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0. Introduction

In [2] and [4] Drinfeld and Jimbo independently noticed that there exists
an algebraic object behind the theory of the quantum Yang-Baxter equation.
This is the quantum algebra, which is a quantization of the enveloping algebra
U(g) of a finite dimensional semisimple Lie algebra g. Their formulations,
however, are slightly different; Drinfeld’s Ux(g) is an algebra over the formal
power series ring k[[%]], and Jimbo’s U, (g) is an algebra over the rational fun-
ction field k(¢"?), where k is a field of characteristic zero. The indeterminates
% and q are related by g¥2=eh/*.

One of the purposes of this paper is to give a counter part for Uy(g) of the
results of Lusztig [6] and Rosso [7] concerning finite diemnsional U (g)-modules,
by fully using the advantage that Uy(g) is a topologically free k[[#]]-module
satisfying Uy(g) |#=0== U(g) (the indeterminate 7 can be directly specialized to 0).

Let P (resp. P**) be the set of integral (resp. dominant integral) weights.
As in the case for U(g) and U,(g) we can construct a “finite dimensional highest
weight module” L(\) for A e P**. Itis a Ug(g)-module which ‘is free of finite
rank over R=E[[#]] such that L(\)|z—¢ is isomorphic to the finite dimensional
irreducible U(g)-module with highest weight A. Let 4 be the category of
Uj(g)-modules which are free of finite rank over R. A Up(g)-module in 1 is
said to be A-irreducible if it has no nontrivial quotients which belong to 4.

Theorem A. (i) Any Uy(g)-module in A is a direct sum of A-irredu-
cible Uz(g)-modules.

(i) A Up(g)-module in A is A-irreducible if and only if it is isomorphic
to L(\) for some n& P*+.

Let G be a connected split semisimple algebraic group defined over k with
Lie(G)=g. Assume that G is simply connected for simplicity. Let A3[G]
be the “dual” Hopf algebra of Up(g) (see Section 2 below). Since it can be
regarded as a quantization of the coordinate algebra k[G] of G, we call it the
quantum group (see Drinfeld [3], Woronowicz [10]). We have the following
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analogue of the Peter-Weyl theorem:

Theorem B. The matirx coefficients of L(\) for N&P** form a free R-
basis of Ay[G]. Hence we have an isomorphism

Gl =Drep +(LVBL(V¥)
of (Un(g), Un(@))-bimodules.

Let B be a Borel subgroup of G and let R[B] be its coordinate algebra.
We have an induction functor Ind from the category of k[B]-comodules to that
of k[G]-comodules. We can define a quantization 43[B] of k[B] as a quotient
Hopf algebra of Az[G] and the induction functor Indy from the category of
Ap[B]-comodules to that of 43[G]-comodules is similarly defined. For y&P let
Ry (resp. ku) be the one dimensional Ay[B] (resp. k[B])-comodule correspond-
ing to u. The following theorem implies that the analouge of the Borel-Weil-
Bott theorem holds for quantum groups.

Theorem C. For p &P the Ay[Gl-comodule R'Inds(R,) is a free R-
module and the k[G]-comodule RQ R’ Indy(Ry) is isomorphic to R Ind(ku), where
R’ denotes the right derived functors.

1. Irreducible Highest Weight Modules

1.1. Let g be a finite dimensional split semisimple Lie algebra over a field
k of characteristic zero. Let A=(a;)g; ;s; be the Cartan matrix of g and
choose positive integres d,, -+, d; satisfying d;a,;=d;a;;. 'The quantum algebra
Uy(g) is the associative algebra over the formal power series ring R=k[[#]] with
1, which is #-adically generated by 3/ elements ¢, e¢;, f; (i=1, -+, ) satisfying
the following fundamental relations:

(111) titi:titi (2:]: 1’“')l),
(1'1'2) tiei—efti:diaijej (1,] = 17 "ty l) ’
(113) tffi_fit!' = —diaijfj (l:] = 19 R l) ’
1 s SR g
(114 alitien =% aap )
i " 1‘—11,-} 1mg.,— . .
(1.15) s (=1 [ ] drume e =0 (%)),
m=0 m '
1-a;; - l—q'.. o . o
(1.16) s (1 [] preisr =0 G,
where ¢,=exp (#d;/2)e R* (i=1, -+, ]), and
n| — II7-:(9"—¢™")
- >m=>
[m] @ —q) e —g (=m0
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(Drinfeld [2], Jimbo [4]).
Let N* (resp. N7, resp. T') be the subalgebra of Uy(g) generated by e,, +--, ¢,
(resp. fy, =+ f1, TESP. 1y, *++, 1) and let Uj(g) be the subalgebra generated by N+,
N~, T, where barring denotes the %-adic closure.

