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1. Introduction

In the previous paper [3] we studied the set of equivariant isotopy classes
of equivariant smooth embeddings of a sphere with semifree linear action into
a euclidean representation space. In this paper we will study more general
case, i.e., the set of equivariant isotopy classes of equivariant smooth embed-
dings of a manifold into another manifold, where the manifolds in question
have a smooth semifree action.

Let G be a compact Lie group, and M, N smooth G-manifolds. Two
smooth G-embeddings f and g of M into N are called G-isotopic, if there is a
smooth G-map

H: Mx[0,1] >N

such that, for any t€[0, 1], H=H |M X {t} is a smooth G-embedding, and
that H,=f, H,=g. Such H is called a smooth G-isotopy between f and g. The
G-isotopy class [f] is the set of all smooth G-embeddings G-isotopic to f. De-
note by Iso®(M, N) the set of all G-isotopy classes of smooth G-embeddings
of M into N. Fix a smooth G-embedding f of M into N, and denote by
Isof (M, N) the set of all G-isotopy classes of smooth G-embeddings G-homotopic

to f. If N is a euclidean representation space of G, then N is G-contractible,
and then

Iso§(M, N) = Iso®(M, N)

for any smooth G-embedding f of M into N.

For xM denote by G, the isotropy subgroup of G at x. An action of
G on M is called semifree if, for any x&M, G, is either trivial or is all of G.
If, moreover, the fixed point set

MS = {xeM|G, = G}

is neither empty nor is all of M, the action is called properly semifree. For
xEMC denote by M¢ the connected component of M€ containing x. Choose
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a point from each connected component of M€, and let C(M°) be the set of
these points. Then M€ is the disjoint union of M for all x&C(MF€).

Let M, N be smooth properly semifree G-manifolds, and f a smooth G-
embedding of M into N. This paper will proceed as follows. In section 2
we define T'/(M{) as the set of homotopy classes of cross sections of a fibre
bundle over M¢, and give a definition of a transformation

®: Isof(M, N)— II T, (M3).
re0H™
Under dimensional conditions we prove the surjectivity of ® in section 3, and
prove the injectivity of ® in section 4. Finally in section 5 we analyze T" (M?)
by using obstruction theory.

REMARK. If the G-action on M is properly semifree, a normal representa-
tion of G at a fixed point has no fixed point except the origin. Any compact
Lie group G does not always admit a fixed point free (outside the origin) re-
presentation. Finite groups which admit fixed point free representations are
classified by Wolf [5]. If G is positive dimensional, then there are only three
posibilities: G ==S3 S, and its normalizer N(S!) in S? (e.g. as shown in
Bredon [2; 8.5]). Thus the groups considered in this paper are finite groups,
S, N(S?), and S3.

2. Transformation ®

Let M, N be smooth properly semifree G-manifolds, and f a smooth G-
embedding of M into N. Choose once and for all a set C(M°) such that M€
is the disjoint union of M¢ for all x&C(M€). For any xC(MF), let

y(M?) = ((M)| M?)[~(M?)

be the normal bundle of M¢ in M. Denote by v (M¢) the fibre over yeMS.
This is a representation of G which has no fixed point outside the origin.
Denote by

Mona(vy(Mf)i vf(y)(N?(x)))
the set of all G-monomorphisms from v (M {) to v (N §»), and define

Mon§(»(M$), v(N $)) = yEL‘J{G MonC(v (M), v ;) (N fx)) -

By the standard manner this becomes a smooth fibre bundle over M¢. The
set of continuous (resp. smooth) cross sections of this bundle is in bijective
correspondence with the set of continuous (resp. smooth) G-vector bundle
monomorphisms from »(M¢) to »(N §.,) which cover

ff =f[Mf:Mf—>N};(,).
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Denote by T'j(M¢) the set of homotopy classes of continuous cross sections of
Mon§(»(M¢), v(N§.)). Note that we may take smooth ones as representa-
tives of classes in T (M) by the differentiable approximation theorem [4; 6.7].

