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固体における電子状態密度を求める

一方法 (Recursion法）

東京大学物性研究所 寺

§1. はじめに

資料

清之

固体物理に於ける理論計算も計算機の発展に伴って、現実の「物」に即していることがますま

す要求されるようになってきた。ここで「物に即する」というのに2つの面がある。 1つは物を

構成する元素の特性を忠実に計算の中に取り入れることであり、 2つめは、物はこれ迄固体論で

理想化されて扱われてきたような完全に周期的なものではなく、表面があり、欠陥があるという

ことを考慮することである。これには、表面とか欠陥に伴った特有の現象があるという積極的な

意味もある。

ここでは一電子近似に基く電子状態の計算を扱うが、その範囲では上の2つの面のうち、第 1

の面は一電子に対するポテンシャルをいかに現実的に選ぶかということになる。一方、第 2の面

はそのポテンシャルの配置の問題である。以下の議論の主題は後者に関わる。

前に述べたように、これ迄の固体論の主な対象は完全結晶であった。教科書を紐解けばまず原

子の規則的な配列の図があり、プロッホの定理の説明があり、いつの間にか得体の知れないK-

空間へと誘い込まれてしまう。ところが、表面や欠陥の問題になると、周期性が破れてK一空間

があまり役に立たなくなることが多い。そこで、それを諦めてしまうと頼れるのは真に実在する

「実空間」でしかない。実空間での原子配列から目を離さないでやっていこうということになる。

さてここで、後述の "recursion法”の創始者の一人である V.Heine がきまって引用す

る黒体幅射のエネルギー分布についての法則に触れておこう。即ち、輻射密度のエネルギー分布

は、容器の大きさが波長にくらべて十分に大きい時は、容器の形状によらないというのである。

このことは勿論電子系の状態のエネルギー分布（状態密度）についてもいえる。このことから次

のように予想する。ある与えられた点での電子密度のエネルギー分布（局所状態密度）は、その

点の周りの適当に大きな領域での環境を正直に考慮してさえおけば、その外の領域の様子にはあ

まり依らずにほぼ正しく求めることができるであろう。実際上の問題としては、外の領域をでき

るだけ上手に近似して、正直に扱わねばならない領域を小さくするか、あるいは正直に扱うべき

領域が大きくても実行可能な計算手段を見つけることである。 recursion法はどちらかといえ

ば後者の試みに属する。
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§2. recursion法の原理

詳しくは文献 1、2を参照していただくことにして、概略を述べておく。先ず、形式的な側面

から始めよう。対象となる系に対して我々はハミルトンニアンHを得たとする。解きたいのは本

質的には

H'Iti = Ei氾 (1) 

なる固有値問題である。大きな系の場合には固有値の分布はほぼ連続であり、 Eiや'l'i自身は小

さな摂動に関しても安定な熾ではない。ところが、状態密度は前節で述べたように安定な量であ

る。しかも、我々が実験と比較したい儲は状態密度と密接に結びついているものが多い。そこで、

～ ～  
問題に応じて波動関数¢ を考え、状態密度の¢ への射影を

゜n(E) =~ 町 o(E-E.)
乙 i 

～ 
ai = < <P I w. > 

O i 

で定義し、 nCE)を求めることにする。

～ 
¢ から出発し、次の漸化式で定義される { <f, }を求める。
o n 

苅(+1= bn+I 1/Jn+I = (H -an)1/Jn -bn I/Jn-1 

く1/JnI凸>=<~ 正 II 1/Jn+I > = 0 

ただし、 ¢。＝菟/bo' ¢_1=0 とする。これから ％，如は

an=<咋IHI¢n>

2 - -b = n く¢n I¢> n 
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となる。¢ は規格化されているが、¢ はそうでな<b がその規格化積分である。 (4)式よりn n n 

bn+l = < <pn+l I H I </Jn> 

が成立することがわかる。さらに又、 (4),(5)より

く</JI </J > =o n m 11、m

く</JIHI </J > =O n m 
(I飢ーnI> 1 の時）

(8) 

(9) 

(10) 

が自動的に満足されることも証明できる。これらのことを物理に焼き直せば、我々は与えられた

系を等価な一次元鎖に変換したことになる。 anは鎖上の格子点nにある原子のエネルギーレベ

ル、 bn+lはnとn+I番目の原子間のとび移り積分とみなすことができる。

このようなプロセスによって固有値方程式は
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CE-a。) b 1 

b I CE -a1) b2 

゜b 2 
ヽ

ヽ = 0 (11) 

CE-an) b n+l 

゜
b n+I (E-a n+I ） 

' 

のように3重対角行列 Ctridiagonal matrix) となる。この固有値、固有ベクトルを求める

方法はよく知られている。しかし、筆者をも含めてこの方面の専門家でない人を念頭に置いて、

文献 2に沿ってもう少し先迄説明しておこう。

～ 
｛｝ ¢ は出発の状態¢ で特長づけられる部分空間を張るベクトルの組をつくる。従ってそのn o 

部分空間内では固有状態 ¥[tiは{</;n}で展開できる。

況=V (Ei) 4 Pm (Ei)<pm (I2) 
m 

{ </Jn}が漸化式(4)を満足することから、 Pmについての次の漸化式が求まる。

bk+iPk+1(E)=(E-ak)p/E) -bkpk_1(E) (13) 