Proposition 1.1.1 ([9], see also [2]). (i) N* (resp. N~) is a free R-module,
and the relation (1.1.5) (resp. (1.1.6)) is a fundamental relation among the genera-

tors e, -+, e, (resp, fi, ==+, fi) of N* (resp. N~).

(i) T'is naturally isomorphic to the polynomial ring RI[t, ---,t,], and the
inclusion T T is the fi-adic completion.

(iil) We have the following isomorphism of R-modules :

(1.1.7) N-QTQN*=Ulg) (4Q@vQw—>uvw).
(iv) The inclusion U%(g)= Ux(g) is the k-adic completion.

By [8] we see that the k-algebra kQj Uj(g) is naturally isomorphic to the
enveloping algebra U(g) of g, where the ring homomorphism R—k is given by
fi—0. The natural Hopf algebra structure on U(g) lifts to the topological Hopf
algebra structure on Up(g) given by the following:

(1.1.8) Alt) =t,Q1+1Qt;,  (i=1,-,1),
(1.1.9) A(e;) = e;Qexp(—ht;[4)+exp (at;/H)Qe;  (1=1,-,1),
(L110)  A(f) = fi®exp(—ht;[4)+exp(it;/H)Qf;  (i=1,-,1),

(1.1.11) )= &) =&f)=0 (=11),
(11.12) St)=—t,  (i=1,-1),
(1.1.13) S(e))=—qi'e; (G=1,--1),
(1.1.14) S(f) = —a1; (=11,

where A, & S are the coproduct, the counit and the antipode, respectively
(see [2], [4]).

Lemma 1.1.2. Uy(g) is a noetherian ring; i.e., the ascending chain condi-
tions for left and right ideals are satisfied.

Proof. It is known that the enveloping algebra U(g) is a noetherian ring
and by Proposition 1.1.1 we have

Un(g) = lim Ux(g)/E"Un(8) , #"Un(8)/h""' Un(8) = Un(8)/kUxs(8) = U(g) .

Hence the assertion is proved similarly to the well known fact that the formal
power series ring over a noetherian ring is noetherian. []

Let t (resp. t,) be the R-submodule (resp. k-subspace) of 7' generated by
t, +++, t,. By Proposition 1.1.1 {f,, -+, #;} is a basis of the k-vector space 1, and
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we have t=R®,1,. Sett*=Homg(t, R) and 1 =Hom(t, k). Via the ring
homomorphisms k< R—>k we have:

t* = RQ, t¥ & =kQpt*.

We will identify t¥ with a subspace of t* and the natural homomorphism t* —t§
is denoted by A~ A% We will also identify t, (=k® t) with a split Cartan sub-
algebra of g. We define o, t§ (i=1, -+, l) by a,(t;)=d;a;;. Then {a,, ---, o}
is a set of simple roots of the root system A of (g, ). We denote the set of
positive roots by A*. Set

(1.1.15) 0= ®i.1 Za;,

(1.1.16) Ot = @ty Zpa;,

(1.1.17) P = ettt \2jat)eZ (=1},
(1.1.18) P = Detf I N2tjait) EZs (=1, -, 1)} .

We denote by W the Weyl group of (g, t,). It is a finite subgroup of GL(t,)
generated by the reflections s; (i=1, -+, ) given by

si(t) = 1200,
== et).

The Z-lattices P, Q in t§ are preserved under the contragredient action of
W on t¥.

1.2. Let A be the category of Uz(g)-modules which are free of finite
rank as R-modules. This is not an abelian category but an exact category.

Let M be a Up(g)-module in A. A Uy(g)-submodule M, of M is called a
strict submodule if M/M, belongs to A. A non-zero Uz(g)-module in A is
said to be A-irreducible if it does not contain non-zero proper strict sub-
modules.

Lemma 1.2.1. If M,, M, are Uy(g)-modules in A, we have
Ext‘Uﬁ(g)(Ml, M,)=0

Proof. By the exact sequence:

/)
0— M,—— M, - M,/iM, — 0

of Uy(g)-modules we have:

V3
Ext}]ﬁ(g)(Ml, MZ) —_—> Ext}]h(g) (MD Mz) - Ext}]ﬁ(g) (Ml’ Mz/hMg) (exact) .
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Since Uy(g) is a noetherian ring, we see that Ext},h(g)(Ml, M,) is a finitely gen-
erated R-module. Thus it is sufficient to show ExtIUh(g)(M‘, M,/AM,)=0. By

the exact sequence:

)
0 — Un(g) —> Ux(g) = U(g) > 0,
we have
M\EM, =0
A CORIE i

Therefore, by the spectral sequence:
E = Extii,(g)(Torgfh@( U(g), My), My[fiMy) = Extij (M, My[hM,)
we have

Exty oMy, MafhM;) = Extyy(Mi/AM:, My/RMy) .

The right-hand side is zero since any finite dimensional U(g)-module is com-
pletely reducible. We are done. []

Corollary 1.2.2. Any Ujy(g)-module in A is a direct sum of A-irreducible
Uy(g)-modules.

