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Kernel Functions of Diffusion Equations (I)

By Hidehiko YAMABE

Let D be an open bounded set in a ^/-dimensional Euclidean space

By Δ we understand the Laplacian with respect to given coordinates.
Consider the diffusion equation

(1) ^=ΔU

on D. By a kernel function K(x, y t) we understand a function on
£x£x[0, oo) satisfying following properties:

(i) K(x, y\ t) = 0 when either x or y is on the boundary of D, if
K(xy y t) is continuous on boundary for a fixed t, or the boundary
3D is smooth.

(ii) For a fixed y

(2) /Γ(*, y\ t)=ΔxK(xy y; t)

where Δ^ is understood as the Laplacian on the variable x.
The purpose of this paper is to give a new way of constructing the

kernel function on D which coincides with the Green's function when
3D, the boundary of D is smooth.

In preparations we shall define some notations. Coordinates of points
x, y, -" on 6 will be written x* l<i/<Lί/, yj \ l^=j<Ld, etc. The eu-
clidean distance between two points x and y is denoted by

(3) l*-^ j
Let

( 4 ) Et(x, y) - (2χ/^) -' exp (- (4ί) -1 1 x-y \ 2) .

Lemma 1. Take a point x on D. Let S(h) be a solid sphere around

(1), see (15) and (8)
(2), see (8)
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x with its radius (4/z)1/6 where h is sufficiently small that S(h) is within
D. Then

(5) !:> fEh(x,
sw \ 4

Proof. Consider polar coordinates py θ*, 1 <!/ <;d— 1, around x where
*''s denote angular coordinates. Then

( 6 ) / Ek(x, y)dy < f dp f pd'\2^^hYd exp (- (4AΓW? .
D-SW (4A)l/3 θ

Notice that for any y outside of S(h)

(7) \X-y\->

and consequently

(8) \χ-y\2^

Hence

(9) / Eh(x, y}dy<(2^/^hΓd f e x p - ( 4 / r 2 / 3 — \x-y\2l±h dy
L 4 4

exp (- \x-y\2/16h)dy

~

However it is well-known that

(10) fEh(x,y)dy<l,

for any h.
Hence we have

Ek(x,

which proves the lemma.
Given two functions φ and -ψ of two variables, we define a convolu-

tion

(11) (Φ*ψ ) (x, y) = f Φ(x, z)γ(z, y}dz .
D

Then

Lemma 2.

(12) (Et * Eh) (x, y)
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Proof. By direct computations

(13)

Et(x, z)Eh(z, y)

t

Hence we have (12) by integrating (13) with respect to z over D.
By iterating these processes m times for Et/n(xy y) we can define

(14) (Et/n * Et/n *"••••* Et/n) (xy y) = (Et/n *Γ(x, y) .

Lemma 3. Suppose that x and y be on a compact convex set Q
contained in D. Then for small ty

(15) (EtlCn, *Yn(xy y) = Et(x9 y) (l + Oίexp-Γ1/2))

where l(n)=2~n.

Proof. Let / be so small that around any x in Q, S(t), i.e. the solid
sphere with its radius V^t is contained in D.

It is easy to see that

(16) (Eί/n*Y(x, y}<E2/tn(xy y) ,

(Et/n*Y(x, y) <(E2/tn*Et/n)(x, y ) ,

By making convolutions sucessively

(160 (Et/n*Γ(*, y)^Et(x, y).

From (160, by replacing t by t/m we have

(Et/mn*Γn(χ, y)<(Et/m*Γ(*> y).

This means that if we introduce a partial order < into positive
integers such that m^n means n is divided by m, then (Et/rn*)m is
decreasing when m is increasing. Hence there exists the limit in the
sense of Moore Smith for integers 2n because these are linearly ordered.

Now let Qk be the set of points whose distance from Q is less than

Σ ^4/7(7)
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where l(j) = 2~j.
Notice that the distance between the two sets Qk+l and Qk is equal

to ^4tl(k + l)' Therefore for % and y in Qk

(17) fEtκ»(x, z)Etw(x, y)dz

y z) EtKk)(z, y)dz

, y) f
Qk+ι

Repeating these processes

(18) Etί,n,*)2n(x, y)

~2/3

, -, Et(x,

exp (— ̂ -(//(Λ-

uniformly in w when t is small. This proves the lemma.