Let g: M—N be a smooth G-embedding G-homotopic to f. Note that
N§.=N¢., for any xC(M°). Then two maps

gf’ff: M: ”’N?(x)
are homotopic, i.e., there is a homotopy
H: M¢x[0,1] > N¢,

with Hy=g¢ and H,=f¢. By Bierstone [1] we may lift H to a G-homotopy
of G-vector bundle monomorphism
H: v(M$)x[0, 1] = »(N%s
with
B, = d.g: v(M$) > »(Nfew)
where d, g is the G-vector bundle monomorphism induced from the differential

dg: (M)—>7(N) of g. Then H, is a G-vector bundle monomorphism which
covers fS. Let

@.(g): M7 — Mon7 ((M?3), »(N )

be a cross section corresponding to H,. ®,(g) is determined dependently on
H and its lifting . But, if N§,, is (dim M¢+1)-connected, the homotopy
class of ®@,(g) does not depend on H and H. More precisely we show

Lemma 1. Let g, h: M — N be smooth G-embeddings G-homotopic to f.
If g and h are G-isotopic, and if N3, is (dim M +1)-connected, then ®,(g)
and @ (k) are homotopic as cross section.

Proof. Let
A®: wMEX0, 1] > v(N%w), i=0,1,
be G-homotopies of G-vector bundle monomorphism which cover G-homo-
topies
H®: Mix[0,1] - N¥%,, i=0,1,

such that
(1) HO=f, HP—g, H—h, HO—,
@) AP=d.g AO=dh,
(3) HY and HY correspond to ®,(g) and P (k), respectively.
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Let K: Mx[0, 1]-N be a smooth G-isotopy with K;=g and K ,=h.

N 2y is (dim M ¢ +1)-connected, there is a homotopy
E: M¢x[0, 31x[0, 1] = N¥.
such that, for any (y, ¢, s)eM ¢ x ({0, 3} x[0, 17U [0, 3]x {1}),
E(y,t, 5) =f(9)»
and for any (y, ¢, 0)e M} x [0, 3]1x {0},

HO(y, 1) if 0<t<1
E(y,t,0)= 1 K(y,t—1) if 1<1<2
HO(y, t—2) if 2<#<3.
Define
k: v(ME)x[0, 3] = v(N Gy

as, for any (v, £)€v(M$)x [0, 3],

HO(v, ) if 0<t<1
k(v,t) = { d K(v,t—1) if 1<t<2
H®(v, t—2) if 2<t<3.

Since

Then & is a G-vecotr bundle monomorphism, and covers E |M¢ x [0, 3]x {0}.
By Bierstone [1] we obtain a G-homotopy of G-vector bundle monomorphism

E: p(ME)x[0, 31X [0, 1] = »(N )
such that £\—=Fk and that E covers E. Then
Ev(ME)x ({0, 3} x [0, 1]U[0, 3]x {1})
covers f¢ on each level M ¢, and

E|v(ME)x {0} x {0} = AP,
Elv(MS&)x {3} x {0} = AP

Thus we see that ®,(g) and ®,(k) are homotopic as cross section.

Q.E.D.

If N§,, is (dim M¢+1)-connected for all x&C(MF€), then, by Lemma 1,

we may define a transformation

®: Isof (M, N) - TI T, (M¢)
recu®)
as

() = 1L [®(8)]
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for any [g]€Isof (M, N). If N is a euclidean representation space of G, then
NE¢ is contractible and ® is always defined.
Define

dim N¢ = max {dim N¢ |x&C(N°)} .
We obtain
Theorem 2. Let M, N be smooth properly semifree G-manifolds without

boundary, M compact, and f a smooth G-embedding of M into N. Assume that
N is (dim ME +1)-connected for any x=C(MF€). Then the transformation

®: Isof (M, N) > TI T/M?)

reccu®
satisfies that
@@ ¥
dim M+ max {dim M, dim N¢} <dim N+4dim G,
then ® is surjective,
(b) o
2dim M{+1<dim N§,,  for any x€C(MF),
and if
dim M+max {dim M, dim N} +1<dim N+dim G,

then @ is bijective.