1.3. For ret* let &,: T—>_12 be the unique algebra homomorphism satisfy-
ing E\(£)=\(¢) for tet. For a T-module M and A &t* we set

M, = {meM|t-m = E@&)m tcT)} .
We define an ordering on t* by
A=y if and only if A—peQ*.

For A&t* we define a Uj(g)-module M(\), called the Verma module with
highest weight A, by

(131) M) = Uf@)/(3 Uf(@)ect Us(a) ker &) = U@y,

where m, is the canonical generator corresponding to the class of 1. - By Proposi-
tion 1.1.1 we have M(\)=@ugn M(X)u and each M(\)u is a free R-module of
finite rank. Moreover we have the character formula:

B e
(1.3.2) é})‘(rankRM(x),‘)e = _————Huew(l—e'“) .

Lemma 1.3.1. If K is a Uj(g)-submodule of M(X\), we have :
K = @uar (K N M(N)w) -
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Proof. Assume that we have m=33}.,m, € K with m; € M(\)u,, p;Fp;
(#==7). We will show that each m; is an element of K by induction on n. The
case n=1 being trivial, we assume that #=2 and the assertion holds for n—1.
Since ui, ---, u are mutually different elements of t§, there exists some t&
k[t,, -+, t;]c T satisfying Eu(t)=--=E&u_ (t)=0 and Eug(t)=1. Then we have
Eu(t)=ha; (=1, -,n—1) and &, (t)=1+HAa, for some a;, -:-,a,ER. Hence we
have

(I+-haym—t-m = 33 (1+h(a,—a))mEK .

Since 1-+7(a,—a;) is an invertible element of R, we have m;eK (=1, :--,n—1)
and hence m,eK. []

Let K(\) be the sum of all Uj(g)-submodules of M(\) contained in
DBucr M(A)u, and set

(1.3.3) L(A) = M(V)/KQ) .

Lemma 1.3.2. (i) We have L(\)=Pug L(N\)n and each L(\)u is a free
R-module of finite rank.

(i) If K is a proper U(g)-submodule of L(\) such that L(\)/K is a torsion
free R-module, we have K=0.

Proof. (i) Set K'={meM(\)|ime K(\)}. Then K'is a Uj(g)-submodule
satisfying K(A\)CK'C @ucx M(A)p. Hence we have K'=K(\) and L(\) is a
torsion free R-module. Therefore the assertion follows from Lemma 1.3.1.

(i) Let K, be a proper U(g)-submodule of M(\) such that M(\)/K, is a
torsion free R-module. By Lemma 1.3.1 we have K,=®ug, (M(A\)u N K,;) and
hence M(A)u/M(X)uN K, is a torsion free R-module for each u<\. Since M(\),
is a free R-module of rank 1, we have M(\), N K;=M(\), or 0. If M(\),NK,=
M(M\),, then K, contains the generator m,, and hence we have K;=M(\), which
contradicts with the assumption. Therefore we have M(A),N K,=0 and hence
K,cK(\). The assertion is proved. []

We define petf by p(2t;/a;(t,))=1 (=1, --+,I). For we W set

l('w) = min {le = Sipy " Siy for some Iy, *0s iﬁe[l’ l]} )

Lemma 1.3.3 ([6]). (i) L(\) is finitely generated as an R-module if and
only if \EP**.
(if) For x€P**, kQg L(\) is an irreducible U(g)-module and we have

_— Ewe (— 1)1("’) ew(A+p)_p
(1.3.4) E}\(rankk L))" = I'fde“(l gy
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(i) If NEP**, any Uj(g)-submodule of L(\) is of the form K"L(\) for
some non-negative integer n.

Proof. By the arguments of [6] we see that L(A) is integrable (i.e., the
elements ¢;, f; (1=1, ---, I) act on L(\) locally nilpotently) if and only if A& P**.
If L(\) is finitely generated as an R-module, then it is integrable and hence we
have A€P**. If A€P**, then L(\) is integrable, and hence k@®pz L(M) is
an integrable highest weight module of U(g) with highest weight A. Thus
k@g L(\) is the (finite dimensional) irreducible U(g)-module with highest weight
M. Therefore L(\) is finitely generated as an R-module, and Weyl’s character
formula implies (1.3.4). The statements (i) and (ii) are proved. Let us show
(iii). Let x&P** and let K be a non zero Uj(g)-submodule of L(A). Take a
non-negative integer z such that K C%"L(\) and K ¢ A" 'L(A). Then we have
K=#"K, for some U}j(g)-submodule K, of L(\). Since (K,+#AL(\))/AL(\) is a
non-zero U(g)-submodule of the irreducible U(g)-module L(\)/ZL(A)=kQ z L(\),
we have L(A)=K,+%L(\). Since L(\) is a finitely generated R-module, we
have K,=L(\), and hence K=#"L(\). [

For A& P** the action of U(g) on L(\) uniquely lifts to that of Uz(g) on
L(\). In the following we regard L(A) for A€ P** as a Uy(g)-module.