REMARK : Since Et(x, y) is uniformly continuous in / over D and
larger than a constant, 1/n can be approximated with dyadic number pl(m)
from below in such a way that

Et/n(x, y)^EipKm,(x, y)e-s/n

for a preassigned δ. Then

New let m go to infinity. Then δ goes to zero and pl(m) to l/».
Hence we have

(19) (Et/n *)"(x, y) ^>Et(x

These (16') and (19) prove the lemma.
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Lemma 4. When both x and y are in Q,

(20) lim (Et/n*)n(xy y) = K(xy y\ t) exists.
»-»00

Proof. Set t = h/m in (19). Then

(Ehm/n*Γn(x, y)^(Eh/m*Γ(x, y)(l-0(exv(-(h/mΓ1/2)Γ

= (Et/m*)m(x, j)(l-

Evidently, however

(21) (Et/mn *)"•"(*, y) < (Et/m *)"•(*, y)

and (Et/m *)m(x, y) is uniformly bounded above by Et(x, y). Hence

(22) I (Et/mn *Γn(x, y) - (Et/m *Γ(*, y) \ <G(l/m)Et(xy y) .

If both m and n be larger than m0, then from (23) it follows that

(23) ' (Et/m *Γ(X' y} "" (Et/n *Π*' y) ' - ' (Et/m *Γ(^ y] " (Et/mn *ΓM(* y) '
+ I (Et/mn *Γn(x, y) - (Et/n *)"(*, y) I

, j^) =Q(lfmάEt(x9 v) .

This proves the existence of the limit (20).

Lemma 5. The diffusion equation (1) on D has a unique solution
up to the initial function under the condition of ^-boundary-value when
fφO.

Proof. We have only to prove that if U be a solution of (1) with
0-boundary- value and U(x t) = Q everywhere when t — 0, then U(xy t) = 0
for any t and for any x.

Now

(24) ^ / (U(x, t))2dx = 2/|- U(x, t) U(x, t)dx = f (Δ £7) £7 At ,
αί o D ot D

and by the virtue of Stoke's theorem,

Hence /(E7(*, 0))2Jj = 0 implies /(£7(ΛΓ, t))2 dx = Q, i.e. £7(Λ, ί)=0.
This prove the lemma.

Lemma 6. Let Dr be an open convex domain, and p be a point at
a distance less than ch1/2 from Όr . Then there exists a constant
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depending only on c so that when h goes to zero

(25) / Eh(p, y)dy^8
D'

holds uniformly in h.

Proof. Consider the transformation of coordinates χi-+ξi= (2 \/Jj~)~^
(xl—pj] with its origin p. In ξ's, D' is mapped to a convex open set
D\(h] near to origin, and similar to D1 '. These D\(h) approaches a convex
open domain D\ when h goes to 0.

However, for a small positive 8,

(26) fEΛ(p, y}dy= f ^(0,

where V =
An open set O is called regularly open if it coincides with the

open kernel of its closure.

Lemma 7. Suppose that the boundary 3D of a regularly open D be
a rectilinear simplicial complex. If either x or y be on 3D, then

limM (£,/„*)*(#, y)=Q.

Proof. Let x be on 3D. It is easy to construct a convex open Ό'
outside of D whose boundary contains x.

Set

m = [n/2~] .
Clearly

(Et/n*Γ(x, y)<,Emt/n(xy y).

Take the c defined in Lemma 6 sufficiently large that for any h
less than /

(27) / EA(0, y)dy

By Tn we denote the set of points [z \x— z\ <Lc(t/n)1/2}. The for
Tn

(Et/n*Γ+l(x, y) <Lf Em/tn(z, y)dz

(28) = E^+ovΛx, y) f Emt/Mn z, dz
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because of (27) and of the previous lemma.
By iterating these processes, we have

(Ef/n *) \X>

and in particular

(29) (Et/n *)*-(*, y) ^E,n^t/n(l—ί

From this it follows that

I

:, z)(Et/n*)n~"L(z, y}dz

f Etn_vt/H(x, z)Et/H(z, y)dz

+ f £ι(0,

where

Now let c vary and go to infinity slow enough as n tends to infinity,
that 8 depending on c by (29) satisfies

(30)

For instance if we take c's in such a way that 8 = £(n)=n~1/2, (30)
holds.

