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Kernel Functions of Diffusion Equations (I)

By Hidehiko YAMABE

Let D be an open bounded set in a d—dimensional Euclidean space
E.

By A we understand the Laplacian with respect to given coordinates.
Consider the diffusion equation
oU
~=A
(1) ot — U
on D. By a kernel function K(x, y; t) we understand a function on
Ex Ex[0, ) satisfying following properties :

(i) K, y; £)=0 when either x or y is on the boundary of D, if
K(x, y; t) is continuous on boundary for a fixed #, or the boundary
9D is smooth.

(i) For a fixed y

6
(2) o Ko y5 1) = B,K(x, 93 1)

where A, is understood as the Laplacian on the variable x.

The purpose of this paper is to give a new way of constructing the
kernel function on D which coincides with the Green’s function when
oD, the boundary of D is smooth.

In preparations we shall define some notations. Coordinates of points
x, ¥, -~ on & will be written x'; 1<i<d, y/; 1<j<d, etc. The eu-
clidean distance between two points ¥ and y is denoted by

(3) |x—y|= (i(x"—y"m*/z .
Let
(4) E,(x, y) = (2\/7t) ¢ exp (— @4t) " x—y|?) .

Lemma 1. Take a point x on D. Let S(h) be a solid sphere around

(1), see (15) and (8)
(2), see (8)
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x with its radius (4h)"° where h is sufficiently small that S(h) is within
D. Then

(5) 12—5({;Eh(x, Ndy=1—-2%exp <——£]1; (h)‘m)) .

Proof. Consider polar coordinates p, ¢!, 1 <i <d—1, around x where
0”s denote angular coordinates. Then

(6) f Eh(x ydy < f dpfp“’ Y2\/7h) "¢ exp (— (4h)*p?)do .

(4h)

Notice that for any y outside of S(%)

(7) =yl = @h" + L x—y]
and consequently

(8) e—ylz o (@ + 12—y)%)
Hence

(9) [ B Ndy=@vam S exp|—Lun et x—y|yan]dy
D s> &-S(h) 4 4
<24 exp(—_}@h)-z”) /&R [ exp (— |x—y|*/16k)dy
<24 exp(—%a(élh)‘z’a) .
However it is well-known that

(10) S({) E, (x, y)dy <1,

for any A.
Hence we have

12/ Bux, 9dy=1-2"exp(— 4y 0),

which proves the lemma.
Given two functions ¢ and + of two variables, we define a convolu-

tion
(11) (Px) (x, 3) = qu(x 2)V(z, ydz.
Then

Lemma 2.
(12) (E;x E}) (x, »)

th ) ( t+h
< — _
Ein® ) [(2“’\/ ) T P

2>dz
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Proof. By direct computations
(13)
E,(x, 2E,(2, )
(O )42 )4 BN PRI SY PR )
= @Vt @V exp (— Lix—z"= L 12—

) I\ -d /3 tx + hy?
o —d<2 th) —x—y|2 /A +h) =L y‘)-
@VrE+m) 2V w70 ) exp (= la—y /4t +h) ——Frrle— =

Hence we have (12) by integrating (13) with respect to z over D.
By iterating these processes m times for E,,(x, y) we can define

(14) (Eyjp* By 7 - x Ey) (x, ) = (B %)™ (%, 9) .

Lemma 3. Suppose that x and y be on a compact convex set Q
contained in D. Then for small t,

(15) (Epiow ¥)*" (%, 9) = E,(x, y) (1+0(exp—¢~'7%)
where I(n) =27".

Proof. Let ¢ be so small that around any x in @, S(#), i.e. the solid
sphere with its radius %47 is contained in D.
It is easy to see that
(16) (Ei/n *)z(x; y) éEZ/tn(x7 y) ’
(Et/n *)3(}’:, y) g(EZ/tn*Et/n) (x’ y) )

By making convolutions sucessively
(16/) (Et/n *)”(x’ y) g_Et(x) y) .