Corollary 1.3.4. L(\) is an A-irreducible Uy(g)-module for x& P*+.

2. Quantum Groups

2.1. Define a (U(g), U(g))-bimodule structure on U(g)*=Hom, (U(g), k)
by

((wf )W) = fluguy)  (fEU(Q)*, u, uu,€ U(g))

and set
U(g)° = {f € U(g)*|dim, (U(g)fU(g)) <o} .

It is an elementary fact concerning Hopf algebras that U(g)° is also endowed
with a Hopf algebra structure whose product, coproduct, unit, counit are
induced by the coproduct, the product, the counit, the unit of U(g), respecti-
vely.

Set Ux(g)*=Homyg (Us(g), R). By Proposition 1.1.1. we see that Up(g) is
the f-adic completion of a free R-submodule M=N"QTQN*. Hence we
have Up(g)* =Homg (M, R)=(a product of rank 1 free R-modules). Therefore
any R-submodule of Upz(g)* is torsion free and separated. Define a (Uy(g),
Uy(g))-bimodule structure on Uz(g)* by

(uy+ fup) () = flupremy) (f € Un(a)*, u, u, u,€Ux(g)),

and set
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Us(8)° = {f = Un(8)*| Usn(8)fUx(g) is a finitely generated R-module}.

For a Uj(g)-module V in A we have a natural right Uz(g)-module structure
on V*=Homg(V, R) by

v¥eu, v =<v¥ urv) (vFeV* eV, ucUsg)),

where ¢ , > is the natural pairing. Define ®@;,: VQV*— Uy(g)* by (Dy(vQ
v*))(w)=<v*, u-v). Then it is easily seen that ®, is a homomorphism of
(Un(@), Us(g))-bimodules and that Uy(g)° is the sum of Image (®y) for Ux(g)-
modules V in A (i.e., the R-module Uy(g)° is generated by the matrix coeffici-

ents of Uz(g)-modules in f). Moreover the topological Hopf algebra structure on
Us(g) defined by (1.1.8), -++, (1.1.14) induces a Hopf algebra structure on Uy(g)°.

2.2. The purpose of this subsection is to prove the following:

Proposition 2.2.1. For A& P** the homomorphism D,y is injective and
we have

Us(g)° = Parep++ Image Dy, .

Since Uy(g) is topologically free and since Uy(g)/2Ux(g) = U(g), we have
Un(g)*/hUn(g)*=U(g)* We denote the natural homomorphism Up(g)*— U(g)*
by f—f. We first show the following:

Lemma 2.2.2. For A& P** the homomorphism @, s injective and we have

> Image @, = Diept+ Image @y, .

Aeptt

Proof. For AeP** let {f}|1=4, j=<rank L(A)} be the set of matrix
coefficients of L(\) with respect to some R-basis of L(A). It is sufficient to show
that

{f}iIveP**, 1<i, j<rank L(A)}

is linearly independent over R. The set
{fYIneP+*, 1<i, j <rank L(\)}

is linearly independent over k, since it consists of the matrix coeficients of
irreducible U(g)-modules. Therefore the assertion follows from the fact that
Us(g)* is torsion free. [

Set V(A\)=L(A)QL(A)* for x&P*+.
Lemma 2.2.3. Let \,, -, N, be mutually different elements in P+ and let

2jt Diar V() = V(\))
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be the projection. If V is a (Ux(g), Un(a))-submodule of Pt.. V(N;) such that
2;(V)=0 for each j, there exist non-negative integers m,, ---,m, satisfying V=
T BN V().

Proof. Set U=@®}., V(\;). Since p;(V)is a non zero (Uz(g), Us(g))-sub-
module of V(A;) and since V(\;)/EV(N\;) is an irreducible (U(g), U(g))-bimodule,
the argument in the proof of Lemma 1.3.3 (iii) implies that there exists some
non-negative integer m; such that p(V)=#"V(\;). Let F: U—U be the
(Un(g), Us(g))-homomorphism defined by

F(3o) = 3%, (0:EV00).

Then there exist a (Up(g), Ux(g))-submodule V, of @%t.; V(A;) such that
FEWV)=V and p(V,)=V(n;). Since V(\)/EV(N;) (=1, -+, n) are mutually
non-isomorphic (U(g), U(g))-bimodules, we see that (V,+#U)/AU=UJ&U, and
hence U=V ,+#U. Since U is a finitely generated R-module we have V,=U
and hence V=F(V))=@®t.. £ V(\;). [

Set D=,cp++ Image D).

Lemma 2.24. (i) Uz(g)°=D-+#%"Ux(8)° for any n.
(i) A"D=A"Us(g) N D for any n.