The surjectivity of @ will be proven in the next section 3, and the injec-
tivity of @ in section 4.

3. Surjectivity of ®

First we provide a lemma for the proof of surjectivity of ®.

Lemma 3. Let a: X—Y be a map. Let £>X and {—Y be a- and b-
dimensional G-sphere bundles over X and Y, respectively. Here G acts trivially
on both X and Y, and freely on £. Assume that X is a finite connected complex,

and that A is a subcomplex of X. Let @: £|A—C be a fibre preserving G-map
which covers a|A. If

dim X+a<b-}+dim G,
then @ is extended to a fibre preserving G-map from & to § which covers a.

Proof. Denote by Map®(&,, {a,) the set of G-maps from the fibre £, of
& over x€X to the fibre {4, of § over a(x)eY. Give the compact-open
topology to the set. Define
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Mapz(E’ é“) =x;l_£_JxMapG (fn Cﬂt(x)) .

By the standard manner this becomes a fibre bundle over X with fibre
MapC(&,, Lan)- The set of cross sections of Map$ (&, §)—X is in bijective
correspondence with the set of fibre preserving G-maps from & to { which cover
a. Let

s(p): A~ Map(, £)| 4

be the cross section corresponding to @. To prove the lemma we extend s(g)
over X. For this it suffices to see that the fibre Map®(&,, {acy) is (dim X—1)-
connected. For any 7 with 0<7/ <dim X—1, let D**! be the canonical (i+1)-
dimensional disc with trivial G-action, S its boundary, and

B: Si - MaPG(En Cﬂ‘(x))

any map. We should like to extend 8 over D*!. By the exponential law B
gives a G-map

EI SiXEx - é’w(,,) .
From the hypothesis,
dim DX E,/G<b

and 4, is (b—1)-connected. Then, as in the proof of Lemma 5 in [3], we
may extend B to a G-map on D*'xE,. Thus we may also extend @ over
Di+, Q.E.D.

From Lemma 3 we obtain

Corollary 4. Let £—>X and {—Y be a- and b-dimensional G-vecotr bundles
over X and Y, respectively. Here G acts trivially on both X and Y, and freely
on both & and § outside the zero sections. Assume X is a finite complex. Let

PP E—>E
be G-vector bundle monomorphisms which cover a map o: X —>Y. If
dim X+a<b+dim G,
then there exists a fibre preserving G-homotopy
H:Ex[0,1]1>¢

such that
(1) 'H =P H l=$b,
(2) H, covers o for any t<[0, 1], (H, is not necessarily linear on fibres of £.)
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(3) H((E—X)x[0,1))ct—Y, where X and Y are regarded as the zero
sections of & and &, respectively.

Proof. Let S(£) and S(f) be associated G-sphere bundles of £ and &,
respectively. Since @ and ¢ are monic on each fibre of £,

P(S(E)Ct—Y, and
P(S(E)cE-Y.

Let r: {—Y —S(¢) be the radial retraction. Apply Lemma 3 to
ropUrog: S(E)x {0, 1} — S(©). Q.E.D.
We now begin the proof of surjectivity of ® under the assumption (a) of
Theorem 2. Let
a= II [s]e II T/M?)

recU®) rec®

be any element. We will construct a smooth G-embedding g of M into N
with ®([g])=a. Let

te: v(MZ) = v(Nfw)

be a G-vector bundle monomorphism covering f¢ which corresponds to s,.
Without loss of generality we may assume ¢, is smooth. From the assumption
(a) and Corollary 4 we obtain a fibre preserving G-homotopy

H®: »(ME)x [0, 1] — »(N %)

such that

(1) H®=d,f, H =t,,

(2) HP covers f¢ for any 1[0, 1],

(3) HO((eMZ)—MZ)X[0, 1) Cr(N o) —N fooy.
Define

t= | oM = ) »(M$)—v(NN°).
reou® reou)

Making use of exponential maps as in the proof of Lemma 6 of [3], from ¢ we
obtain a G-homotopy