From (16'), by replacing ¢ by {/m we have
(Et/mn *)"m(x’ J’) g(Et/m *)m(x’ y) .

This means that if we introduce a partial order < into positive
integers such that m<# means #n is divided by m, then (E,,, *)” is
decreasing when m is increasing. Hence there exists the limit in the
sense of Moore Smith for integers 2" because these are linearly ordered.

Now let @, be the set of points whose distance from @ is less than

k
j=

> VAH(G)

1
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where [(j)=277.
Notice that the distance between the two sets @,,, and Q, is equal
to ¥4t/(F+1). Therefore for x and y in @,

17) DfEu(k)(x, 2) Eyypp(x, y)dz
= f E, 5%, 2) Eyepy(2, y)dz

Qk+1

2 E,(x, J’)Q S Eur <3, %(x +J’)>dz

k+1

= E,;,_»(%, y)(l-—z“ exp(—%— (t(k+ 1)>—2/3) .

Repeating these processes

(18) E, %) (%, 9)

I(n-1)

1 N L 1 y)<1-—2" exp(— i—(tl(ﬂ—}— 1))>_2/3>

=, -, Ex, ¥ _Z”;(l—zd exp(-%(tz(n—n1)))’2’3)""'”

i=

> E,x, y)<1_ ?::izdzn-i“ exp("%(ﬂ(n—j—i- 1))_2/3>>

=B, 5)(1—2" [ exp(— U ERdEL—00))
=E,(x, »(1—0(exp(—£7'")))
uniformly in #» when ¢ is small. This proves the lemma.

REMARK : Since E,(x, y) is uniformly continuous in ¢ over D and
larger than a constant, 1/# can be approximated with dyadic number pl(m)
from below in such a way that

Et/n(x) J’) =>.—Etpl(m)(x; y)e_S/n
for a preassigned 6. Then

(Et/n *)n(x’ y) g (Etpl(m) *>’.(x’ y)e_s
=E, umx, y»(1—0(exp(—2£7'7)).

New let m go to infinity. Then & goes to zero and pl(m) to 1/n.
Hence we have

(19) (Er/u#)"(x, 3) 2 E,(x, )(1—0(exp (—277))) .
These (16’) and (19) prove the lemma.
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Lemma 4. When both x and y are in Q,
(20) lim (E,, *)"(x, ) = K(x, y; t) exists.

Proof. Set t=#h/m in (19). Then

(Etmin ¥)™" (%, 3) Z (Epj %)™ (2, 3)(1—0(exp (— (k/m) ™))"
= (Et/m *)m(x’ 9 (1—0(1/7%)) .

Evidently, however
21) (Etjmn ¥)7" (%, 9) < (B, )7 (x, 9)
and (E,,,*)™(x, y) is uniformly bounded above by E;(x, y). Hence
(22) | Etpon %)™ (%, )= (Etj %)™ (%, 3)| <O/ m)E,(x, y) .
If both m and # be larger than m,, then from (23) it follows that

[(Eft)m %)™ (%, )= (E; )" (2, 9| Z|(EL ) #)™ (%, ) — (Ef oy ¥) ™" (2 ) |
+[( t/mn*) ( ) y) ( t/n (x y)[

=(O0@/m)+01/m)E(x, y) = 0(1/my)E,(x, v).

(23)

This proves the existence of the limit (20).

Lemma 5. The diffusion equation (1) on D has a unique solution
up to the initial function under the condition of O-boundary-value when
t==0.

Proof. We have only to prove that if U be a solution of (1) with
O-boundary-value and U(x ; {)=0 everywhere when #=0, then Ulx, )=0
for any ¢ and for any x.

Now

(24) f(U(x t))zdx——2f Ux H) Ulx, t)dx__f(AU)de,

and by the virtue of Stoke’s theorem,

—2 /3 1<a U, 1)) dx <0.