ただし、 P-1= o とし、便宜上 p。=1/b。とする 0 ¥[tiが規格化されていることから

屈 (Ei)=[~{pCEi)} 〕一 1
t t 

が得られる。又、容易に

ai = vCEi) 

であることがわかる。従って(2)は

となる。

-1 
2 

n(E)心〔 2:{pCEi)}〕o(E -Ei) 
i l l 

(14) 

(15) 

(16) 

実際の計算では固有値を求める行列式は適当な次数Nで切ってしまう。その結果得られる固有
N N 

値の組を{E-}'状態密度を nCE)と表わそう。 我々は状態密度そのものにも興味を持つが、

適当な関数f(E)にn(E)を重みとしてかけた積分

f f(E)n(E) dE 

が問題となることが多い。積分をフェルミ・エネルギー迄としておいて、 /CE)=1ならば電子

数であるし、 JCE)=Eならば構造エネルギーとでも呼ばれる量になる。 Nが有限の場合は

パ方CE)nCE)dE
N 

4f(E 
N N 

i-1 i)wi' 
(1り
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N 
W・ 
i 
〔支 {p/Et)}2〕一1
1,-0 

砂h"ぃ‘

となる。

N N 
次に、 p/E)は重み nCE)のもとでの l次直交多項式であり、 E は pCE)の零点であ

N 

ることを示す。そうすれば(l7), (18)はGaussの積分公式であることがわかる。まず (13)の漸化

式より

p1 = CE-a。)/b。bl
P2 = { CE-a。)CE-a1) -b/ } / b,。砧

列=Dk/b。bl……bk

ただし

恥＝

CE-a。) bl 

b1 CE-a1) 

b2 

b2 

゜

゜
CE-ak-2) bk-1 

b k-1 CE-a k-1 ） 

N 
が導かれる。 p/E)は明らかにEのl次多項式であり、 N次で切られた固有値方程式の根 E

は JkCE)の零点であることがわかる。 Pzが直交多項式であることは

～ 
</In= Pn(H) r/1 

N 

゜
=4a.P(E.)'¥. 
" n " 

が成り立つことから

N 

<¢I¢> = 4 Caげ囚E'pmCEt)= f pn(E)pm N 
(E)n CE)dE = o 

n m nm 
i-1 

が直ちに導かれる。

以上は定稽分についてであるが、例えば

E f nCE')dE' 

のような不定積分は大雑把に言えば

(19) 

JCE') = { 
l

o

 

E'< E 

E'> O 

のようにしておけばよい。上記不定積分が求まると n(E) はそれを微分すれば求まるわけであ

る。この辺の工夫についての詳細は文献2を参照されたい。
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このように、一度{ai , bJが求まれば、固有値Efを求め、重みwfを計算して上述のよ
E 

うに fn(E') dE'' n(E)等を求めるのは数学上の決まった手続きになっており、既に数値計

算のプログラムも完成されている。

そこで物理の問題に立ち帰って </Jnの意味、 an' bnの計算の仕方をもう少し具体的に説明し

ておこう。"recursion法”の適用はまだそれ程一般化されていない。そこで、ここでも固体

内の波動関数が原子波動関数の一次結合で表わされ、かつ原子波動関数が規格直交系をなす場合

を扱うことにする。さらに簡単の為に、各原子はただ一つの原子軌道を持つとし、それを格子点

tによって指定し (fjtと表わす。 (3)式での匂は例えば注目する原子（それを t= 0 とする。）

の原子軌道 (f}oである。我々の近似内では

H匂=H(f}。＝予くmtlHlm0>mt
となるから (4)式より

bぷ=4 <UJ IHIUJ >UJ 
tキo t O t (20) 

となる。 <Plは注目する原子の周辺の原子軌道からできている。 (4)によって 1./Jnを作っていくと

中心の原子から順に外へと広がっていく殻の上の原子軌道が主に寄与してくることがわかる。

このプロセスは紙とペンで追いかけるのはとても複雑なことである。しかし、計算機にとって

は単純な繰り返し作業に過ぎない。一般に¢ は原子軌道関数 {JJ の一次結合であり、
n t 

咋＝予 ¥t(J)t 如）

計算機の中では原子軌道の数だけの配列を用意しておき、 t番目の要素に A の値を入れるこ
nt 

とで <Pnは表現できる。 am , bm (m~n) が順に求まってきておれば(4)式より

bn+l <Pn+I=戸｛い<{[)t IHI {[) s > -an ots) -bn入n-1,t } {[) t 
～ 

であるから、¢ としては上の{ }内の値を了n+l n+i,t としてt番目の要素に入れればよい。

b n+l 2'ま ~(1'/n+I,t で与えられ、規格化された¢ にはn+I 
～ 

入n+l,t = An+l ,t / bn+l 

とすればよい。 an+! も(6)より容易に計算できる。 次に nとn+I の情報を用いて同様にし

て n+2 に対する最が得られる。このようにして好きなだけ進むことができる。実際上は計算

機のメモリーの制限で原子軌道の数は制限され、有限のクラスターを扱うことになる。もし、 N

個の軌道からなるクラスターを扱うと、本来N個の固有状態しかないから、たかだかN段のプロ

セスの後には </Jnは0になってしまう。真正直にこうしてしまうのでは、有限クラスターそのも

のを解いたことになる。実際は適当な段階 (15-20段）迄は正直に計算を遂行し、その後は最
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後に得られた a,b をそのまま 100段程度迄拡張する。このことは物理的にはクラスター
f f 