H®: Ty (M®)X[0, 1] > N

such that

(1) HP=f| Ty (MO,

(2) H® is a smooth G-embedding with d H{?=¢,

(3) H®((Ty(MC)—MC)x [0, 1])c N—N¢, where T,(M°) is a G-equiv-
ariant closed tubular neighborhood of M€ in M with radius 3¢>0. Using H®
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and f, we may construct a smooth G-map
gY: M—-N

such that
(1) g® and f are G-homotopic,
(2) for some 8, y>0 with y<<3¢&

(89)(To(N®) cInt TY(MC),

(3) gW=H on TyMF¥®), hence g¥=f on M.
In fact, g® can be constructed as follows. First define a G-map

h: M >N
as the followings:
h(x) = H{P(x) for xe T (MF€),

h(x) = H® (ﬁ 2—%@) for x& Ty(M®—Int T(MC), where ||l
X

denotes the length of x in T';,(MF¢),

h(x) = f(<2—”378”) x) for %€ Ty(M®)—Int T,(M°), and

h(x) = f(x)  for x&M—Int Ty(M°).

Next, smooth % to obtain the desired g®.
Define

K = M—Int(g®)(T,(N), and
L = N—Int Ty(N¢).

These are smooth free G-manifolds with boundary. Since g®(K)CL, we
obtain a smooth G-map

gV|K: K—L.
Passing to orbit spaces, we also obtain a smooth map
g? = (gW|K)/G: K|G - L|G,

which is an embedding on a neighborhood of 0K/G in K/G. From the as-
sumption (a),

2 dim K/G<dim L/G .

Thus g@ is homotoped to a smooth embedding, precisely there is a smooth
homotopy
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H®: K|Gx[0, 1] > L|G

such that

(1) H53)=g(2)»

(2) H is a smooth embedding, and

(3) H® is a constant homotopy on a neighborhood of 0K/G.
Since the natural projections K—K/G and L—L|G are smooth G-fibre bundles,
then by Bierstone [1] we obtain a smooth G-homotopy

H®: Kx[0,1] > L

such that H{P=g®|K, and that H{® is a smooth G-embedding. Moreover,
we can choose H® so that it is a constant homotopy on a neighborhood of
0K in K, hence that H{¥=g® on the neighborhood. Then, from g® and
H{®, we obtain a smooth G-embedding

g9 M—-N

such that

(1) g® is G-homotopic to f, and

(2) g®=g®W=HS” on a neighborhood of M€ in M.
Thus

dg® =dHP = t: y(M°) - »(N°),
and

®([g)=_TI [s].

This completes the proof for the surjectivity of @ under the assumption (a)
of Theorem 2.

4. Injectivity of ®

In this section we will show the injectivity of & under the assumption (b)
of Theorem 2. Let

([g]) = @4 in I TAMZ)

for [g], [A]€Isof (M, N). We will construct a smooth G-isotopy between g
and A.

First, since g and % are G-homotopic, there is a G-homotopy
HW: Mx[0,1] >N
with H{’=g and H{"=h. By the assumption
2dim M{+1<dim N§,,  for allxeC(M°),
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we see
16, g6, hS: MS — N°¢
are isotopic each other. From this and ®([g])=®([#]) we obtain a smooth
G-homotopy of G-vector bundle monomorphism
H®: p(M°)x][0, 1] — »(N°)

such that

(1) H{P=dg, HP=dh, and

(2) H® covers a smooth isotopy: M€ x [0, 1]—=N¢.
Making use of exponential maps as in the proof of Lemma 6 of [3], from H®
we obtain, for an appropriate £>0, a smooth G-isotopy

H®: T (M°)x[0,1] >N
with H®=g| T,.(M°) and with H®=F|T,,(M®). Since N, is (dim M¢+1)-

connected for any x&C(MC), we may obtain a homotopy

H®: (M°x[0, 1])x[0, 1] - N°¢

such that
(1) HP=H®|M°x][0, 1],
(2) HP=H®|M°x]0, 1],
3) H®W|M®x {0}=g¢  forany ][0, 1], and
4) HP|MCx {1} =h° for any t=[0, 1].
Define a G-homotopy