Hence f (U(x, 0))2°dx=0 implies S (U(x, t))*dx=0, i.e. U(x, {)=0.
This prove the lemma.

Lemma 6. Let D’ be an open convex domain, and p be a point at
a distance less than ch'’? from D’. Then there exists a constant >0
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depending only on ¢ so that when h goes to zero

(25) S Enp, p)dy=¢

holds uniformly in h.

Proof. Consider the transformation of coordinates x*—&'= 2/ % )~*
(x'—p7) with its origin p. In &s, D’ is mapped to a convex open set
D’,(h) near to origin, and similar to D’. These D’,(%) approaches a convex
open domain D’, when % goes to O.

However, for a small positive &,

(26) S Elp, dy = | E 0, ndy=¢.

where 7' = (2\/ %) 7' (¥'—p").
An open set O is called regularly open if it coincides with the
open kernel of its closure.

Lemma 7. Suppose that the boundary 9D of a regularly open D be
a rectilinear Simplicial complex. If either x or y be on 9D, then

lim, (E,,, *)"(x, y) =0.

Proof. Let x be on 9D. It is easy to construct a convex open D’
outside of D whose boundary contains x.
Set
m=[n/2].
Clearly
(Eyn %)™ (x, 3) ZE,i/.(x, 9) .

Take the ¢ defined in Lemma 6 sufficiently large that for any 7
less than ¢

(27) S E,0, y)dy
|| =ct/?
< Jf E© pdp<le.
ln|=c/2 2

By T, we denote the set of points {z; |[x—z|<c(f{/n)"’}. The for
yin T,
(Et/n *)m+1(x’ J’) -_S_Df Em/tn(z) y)dz

(28) = Ecpivtsn(®, ) J{ Bt fcmom <z, 3;;'-_'-”;3’) dz

<E., X, < x+my>
( +1)t/n( y)(Dr{Tn'{'e!Tn)Em/t(m—)-l)n Z, m+1 dz
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;E(m+1)t/n(x’ y) <1_8+ % 8)

= Egpuonns, 9 (1= 5 €).

because of (27) and of the previous lemma.
By iterating these processes, we have

(Bt )" (%, 3) <Ecmiit/nl®s 3) <1~% €>-

and in particular

@) Eot)™ 5, 9) SErin(1-5€) -

From this it follows that

(Bt %) (%, 3) = r[T (E;/ %)" (%, 2)E,,,(2, y)dz
+D_Tfm) E, . (x, 2)(E,, *x)" (2, y)dz
_S_<1—%<9> o { E,_vi/n(%, 2)E,;,(2, y)dz
+ [ E\(0, HdtA

[¢l=c

1 n—-m-—y
=(1—+% E,(x, E,(, §)d¢A
(-3¢ Ew e L B0 0d

where

A =sup

z¢ D, %§h_§_1Eh(z’ 9 -

Now let ¢ vary and go to infinity slow enough as # tends to infinity,
that & depending on ¢ by (29) satisfies

30) lim, (1- 7€) =0.

For instance if we take ¢’s in such a way that é=¢&m)=n"" (30)
holds.

Under these modifications we can commute

@ lim, (B, )", 5) <lim, (1~ 1 )" "Bz,

+lim, /S E\0, §))dtA=0
[{l=c

which prove the lemma.
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REMARK. Lemma 7 holds for a regularly open D with a smooth
boundary and the same kind of proof works for it. Moreover we have

(32) lim, (E,, *)"(x, ) =0
when either x or y is outside of D.

Lemma 8. Let ¢ (y) be a continuous function over the closure of
D, and x be a point on D. Then

(33) llf(’f’ Df lim, (Ex, %) (%, 3)P(3)dy = d(x) .
Proof. Let S(#) be the solid sphere of radius %747 around x. Set

(34) A(h) = sup,escnP(y)
and
B(h) = infyescmﬁb(y) .