Proof. (i) Let f€Us(g)°. Then we have f&U(g)° and hence there
exists some fiED such that f=f,. Therefore we have f=f,+%f, for some
f2€Ux(g)*. Since f and f, are elements of Uz(g)° and since Ug(g)* is torsion
free, we have f,& Us(g)°. Thus we have

Un(8)° = D+hUx(8)° = D+A(D+hUx())° = -+ = D+H"Us(g)° -

(i) Let f be an element of U(g)® such that #"f€D. Set V= Ux(g)fUxn(g)-
Let {v,, --+,v,} be an R-basis of V and let {o¥, -+, v}} be the dual basis of
V*. Regarding V as a left Uy(g)-module we have

v; = ﬁ‘. 2;(1)®y(v;@vF) €Image @y .

Especially we have f €Image ®,. Since #"V is a (Uz(g), Un(g))-submodule of
D, we see from Lemma 2.2.3 that

V=kV = @i A"(LMA)@LM)*) = Bi-1 L) RL(N:)*

for some A, -+, \,EP** and m,, -+, m,eZ,,. Hence we have f &Image ®,=
;_1 Image ¢L()".)CD. D

Proof of Proposition 2.2.1. By Lemma 2.2.2 it is sufficient to show D=
Ux(g)°. By Lemma 2.2.4 the natural R-homomorphism
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bD(= lim D/A"D) — (Ux(g)°)"(= lim Ux(g)°/#"Un(8))°)

is an isomorphism. Therefore we can regard Uz(g)° as an R-submodule of D
containing D. Since the (Uy(g), Us(g))-bimodule structures on D and Usz(g)°
uniquely lift to the same (Ux(g), Ux(g))-bimodule structure on D, it suffices to
prove that if Vis a (Ux(g), Us(g))-submodule of (@,ep++ V(N))" which is finitely
generated over R, then V is contained in @Pyep++ V(N). Let gu: (Brep++ VA"
— V(u) be the unique extention of the projection @pep++ V(N)—V(n). We
have only to show that gu(V)=0 except for finitely many p=P**. Assume that
there exists an infinite sequence u,, u,, -+, of mutually different elements in P**
such that gu (V)=0. Let7,: (Brep++ V(N))"— D71 V(n;) be the unique exten-
sion of the projection. By Lemma 2.2.3 we have 7,(V)=®%.. A" V(u;) for some
non-negative integers m,, *-+,m,. Therefore we have rank V' =rankr,(V)=n for
any n. This contradicts with the assumption. We are done. []

Corollary 2.2.5. Any A-irreducible Uyz(g)-module is isomorphic to L(\) for
some AEP*,

Proof. Let V be an A-irreducible Up(g)-module. Take a non-zero
element v* of VV'* and define F: V— U(g)° by (F(v))(u)=<v*, u+v>. Then F
is a2 non-zero homomorphism of left Uz(g)-modules. By Proposition 2.3.1 the
left Uz(g)-module Uy(g)° is a direct sum of L(A) for n&P**. Considering the
projections we see that there exists a non zero Uyz(g)-homomorphism V' —L(\)
for some A& P**. Itis seen by Lemma 1.3.3 (iii) that L(X\) is a quotient of V.
Since V is A-irreducible, we have V=L(\). [J

2.3. Let G be a connected split semisimple algebraic group defined over
k such that the Lie algebra consisting of k-rational points of Lie (G) coincides
with g. Then the coordinate algebra k[G] is naturally endowed witk a Hopf
algebra structure and we have a natural injective Hopf algebra homomorphism
from k[G]— U(g)° via the pairing

frw=@f)1)  (fER[G], ueU)),

where d, is the left invariant differential operator on G corresponding to u.
The image of this homomorphism is described as follows. Let L; be the set
of elements of 1§ consisting of weights of finite dimensional U(g)-modules
coming from G-modules. Lg is a Z-lattice satisfying QCL;CP. Then the
image of k[G]—Uy(g)° is spanned by the matrix coeflicients of finite dimen-
sional irreducible U(g)-modules with highest weight in Ly N P**.

Set

(2.3.1) A#[G]: = Prergnp++ Image Oy, .
It is easily checked that A;[G] is a Hopf subalgebra of Ug(g)°. We call this
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Hopf algebra the quantum group associated to G (see [3], [10]).

Let A° be the category of right Upy(g)°-comodules which are free of finite
rank over R and let A be the category of right A3[G]-comodules which belong
to A° as right Up(g)°-comodules. Then the natural functor A°— A gives an
equivalence of categories A°==.A4. Moreover the category .A; is equivalent to
the full subcategory of 4 consisting of Uz(g)-modules in .4 whose A-irreducible
factors are of the form L(\) for some AL, N P**.

Lemma 2.3.1. Let V be a Up(g)-module in A such that the Z-submodule
of t* generated by the weights of V coincides with L;. Then Ay[G] is generated
by Image @y as an R-algebra.