H®: Mx[0,1] >N
as follows: for any (x, t)eM X [0, 1],
H®(x, t) = H®(x, t) if xeT (M°),

HO(x, 1) = H(3)<<r|2;f%_ 1>x, t) if xETy(MO)—Int T,(M9),

HOx, ) = H® (n'(x), t, ﬂ’ei”—z) if x& Ty (M) —Int Ty(MO),
where 7: Ty,(M€)—MZF is the canonical projection,
HO(x, 1) = H‘”(4(1 —3_5)x, t) if xe T (MC)—Int Tp(M°),
[[ac]]
HOx, t)= HO(x, 1)  if x&M—Int T,(M°).

Then H§ and g are G-homotopic, and its homotopy can be so chosen as to
be constant on T (M°). Similarly for H{® and k. From these homotopies
we obtain a G-homotopy
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H®: Mx[0,1] >N

such that HP=g, H{®=h, and that H® is a smooth G-isotopy on T (M °¢).
Define

L = (M—Int T(MS)x[0, 1] .

Note the G-action on L is free. Let G act diagonally on LXN. Passing a
G-map

dxH®: L —-LxN
to orbit spaces, we obtain a map
a® =1idxH®|G: L|G — (LxN)/G .
Consider a submanifold
(LXN°)|G=L|GXxN¢®
of (LxN)/G. Then
a®(@L/G)NLIGXN¢ = ¢.
From the assumption (b),
dim L/G<dim (L X N)/G—dim L/GX N°¢.

Thus o™ can be so homotoped that its image does not intersect L/GX N,
i.e., there is a map

a®: L|G — (Lx N)/G

which is homotopic to a® relative to dL/G, and whose image does not inter-
sect L/GXN€. From this we obtain a G-map

a®: L >N

which is G-homotopic to H®|L relative to 0L, and whose image does not
intersect N¢. Define

H®: Mx[0,1] - N
as
H®=H®  on T(M°)x]0, 1], and
H? = a® onL.

Then H® is a G-homotopy between g and 4, and a smooth G-isotopy particu-
larly on To(M€). We see

M°x[0, 1] = (H™)"(N°).
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At this point it only remains to deform H outside a neighborhood of
MF¢€ to a smooth G-isotopy. It can be done similarly to the proof in [3]. So
we will merely give an outline. Since M x[0, 1] is compact, for small §>0,

Int Top(MC)X [0, 1]1D(HP)T5(N)).
Let 5 be a level preserving G-diffeomorphism of Mx [0, 1] such that
7(T(MC)x[0, 1]) = T(M€)x[0, 1], and
7(Tes(M €)X [0, 1]) = (H®)(T{(N)) -
Define
P = M—Int T,;,(MF°), and
O = N—Int Ty(N°).
Consider a G-homotopy
H®oy: PX[0,1]1 -0,
which is a smooth G-isotopy on a neighborhood of dP. From the assumption
(b),
2 dim P+1<dim Q+dim G .
Then H oy may be deformed to a smooth G-isotopy
H®: Px[0,1]—0Q
such that

(1) HP=gon,|P,

(2) H{P=hon,|P,

(3) H®=H®Moy on (n.b.d of aP)x [0, 1].
From H® and H® we obtain a smooth G-isotopy between g and h. This
completes the proof for the injectivity of ® under the assumption (b) of Theo-
rem 2.

5. Analysis of T'/(M¢)

In this section we will analyze T" (M ¢).