Then from (5), considering S(%) as @,
Df lim,, (Ey/, ¥)"(x, 9)(3)dy

<A S E,x, y)dy+ [ E,lx, y)p(ndy
(35) SCh) D-SCh)

< A(h) +0 (2% exp (—% (h)‘”)) .

However from (15),
J lim, (Eyy, %)™, 9)p()dy
gB(h)(l—O(exp(—h"/”)lf E,(x, y)dy

(36)

Since the right hand sides of both (35) and (36) approaches ¢(x) when
h goes to zero, we have

lim / lim,(Ey, #)"(x, 5)P(3)dy = $(x) .

k>0 D

Corollary.
@37 limy,,, /" lim,, (s, %)"(% 9)p()dy = H(x) .
The proof is obtained by changing Iim to lim in Lemma 8.

Lemma 9. Suppose that $(y) be a C* function over the closure of D.
Then,
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(38) limy,,,(1/ k) gf Hm(Ey, %)™ (%, 1)P()dy—p(x)) = AP
Proof.
(39) S({ Hm(E,, )" (x, 3)¢(3)dy—d(x) =s<;£ E,(x, )¢ (3)dy—p(x)

+0(exp(—£"%) J o(y)dy.

SCh)

On the other hand by (5)

(40) S EE(E;,/” *) (x, y)¢(y)dy <sup| ¢(y) lzd eXp(—%(‘lh) —z/a) .
D=8 YED
Hence
(41) A/WL S Tim(E,, #)"(x 9)p(y)dy—dx)]
= (1/h)(schf) E,(x, 9y dy—dx)) +0(k exp(—k ) .

It is well known that
42) limy,,,o(1/h)( S(fh)Eh(x, NP(3)dy—P(x)) = (Ad), .
Hence we have
lim,,,o(1/A)[ Df ma(Eny )" (x, 9)P(0)dy—dx) ] = (Ad),

Corollary.
43) lim,,,(1/A)[ Df lim,(E,,, ¥)"(x, 3)P(9)dy—Px)] = (Ad), .

Lemma 10.
44) limu(Ery %) (%, 3) = im,(E,, %)"(x, y) exists.
We denote this by K(x, y; ).

Proof. From (16) it follows that

Bty %)™ (%, 3) ZEy),,(%, 3)
and hence
(Et/mn *)""(x, ¥) =<(E,. *)"(x, ¥) .

Therefore the limit in the sense of Moore-Smith existis for integers
2”s when we introduce an partial order in such a way that m<p when
m is a divisor of p.

In general, first we approximate 1/m with pl/(n). Then E,,.(x, y) is
uniformly approximated in such a way that for a preassigned &
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Eim(%, 3) = Epin(®, y)e ™.
Then
(Et/m *)m(x, y) = (Etpl(n) *)m(x, y)e's Zlimj(Et/pl(n+j) *)mzi(x, y)e—a .

Since this holds for any 3,
By ¥ (%, 9) ZHm,(Eypem #)20(%, 3) = lim(Epe,> %)7 (x, 9) -
Conversely, when m is large, we have
Eipm®, 3) <Ep(x, y)ed™

with a suitable integer p.
Hence it follows that

Gm (s %)%, 3) SHmEprm *)?" (&, 3) <Hm, By, #)* (%, y)€
which hold for any 6. Hence

lim(E,,, )", 3) = im,(Ex, *)*" (%, 3)

has been proved. This proves the lemma.
Introduce a one parameter family of operators K, by

45) (K (x) = J Kix, y; DH(n)dy.

Lemma 11. {K,} forms a one parameter semi-group of operators.
Proof. For two positive reals ¢ and s
(46) (KK () = ) K(x, y; 1) J Ky, 2; s)p(2)dzdy
=S (J Kx,y; t)K(y, z; 5)dy)p(z)dz
=Df lim,(Ec, ), %)"(x, 2)p(2)dz
= (K1 s9) (%)
which proves the lemma.
Lemma 12. Suppose that for a C? continuous ¢(x),
limy,,, (1/ %) (K;$) (x) — b (x))
exists everywhere. Then the limit is equal to (AP),.