Proof. Let H be the subalgebra of Az[G] generated by Image ®,. We
see by definition that H is a (Ux(g), Us(g))-submodule of A4[G]. Hence by

Lemma 2.2.3 we have
(2.3.2) H = @jer #"* Image @,

for a subset I" of P** and non-negative inetgers #,. On the other hand we see
by the assumption on V' that the representation G—GL(V[kV) is injective and
hence the k-algebra k[G] (=Au[G]/hAx[G]) is generated by the matrix
coefficients of the G-module V/AV. Therefore we have Ax[G]/hdy[G]=
(H+7%Ax[G])/hA%[G] and hence

(2.3.3) H+7A3[G] = A3[G] .

The assertion follows from (2.3.2) and (2.3.3). [

3. Borel-Weil-Bott Theorem

3.1. Let Uj(b) be the subalgebra of Uj(g) generated by T, N* and let
Ux(b) be its %-adic closure in Ups(g). By Proposition 1.1.1 we have Uj(b)=
T®N* and the inclusion UZ(b)= Us(b) is the #-adic completion. Moreover
we have k@ Up(b) =k®; Uj(b)=U(b), where b is a Borel subalgebra of g.
Define Uy(b)° (< Uy(b)*) similarly to Uy(g)®. Since Uy(b) is a topological Hopf
subalgebra of Uy(g), we also have a natural Hopf algebra structure on Uy(b)°.

Let G be a connected semisimple split algebraic group defined over & with
Lie(G)=g and let B be the Borel subgroup of G corresponding to b. We
denote by F: Ug(g)°— Ux(b)° the natural Hopf algebra homomorphism. Then
A[B]==F(A44[G]) is endowed with a natural Hopf algebra structure and it can
be regarded as a quantization of the coordinate algebra k[B] of B by the
following:

Lemma 3.1.1. A4y[B] is free R-module satisfying kQ p Az[B] = k[B].
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Proof. Tt is easily verified using the results in Section 1 that we have

Ap[B] = (Drers REN®(Dpeo+(V5)¥)
under the identification U§(b)=T@®N*. Hence the assertion follows from the
corresponding fact for 2[B]. [
3.2, Let tirvyp (resp. triva,rs1) be the right E[B] (resp. A4[B])-comodule
given by the unit and let trivU(b) (resp. triv Uh(b)) be the left U(bj (resp. Uz(b))-
module given by the counit. For a right k[B] (resp. As[B])-comodule V' we set

(3.2.1) Ind (V) = Hom(trivysy, R[G1®: V')
(3.2.2) (resp. Ind(V) = Hom(triv,rs1, Aa[G]1®r V) -
Here kK[G]Q,V (resp. Ax[G1Q: V) is endowed with a right k[B] (resp. A4[B])-
comodule structure via the right k[B] (resp. 44[B])-comodule structure on k[G]
(resp. Az[G]) and Hom is taken in the category of right k[B] (resp. Ax[G])-
comodules. Then the left kX[G] (resp. As[G])-comodules structure on k[G])
induces a left kK[G] (resp. A4[G])-comodule structure on Ind (V) (resp. Indz(V)).
Hence Ind (resp. Indy) is a left exact functor from the category of right k[B]
(resp. Ay[B])-comodules to that of left 2[G] (resp. Ax[G])-comodules. We
denote by R’ Ind (resp. R Indy) its right derived functors.

By the Peter-Weyl theorem for k[G] and by (2.3.1) we have

Ind (V') = @arergnp++ Hom (trivygsy, LA ®, V)®, L(V)*,
= Dirergnrt+ HomU(b) (triVU(b)» L'\)®: V)R, L'(V)*,
Indy(V)= DPrezgnp+ Hom (triVAh[Blr LON®x V)®r L(V*,
= Drerenpt+ HomUh(,,) (tfiVUﬁ(B) s LM®r V)®r L(N)*,

where L(A)=kQ®y L(\). Hence we have
(3.2.3) R‘. Ind(V) = @Ae[,anp*‘*‘ EXtiU(b)(triVU(B)’ L%X)@k V)@k LO(X)* ’
(3.2.4‘) Ri IIldh(V)= @AELQH ptt Ethﬁ(b)(trith(f))’ L(x)@k V)@R L(X)* .

For p€L; we denote by E.: Up(b)—R the R-algebra homomorphism given
by é,t(t)=f,..(t) for teT and é,b(e;)=0 for i=1, ---,I. It is seen that the one di-

mensional left Uy(b)-module induced by & comes from a one dimensional right
Aﬂ[B]'COmodule Rp.. Set k‘/,:—k@R Ry,.

Proposition 3.2.1. For p& L, the left Az[G]-comodule R* Indyz(Ry) is free
of finite rank as an R-module and we have

k®p R Inds(Ry) = R’ Ind (k)
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as a left R[G]-comodule.