Let {V;|j€ J(G)} be a complete set of fixed point free (outside the ori-
gin), nonisomorphic, irreducible, real representations of G. For any j € J(G)
denote by F; the set of G-endomorphisms of V;, Hom¢(V;, V;), which is the
field of real numbers R, complex numbers C, or quaternions Q. V; is the
real restriction of a complex representation if F;=C, and of a quaternionic

representation if F;=@Q.
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For any yeM?, v (M?) and v (N §.,) are fixed point free (outside the
origin) representations of G. Let
G\~ . .
vy(M,,)=jE§l(9®m,,,V, , and

G
Vi p(Nim)= D npn,;V;
f(y)( f(x)) PR f(0,iV j

be the decompositions into irreducible representations, where all m, ; and all
74, ; are nonnegative integers independent of yeM ¢, and where mV; denotes
the direct sum of m copies of V;. Since d,f embedds v, (M¢) into v (N fix),
we see

m, i <Ny,

for any j& J(G). As seen in §1 of [3], Mon®(m, ;V;, ny, ;V;) is identified
with V(m, ;, n,. ;; F;), where V(m, n;F;) is the Stiefel manifold of m-frames
(not necessarily orthonormal) in the n-dimensional vector space nF; over F;.
We may split the normal bundle (M ¢) into Whitney sum
D v(M3);.

JEI(

Here each »(M¢); is a G-vector bundle over M¢ whose fibre is m, ;V;, and
as whose structure group we may take A(m, ;; F;), where A(m; F;) denotes
the orthogonal group O(m) if F;=R, the unitary group U(m) if F;=C, and
the symplectic group Sp(m) if F;=Q. Similarly for the normal bundle »(N §.)).
Thus we may split the fibre bundle

Mon§(»(M3), v(N fy))
into Whitney sum

@ B;.

JEI ’
Here each B; is a fibre bundle over M¢ whose fibre is V(m, ;, ny) ;; F;), and
whose structure group is A(m, ;; F;) X A(nyy ;5 F;).
We easily obtain

Theorem 5. If both v(M¢) and v(N$,,)) are product bundles, then there
is a bijective correspondence

Pf(Mf)NjeH [Mfc;, V(mx,j) nf(z),j; Fj)] )

T
where [ , | denotes the homotopy set.
The Stiefel manifolds are g-simple for any ¢>0. According to [4; 30.2],

denote by Bj(w,) the bundle of g-th homotopy groups associated with B;.
Define
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dj= dimk Fj, and
g, =dj(nsn,;—m; ;+1)—1,

then V(m, ;, n,. ;; F;) is (¢;—1)-connected and its g;-th homotopy group is
nonzero. So from (37.2) and (37.5) of [4] we obtain

Theorem 6. (a) If
dim M ¢ <q;+1
for any j with m, ;=0, then there is a surjective correspondence

T(M?)—~ I H%MZ; By(x,)).
P
(b) If
dim M{ <gq;

for any j with m, ;=0, then there is a bijective correspondence

F,(Mf)ziEIJI(G)H"j(Mf ; Bi(,;)) -

For many cases Bj(z,) becomes a product bundle. In fact we will see
this for the cases (i)~(iv) in the next Proposition. So for these cases we may
replace H®i(M¢; By(,;)), in Theorem 6, by the ordinary cohomology groups
HUME my(V(m, j, yco53 F).

Proposition 7. B(z,) is a product bundle for each case of the followings
(i)~ (iv):

(1) G is not of order 2 (including infinite groups),

(1) both v(M¢) and v(N §.)) are orientable,

(i) G s of order 2, m, ;>2, and g=n ) ;—m, ; is odd,

(iv) M¢ is simply connected.

Proof.
G; = A(m, ;; F)x A(n,n ;3 F))

is the structure group of B;. The action of G; on the fibre V(m, ;, n,,) ;; F;)
induces automorphisms of =,== (V(m, ;, ns,. ;; F;)). Let H; be the sub-
group which acts as the identity in z,. Then G;/H; is the structure group
of By(x,).

(i) From the table in [5; p. 208], we see that F;=C or Q if G is not of
order 2. Thus G| is connected, and G;=H,. So the structure group of Bj(z,)
is trivial, and the bundle is a product bundle.

(ii) The structure group of Bj(z,) may be reduced to a connected group.
Thus, as seen above, Bj(x,) is a product bundle.
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(iit) For this case we see

w(V(m,,j, npn,is Fy)) = Zy,

and the identity is the only automorphism of Z,. Thus Bj(z,) is a product

bundle.

(iv) Clear since the fibre of B(=,) is discrete. Q.E.D.
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