proof, we will give

a proof here.

Set q=efι/2. The quantum algebra £/#(gIn) is an i?-algebra ^-adically gene-

rated by the elements hv •••, hn, el9 •••, eM_l9fv •••,/»-! satisfying the following

fundamental relations:

(A.1) hihj^hjh;,

(A.2) h^-eihi = e{,

(A.3) A**, -i—«, - A = -ei-i,

(A.4) htβj-ejhi = 0 (j'Φi, j - 1 ) ,

(A.5) A,/,-/A = -fi,

(A.6) Aι/ι-i-/w*ι=/ι-i»
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(A.7) A,Λ-/A = 0 O'

sin

(A.9) «? β y _ ( ? + ί - i ) β / ί y ί j + β i β f = 0 (I i-j | = 1),

(A. 10) «,«, = «,«, ( | i - ; | £ 2 ) ,

(A.11) fVi-iq+q-'WMfjβ-O (\i-j\ = 1),

/ , / ; = Λ /, (
Then £/#(§!„) is naturally identified with the Λ-adic closure of the i?-subalgebra

of U-fi(Qln) generated by ίf =Af — h i + v eh f{ ( ί = l , •••, w—1), and the topological

Hopf algebra structure of C/ (̂δIΛ) is extended to that of £/#(βIΛ) by Δ(Λ, ) =

A..01 + 10A,., £(A, ) = 0 , S(Aί) = -A |. (see [9]).

Define an i?-algebra homomorphism p: Uft(Qίn)-+Mn(R) by ρ(h,) = Eiti —

£, + ι > i + 1 , p(c,)=£,,,+ 1, p(fi)=Ei+ui, where £,.,,-GM,,(i?) is the matrix whose (r, ί)-

entry is δirδjs. Let /3oeί7^(gIΛ)* and p ί ; Gί7^(8lB)* be the matrix coefficients

of p. They are elements of the Hopf algebras Un(Qlβ)° and C/*(βI.)° (ί7Λ(gϊΛ)°

is defined similarly). We see by a direct calculation that

(A. 14) f>ijfirj = qfirjfiij

(A.15) /3,^ f s = ^ r s / 3 ί y (* < r, j

(A.16) kjfir.-fir.hj = (q-q~l)fii.firj ( » < ' „ / < * ) •

Since /o/; is the image of /5t; under the natural algebra homomorphism

ί/*(βl.)°, we have

jpis = qpiSpij U<s)>

(A. 18) p f 7 p r > = qprJ Pij (i < r),

(A. 19) pfj Prs = prs Pij (i <r,j>s),

(A.20) pijPrs-prsPij = {q-q~ι)ρisptj

It is also checked directly that

Σ (~^)/(ίrV

where @Λ is the symmetric group and l(σ) for σEz&n is the number of the

elements of the set {(i, j) \ i<jy σ(i)>σ(j)}.
Our purpose is to give a proof of the following:

Proposition A.I (Drinfeld [3]). The R-algebra At[SLn] is generated by

the elements ptj (ί,j=\i •••Jτz) satisfying the fundamental relations (A. 17), •• ,(A.21).
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Let C be the quotient of Rζxij\i3j=ly •••, ri) by the two-sided ideal gener-
ated by

ϋ<s)>

where Rζxij\i,j=ly - , « ) is the tensor algebra of the free 2?-module with basis

ixij\i,j=l, — , Λ } .

Lemma A.2. (i) C is a free R-module with basis

(ii) C w an integral domain; i.e., if f, g are elements of C satisfying fg=0,
we have f=0 or g=0.

Proof, (i) It is easily checked that the i?-module C is generated by the
elements

xatf x\f - x\\n xa

2f xa2%n Xu7 (au e Z^).

Considering the natural algebra homomorphism C-> U^(QΪn)° (Xijt-*fiij), it is
enough to show that the elements

fi\ιβ& - fi'ύΓβiΫ - β\Y - Λi ef/^BlJ* (au^Zto)

are linearly independent over i?. This follows from the facts that t/^(glw)* is
a torsion free J?-module and that the elements

βlΫΔW - ίίi^Sf - βlV - ΛΓ mod « ( f l ^ Z i . )

of C/^(gIn)*/^ί^(8Ϊn)*— ^(βϊ»)* a r e linearly independent over &.

(ii) This follows from (i) and the fact that C/fίC is an integral domain. •

Set

ψ = Σ ( —?)l(σ)Λ?iσ(l)Λ?2σ(2)— ^ σ ( ) —

?>0= Σ Γ

where k[y{j] is the polynomial ring with variables yi} (i,j=ly •••, w). We
have natural identifications Λ[ίSLM]=Λ[jyo ]/(9)0) and ^®/? C = ^[yty]. Let C^
(resp. Afi[SLn]p> resp. ^[j,y]^, resp. k[SLn]p) be the linear span in C (resp.
-4ft[SLn], resp k[yu], resp. ΛfSLJ) of the mononials in x{j (resp. p t ; , resp. yijy

resp. j l 7 mod φ°) of degree^^).
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Lemma A 3 (i) Cp is a free R-module of rank=dim k[y{j]p.

(ii) Cp_nφ is a free R-module of rank=dim k[yij\p-n

(iii) dim {k®R (Cp/Cp_nφ))=dim fc^^-dim k\yu]p.H.

(iv) Afi[SLn]p is a free R-dodule of rank^dim ^[ y y]̂ —dim

Proof. The statements (i), (ii), (iii) are clear from Lemma A.2. Let us
show (iv). Since A fi[SLn]p is a finitely generated ϋ-submodule of the free i?-
module A-ft[SLn], it is a free i?-module of finite rank. Hence the surjectivity
of che ^-linear map

implies that

= dim (At[SLn]p)lfiAn[SLH]p)

^ dim k[SLn]p

- dim k[yu]p-dim k[yu]^n D

Proof of Proposition A.I. We have to show that the natural algebra homo-
morphism CjCφC-^A^l[SL^\ (Xij^Pa) is an isomorphism. Since this is
surjective by Lemma 2.3.1, it is sufficient to show that the ϋ-homomorphism
Cp/(CφC Π Cp) -* Afι[SLn] is injective for each^>. Therefore it suffices to prove
that the surjective ϋ-homomorphism Cp\Cp_nφ-> Afι[SLn]p is an isomorphism.
This follows from Lemma A.3. •
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