Proof. Set V(A, p)=L(A\)®r Ru and V°(A, u)=LA)Q®; ku. By (3.2.3)
and (3.2.4) it is sufficient to show that Exitbh(b)(trivuﬂ(b), V(\, n)) is a free R-
module of rank dim, (Ext"U(b)(trivU(b), V°(\, p)). By the argument in the proof
of Lemma 1.2.1 we have

(3.2.5) EXtiUh(b)(trith(b)’ VN, ) = Extyye(trivyg), VoA, w)

Since Up(b) is noetherian, the R-module Extbﬁ(b)(trivUﬁ(b), V(n, p)) is finitely

generated, and hence the exact sequence
. . #i ; ) ; .
Ext’Uﬂ(B)(trlv, V(n, p)) — Ext'Uh(b)(tnv, V(n, p) — EXtUh(b)(th’ VN, )

imphes that Ext’Uh(b)(triVUﬁ(b), V(X, /.L))ZO if Ext'U(b)(triVU(b), Vo(),, ,L))_—_‘O.
Assume that Ext’b(B)(trivU(b), Vo, 1))#+=0. By the Borel-Weil-Bott theorem

for k[G] there exists at most one such ¢ for each A, u. Hence the natural R-
homomorphism

. h {
EXt'Uh(ﬁ)(triV’ V(x‘! /1')) I Extbh(b)(triv’ V()\,, “))

is injective and we have

Extbh(b)( triv, V(\, p))/A Ext"Uh(b)(triv, V(n, w) = Ext"U(b)(triv, Vo, p)) .
This proves the assertion. []

Appendix

In [3] Drinfeld has given an explicit description of the quantum group
A[SL,] by generators and relations. Since [3] contains no proof, we will give
a proof here.

Set g=e"/2, The quantum algebra Up(gl,) is an R-algebra f-adically gene-
rated by the elements Ay, -+, h,, €, ***, €,_1, f1, ***, fa-, satisfying the following
fundamental relations:

(A.1) hihj = h;h;,

(A.2) hie,—e;h;, = e;,

(A.3) hie;,—e; h; = —e;y,
(A4) h;e;—e;h; = 0 (j=*i,j—1),
(A.5) hifi—fihi = =1,

(A~6) hifi—l_fi—lhi :fi-l ’
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(A.7) hifi—fih; =0 (j=+1,1—1),

sinh (A(h,—h,,,)/2
(A.8) e.fi—fie.= 3 (sir(xh‘(h/Z') )2) ,
(A9) elej—(qtq Neejeteel =0 (li—jl=1),
(A.10) ¢;e, = ¢€;¢; (li—y122),
(A.11) Fifi—@+aWfifitfifi=0  (li—jl=1),
(A.12) Lifi=fifi (li—j122).

Then Uy(gl,) is naturally identified with the %-adic closure of the R-subalgebra
of Up(gl,) generated by t,=h,—h;4,, ¢;, f; 1=1, ---,n—1), and the topological
Hopf algebra structure of Uy(8l,) is extended to that of Uy(gl,) by A(k)=
h,Q1+1Qh;, &h;)=0, S(h,)=—h; (see [9]).

Define an R-algebra homomorphism p: Ux(gl,)— M, (R) by p(h)=E; ,—
Eii1 i p(€)=E; ;11, p(f;)=E,4,,;, where E; ;€ M,(R) is the matrix whose (7, 5)-
entry is §,,0;. Let p;;E Us(gl,)* and p;;& Uy(8l,)* be the matrix coefficients
of p. They are elemenis of the Hopf algebras Uz(gl,)° and Uy(3L,)° (Un(gl,)°
is defined similarly). We see by a direct calculation that

(A.13) bijhis = qbisbi;  (7<<9),

(A.14) PijBri = 4Py bij (t<r),

(A.15) Bijhrs = busbi; (<1, j>5),

(A.16) Bijbrs—brsbi; = (q—q bishy; (<7, j<5).

Since p;; is the image of §,; under the natural algebra homomorphism Ug(gl,)°—
Ux(81,)°, we have

(A.17) PiiPis = qpispij  (1<<5),

(A.18) PiiPri = qPripi;  (E<7),

(A.19) PijPrs = PrsPij (E<r,j>9),

(A.20) PijPrs—PrsPi; = (3—q Dpispr; (<1, j<5).

It is also checked directly that

(A.21) 33 (=9 proty) Protw *** Paotw = 1,
sES,

where &, is the symmetric group and /(o) for 0 €&, is the number of the
elements of the set {(7, j) |7 <<j, o(f)>a(j)}.
Our purpose is to give a proof of the following:

Proposition A.1 (Drinfeld [3]). The R-algebra Ay[SL,] is generated by
the elements p;; (i, j=1, -+, n) satisfying the fundamental relations (A.17), ---,(A.21).
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Let C be the quotient of R<x;;|7, j=1, ---, n)> by the two-sided ideal gener-
ated by

x., —gxix;; (J<9),
qx’J !} (i < r) b
Xy Ky Xy Xy i<r,j>5),

xijxrs— rs ij—(q_q )xisxrj (i<7’,j<8),

where R{x;;|7, j=1, --+, n> is the tensor algebra of the free R-module with basis
{xijli)jzl’ "ty n}

Lemma A.2. (i) C is a free R-module with basis
a a a a a. a
Rt ARRE o A T D xnﬁ"lagjezgo} .