Under these modifications we can commute

( -1 \ M - m - i
ι-4 fi)2 /

(31) limM (Et/n *)"(*, y) ̂ lim. (l— ί εJ""Έt(x, y)

which prove the lemma.
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REMARK. Lemma 7 holds for a regularly open D with a smooth
boundary and the same kind of proof works for it. Moreover we have

(32) limn(Et/n*Γ(x, j O = 0

when either x or y is outside of D.

Lemma 8. Let φ (y) be a continuous function over the closure of
D, and x be a point on D. Then

(33) Km / HE* (Eh/n *)*(*, y)φ(y}dy = φ(x) .
A->0 D

Proof. Let S(h) be the solid sphere of radius V^h around x. Set

(34) A(h) =

and

B(h) =

Then from (5), considering S(h) as Q,

/, *)*(*, y}Φ(y)dy

f Eh(x, y)dy+ f Eh(x, y)φ(v)dy
(35)

£4(*)+0<2*exp (-1- (/T2/3)) .

However from (15),

._ /ΠS. (£*/,*)"(«, y)Φ(v)dy
(ob) D

-0 (exp(-/Γ1/2) /£„(*,

Since the right hand sides of both (35) and (36) approaches φ(x) when
h goes to zero, we have

lim / linU^A, *T(x, y}φ(y)dy = φ(x) .
A->0 D

Corollary.

(37) lim^o / Mn(Eκ/H *T(x, y)Φ(v)dy = φ(x) .
D

The proof is obtained by changing Hm to lim in Lemma 8.

Lemma 9. Suppose that φ(y) be a C2 function over the closure of D.
Then,
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(38) lim^d/ A) (/ \im(Eh/a *)"(x, y)φ(y)dy-φ(x)) = Δφ
D

Proof.

(39) / E5(EA/<, *)"(*, y)Φ(y)dy-φ(x) = f Eh(x, y)φ(y)dy-φ(x)
SCA) S(h)

+ 0(exp(-/Γ1/2)) / φ(y)dy.
SCA)

On the other hand by (5)

(40) /
D-s

Hence

(41)
Z>

= (I/ A)(
SCA)

It is well known that

(42) limbed/ A) ( / Eh(xy y)φ(y)dy-φ(x)) = (Δφ), .
S(Λ)

Hence we have

-φ(x)] = (Δφ)

Corollary.

(43) lim^od/ *)[ limM(£:Λ/M ^)w(^, y)Φ(y)dy-φ(x)] = (Δφ), .

Lemma 10.

(44)

We denote this by /f(Λ:, y t).

Proof. From (16) it follows that

(Et/mn*Γ(x, y)^Et/n(x, y)

and hence

(Et/mn*Γn(x, y}<(Et/n*)n(x, y) .

Therefore the limit in the sense of Moore-Smith existis for integers
2n's when we introduce an partial order in such a way that m<^p when
m is a divisor of p.

In general, first we approximate l/m with pl(n). Then Et/m(xy y) is
uniformly approximated in such a way that for a preassigned δ
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Et/m(x, y)^EtpKn,(x,

Then

(Et/m *)m(x, y) ̂  (EίpKn, *}m(x, y)e-s

Since this holds for any δ,

(Et/m*)m(x, y)ϊ>lim}(EtKp/m*)U(x, y) = lim,-(Eί/O) *)*'(*, y) .

inversely, when m is large, we have

Etp/m(x, y) <££«.>(*, y)es'^

with a suitable integer p.
Hence it follows that

*)"(*, y) ̂ m&pt/m *)'"(*, y) ̂ Hmn(EtKn, *γ"(χ, y)es

which hold for any δ. Hence

lim(Et/m *)m(x, y) - linUE,,̂  *Y"(x, y)

has been proved. This proves the lemma.
Introduce a one parameter family of operators Kt by

(45) (Ktφ) (x) = f K(x, y t)φ(y)dy .