を a, b で特長づけられる媒質につけたことになるであろう。このトリックは recursion
f f 

法の面白いところである。

§3. recurs ion法の長所と短所

これ迄に述べてきたことからもわかるように、この方法は系全体の状態を知る為ではなく、局

所的な状態を直接的に導いてくることを狙っている。従ってその目的に沿っている場合は非常に

効率がよい。周期性のない系に対して局所的な情報を得る為には特に有効である。この意味で、

表面、特にコーナー、エッヂ及びステップにある原子の状態を知るのに今後一層使われる可能性

がある。しかし、 §5.でも述べるように適用に際して種々の制限があるという不便さがある。

§4. 適用例

多くの問題に適用されている。例えば、非晶質半導体の電子状態や格子振動、遷移金属表面の

電子状態等である。ここでは筆者らが行ったbee遷移金属の表面電子状態の計算の例を示したい

（文献 3)。

遷移金属のdバンドは原子軌道関数の一次結合でよく近似できることが知られている。隣り合

う軌道間のハミルトニアンの行列要素も与えられたポテンシャルから計算できる。図 1には

reeursion法で計算された完全結晶での状態密度に対応するもの（破線）と (001)面上の原

子の持つ状態密度に対応するもの（実線）が示されている。用いたクラスターは約 1000個の原

子からなっているから、 d軌道の5重縮退を考慮すると約 5000の軌道を扱ったことになる。図

1の結果はもっと正確なバンド計算によるもの（文献 4)と本質的な点ではよく一致している。

計算センターのニュースの記事としては、計算時間等を報告すべきだと思うが、最近の大阪大

学から東大物性研への転勤の際にそれに必要なデータを捨ててしまったらしい。誠に申し訳けな

い次第であるが、何かの参考になることを期待して Cambridge大学で使っている IBM370/

165 で行った際の CPUタイムの例を報告しておきたい。表面の最初の 3層目迄の状態密度の

計算をするのに必要なa, bの組を 15段迄計算するのにCPUは1分12秒であった。又、この
E E 

a, bの組から状態密度， fn(E')dE', f E'n(E')dE' を計算するのにCPUで 13秒で

あった。

§5. 今後の問題

recursion法の適用範囲は今はそれ程広くはない。確実に適用可能なのは、固体内の波動関

数が原子軌道関数の一次結合で表わされ、かつそれらが規格直交系をなしている場合である。よ
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り現実的なものにするためには、基底関数の非直交性を扱えるようにしなくてはならない。これ

にはいくつかの試みがあるが処方箋は必ずしも完成されていない。

§2の最後に述べたことであるが、クラスターの外部を記述する Ca, b)のつくり方があい

まいである。特に縮退のある軌道の場合には (an'bn)はnを15--20段くらい迄計算しても一

定値に収束しそうな気配がない。この点についてはまだ工夫の余地があるように思える。

§6. おわりに

筆者は数値計算の専門家ではなく、内容がその方面の専門の方にはあまりに幼稚であったかも

知れないし、重大な誤解をしていたりするかも知れないと恐れる。お気づきの点はお教え願えれ

ば幸いである。

なお、ここに述べた方法の骨組のプロプラムとその簡単な説明は下記宛に請求されれば快く送

ってもらえるものであることを付け加えておきたい。

Mr. C. M. M. Nex 

Cavendish Laboratory 

Madingley Road 

Cam bridge CB 3 OHE 

England 

最後に、この方法は Haydock,HeineとKellyの3人の物理の人達によって具体的な物

理の問題を解く為に考え出されたのであるが、数学専門の Nexの絶大な、 しかも地味な助力が

得られたことは見逃すことのできないことである。特に、与えられた (a,b)の組から(19)のよ

うな不定積分を計算し、それから n(E)を求めるというプロセスはNexによるものである。こ

れによってこの方法が大巾に改良されたといって過言ではない。 NexはCavendish研究所の

理論グループの数値計算の世話を見るのが本職であり、我々としては、そのような人材が得られ

る体制というか、国柄というか、そういうものが羨ましい限りである。勿論、これは自らの怠惰

のために、数値計算や計算機の勉強を疎かにしている者の繰り言だとお叱りをいただくことにな

るかも知れない。

ともあれ、上記の方々がこの小文を書くことを快＜承諾してくれたことに感謝したい。
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