(i1) C is an integral domain; i.e., if f, g are elements of C satisfying fg=0,
we have f=0 or g=0.

Proof. (i) It is easily checked that the R-module C is generated by the
elements

a a a a a a
X1 XF o X1 x0T e XG5 e X (a;€2Z5) .

Considering the natural algebra homomorphism C— Uy(gl,)°® (x;;+4;)), it is
enough to show that the elements

a"pam . “upﬁl azn vee ﬁ;',‘,"e U‘h(grn)* (aijezgo)

are linearly independent over R. This follows from the facts that Up(gl,)* is
a torsion free R-module and that the elements

PILBIE - I poE - P32 - pur mod B (a;;,E Zy)

of Up(gl,)*/hUs(gl,)*=U(gl,)* are linearly independent over k.
(it) This follows from (i) and the fact that C/AC is an integral domain. []

Set
? = 3 (=9 %o X2em) * Xnetm— 1EC,
o6,
EE (—1)ie )Y1otn Voo * *Vaotn— 1ER[Y;;],
ce8,

where K[y;;] is the polynomial ring with variables y;; (7, j=1, -, n). We
have natural identifications K[SL,]=k[y;;]/(#°) and k@ C=k[y;;]. Let C,
(resp. A[SL,],, resp.k[y;;],, resp.k[SL,],) be the linear span in C (resp.
A[SL,], resp k[y,;], resp. R[SL,]) of the mononials in x;; (resp. p;;, resp. ¥;;,
resp. ¥;; mod @) of degree= p.
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Lemma A3. (i) C, is a free R-module of rank=dim E[y;;],.

(i) C,_, is a free R-module of rank=dim k[ y;;],—,-

(i) dim (k®s (C,/Cyonp)=dim R[y,;],—dim k[yylpor

(iv) A[SL,], is a free R-dodule of rank=dim k[y;;],—dim k[y;;],- s

Proof. The statements (i), (ii), (iil) are clear frem Lemma A.2. Let us
show (iv). Since A4[SL,], is a finitely generated R-submodule of the free R-
module Az[SL,], it is a free R-module of finite rank. Hence the surjectivity
of che k-linear map

Ap[SL,,/AAA[SL,], = A4[SL,1,/(A4[SL,], N AA[SL,])=k[SL,],

implies that

rank Ax[SL,], = dim (Ax[SL,],)/AAn[SL,],)
> dim [SL,],
= dim k[y;;],—dim &[y;;],-» O

Proof of Proposition A.1. We have to show that the natural algebra homo-
morphism C/C@C—> Ay/[SL,] (x;;/ p;;) is an isomorphism. Since this is
surjective by Lemma 2.3.1, it is sufficient to show that the R-homomorphism
C,/(CoC N C,)— Ax[SL,] is injective for each p. Therefore it suffices to prove
that the surjective R-homomorphism C,/C,_,@—> As[SL,], is an isomorphism.
This follows from Lemma A.3. [

References

[1] E. Abe: Hopf algebras, Cambridge Univ. Press, Cambridge-New York, 1980.

[21 V.G. Drinfeld: Hopf algebras and the quantum Yang-Baxter equation, Soviet
Math. Dokl. 32 (1985), 254-258.

[31 V.G. Drinfeld: Quantum groups, in “Proc. ICM, Berkeley, 1986, Amer. Math.
Soc., 1988.

[4] M. Jimbo: A g-difference analogue of U(g) and the Yang-Baxter equation, Lett.
Math. Phys. 10 (1985), 63-69.

[5] M. Jimbo: A g-analogue of U(gl(N+1)), Hecke algebras and the Yang-Baxter
equation, Lett. Math. Phys. 11 (1986), 247-252.

[6] G. Lusztig: Quantum deformations of certain simple modules over enveloping al-
gebras, Adv. in Math. 70 (1988), 237-249.

[7] M. Rosso: Finite dimensional representations of the quantum analog of a complex
simple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593.

[8] J.P. Serre: Algeébres de Lie semi-simples complexes, Benjamin, New York, 1966.

[91 T. Tanisaki: Harish-Chandra isomorphisms for quantum algebras, to appear in
Comm. Math. Phys.

[10] S.L. Woronowicz: Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987),

613-665.



QuatuMm GROUPS 53

Depatrment of Mathematics
Osaka University
Toyonaka 560, Japan