Proof. Take a point x and denote by S(%) the solid sphere of radius
%45 around x. Then from (19)



Kernel Functions of Diffusion Equations (1) 211

S E®y; ody = J Kx, y; (y)dy+0(exp(—h™)

— B A V2
(46) mf) E\(x, )d(y)dy+0 (exp (—h™?%)

— )j%Et(x’ y)dt¢(y)dy+ Sa;j; E.(x, y)qﬁ(y)dy_*_()(exp(_h—l/z))

SCh

= Axs(.h/). j E(x, y)d(y)dy dt + su,'/; E.(x, )d(y)dy+0(exp(—h~"?)),

for some small &.
Hence

UMES R =) = A, S (1/h) J Ex, 3)(3)dydt
+(1/h)( mf) E.(x, y)(y)dy—d(x) + 0(h™* exp (—h V%) .
When & goes to zero,
A/ —¢) =B, S (18 [ iz, b(s)dtdy
+0(h " exp(—h"H).

47

48)

and therefore
@9)  limy, (/WK @— () = A, Lim, S (1/h) | Edlx, 99(3)dtdy

which proves that (A¢), exists and is equal to %(K,,qb)(x). Here we use
the fact that S (1/h) fh E.(x, y)¢(y)dtdy approaches ¢(x) uniformly toge-
SCh) 0

ther with its second derivatives with the order of Z2 'exp(—#~"%).

Lemma 13. Let ¢(x) be a C* function over the closure of D. Then
for any x in D and for any t

(50) [5Eeit)] 0=
exists.
Proof. By Lemma 9,
(61) lim,, (1/ k) (K,p—¢) = Ad .
However

(52) K, 1p— Kip = K(K,p—) .
Hence

(5 Kyop)(0) = [K, lim (b= )10 = (KA ().
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By the previous Lemma

(KAD W = BEH @) = (5 Koo )

because %Kﬂhqb:lim,m(l/ h)(K,K.p— K,p) exists. This completes the
proof.

Corollary. Df K(x, y; Hyp(v)dy is a solution of a differential equation
o

5F U= AU, for any continuous function ¢(x).

Proof. When ¢(x) is C? then U is a solution of 9U/9¢t=AU. Now
let ¢,(x)’s converge to ¢{x) where all ¢,’s are C>. Then the correspond-
ing U,’s converge to a weak solution which, by a theorem by Nirenberg
(1), is a genuine solution. This completes the proof.

Lemma 14. K(x, y; t) is C* both in x and in y.

Proof. From the previous corollary it is evident that S K(x, y; £)$(y)dy
is C? in x for any ¢>0. Hence for an 2<¢

(53) Kix, y; t) =Df Kix, z; h)Df Kz, y; t—h)dz

is C? in x. By the construction of Ki(x, y; )
(54) Kx, 9; t)=K(3 x; ?).
Therefore K(x, y; t) is C® in y.

Theorem 1. Suppose that D is a regularly open set with either smooth
or rectilinear boundary. Then K(x, y; t) defined in Lemma 10 is the
kernel function of the differential equation

o
(55) 5 U=4U
over D.

Proof. By Lemma 7
(56) K, y; £)=0

if either x or y be on 9D. From its construction it follows directly that
Ki(x, y; ) >0 for x=y. Lemma 14 says K(x, y; ¢) is C* both in x and
in y.

Therefore the result in Lemma 12, i.e.
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57) o f KU, v; p0)dy = A, [ K&, 35 H(3)dy

implies %K(x, y; t—h)=A,K(x, y; t—h), which proves the theorem.

NoticE. Theorem 1 holds when any point on 9D is on a boundary
of an open convex set D’ disjoint with D.
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