Lemma 11. {K,} forms a one parameter semi-group of operators.

Proof. For two positive reals t and 5

(46) (K, (Ksφ)) (x) = f K(x, y; t)f K(y, z s)φ(z)dzdy
D D

= f ( f K(x, y t) K(y, z s)dy)φ(z)dz
D D

tt+S)/n *)n(x, z)φ(z)dz

which proves the lemma.

Lemma 12. Suppose that for a C2 continuous φ(x),

exists everywhere. Then the limit is equal to

Proof. Take a point x and denote by S(h) the solid sphere of radius
around x. Then from (19)
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K(x, y h)φ(y)dy = / K(x, y h)φ(y)dy+Q(exp (-h~vi

S(A)

(46) s«)

= ff^ιEt(x,y)dtφ(y)dy + f E,(x, y)φ(y)dy +Q (εxp (- h~
SCΛ) ε Ol SCA)SCΛ)

= Δ,

for some small 5.
Hence

, Et(x, y)φ(y)dydt
(47) 5c*) *

When £ goes to zero,

= Δ, / (I/h) fhEt(x, y)φ(y)dtdy
(48)

and therefore

A

(49) l]mh+t(l/h)((Khφ)(x) —φ(x)) = ΔΛ HmΛ / (I/A) / JS^jt, y)Φ(y)dtdy

o

which proves that (Δφ)Λ exists and is equal to ^τ(Khφ)(x). Here we use

the fact that f (1/h) f Et(x, y)φ(y)dtdy approaches φ(x) uniformly toge-
SCA) 0

ther with its second derivatives with the order of λ-1exp(— h~1/2).

Lemma 13. Let φ(x) be a C2 function over the closure of D. Then
for any x in D and for any t

(50)

exists.

Proof. By Lemma 9,

(51) limh(l/h)(Khφ-φ) = Δxφ.

However

(52) Kt+hφ- Ktφ = Kt(Khφ-φ) .

Hence
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By the previous Lemma

(KAΦ)(x) =

because ^Kt+hφ = limh+Q(l/h)(KhKtφ—Ktφ) exists. This completes the

proof.

Corollary. / K(xy y\ t)φ(y)dy is a solution of a differential equation
3 D

— U= Δf7, for any continuous function φ(x).

Proof. When φ(x) is C2, then U is a solution of 3f7/3f = Δ f Λ Now
let φH(x)'s converge to φ(x) where all φn's are C2. Then the correspond-
ing Un's converge to a weak solution which, by a theorem by Nirenberg
(1), is a genuine solution. This completes the proof.

Lemma 14. K(x, y t) is C2 both in x and in y.

Proof. From the previous corollary it is evident that fK(x,y; t)φ(y)dy
is C2 in x for any £>0. Hence for an

(53) K(x, y ί) = / #(*, a: h) f K(z, y t-h)dz
D D

is C2 in Λ. By the construction of K(x, y t)

(54) #(*, ̂  /) = K(y9 x; t ) .

Therefore K(x, y; t) is C2 in y.

Theorem 1. Suppose that D is a regularly open set with either smooth
or rectilinear boundary. Then K(xy y t) defined in Lemma 10 is the
kernel function of the differential equation

(55) JtU=*U

over D.

Proof. By Lemma 7

(56) K(x, y ; t ) = Q

if either x or y be on 3D. From its construction it follows directly that
K(x>y> t)^>® for jcφjv Lemma 14 says K(x,y; t) is C2 both in x and
in y.

Therefore the result in Lemma 12, i.e.
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(57) J| / K(x, y t)φ(y)dy = Δ, / K(x, y t)φ(y)dy
Ol D

O

implies ^ K(x, y; t—h) = ΔxK(x,y, t—h), which proves the theorem.

NOTICE. Theorem 1 holds when any point on 3D is on a boundary
of an open convex set Όr disjoint with D.
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