
Title FORTRANとの比較によるPL/Ⅰ入門（2）

Author(s) 塩野, 充

Citation 大阪大学大型計算機センターニュース. 1980, 37, p.
57-74

Version Type VoR

URL https://hdl.handle.net/11094/65446

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ー資 料

FORTRANとの比較によるPL/I入門 (2)

大阪大学工学部 塩 野 充

前回はPL/Iのさわりだけを紹介したにすぎなかったが、今回から内容に入り、データの型、

型宣言文、入出力文について説明しよう。その前に、前回PL/I言語の使用比率の例として東大

大型計算機センターの 76年のデータを表 1として掲げたが、少し古すぎるので、もう少し新しい

データはないかと捜した結果、京大大型計算機センターの 78年の例が公表されているのでそれを

表2に示す。

表2. 京大大型計算機センターにおける言語使用比率

C 7 7年 12月-78年4月）

呂 語 ステップ数 比 率

FORTRAN GE 9 3 9 0 3 5 8.6形

FORTRAN HE 6 3 0 0 2 3 9.3形

PL/I 2 9 1 3 1.8形

COBOL 4 3 4 0.3%

ALGOL 8 0.0形

（ステップとはACOSでいうアクティビティに相当する。形は筆者の計算による。）

飯田記子：＂バッチ・ジコプにおけるプログラムの使用頻度について”京都大学大型計算機

センター広報， Vo1。11,No. 3 , 197 8 (8月）より抜幸。

前回の表 1ではPL/Iは1.196だったが表2では 1.8 9iるとなっており、大して差がないと言っ

てしまえばそれ迄だが、少しは大きいと言えよう。阪大大型計算機センターにおける言語使用比率

にも大変輿味があるが、まだ公表されていないようである。筆者の推測では阪大でのPL/I使用

比率は上記2例よりもはるかに低いのではないかと思う。当誌の「センターだより」の欄には毎月

の処理状況が詳細に載っているが、この欄に言語使用比率も是非掲載してもらいたいものだと思う。

PL/Iのみならず、 APL,PASCAL, LISPといった新しい言語がどの程度使われてい

るか、筆者以外にも興味を持っている人は多いであろう。

-57

前回、第5章ではPL/Iのコーディング様式について説明したが、今回の第6章から内容の本

格的な説明に入る。ところで、前回にも少し書いたが本稿はFORTRANを一通りマスターした

人がPL/Iを容易に理解できることを目的としているので、通常のPL/I入門書とは少し異な

る。従って各種のステートメントを厳密な一般形で表わすようなことはせず、 FORTRANの例

文をそのままPL/Iに変換して示すことにより、賢明なる読者の頭の中にステートメントの一般

形が組み立てられるものと思う。クドクドしい説明はなるべく少なくし、＂答一発”ではないが、

＂例文一発”で即理解して頂けるよう配慮してあるつもりである。人間はコンピュータと違って、

高度なパターン認識能力と学習能力を持っているので、このようなことは朝めし前の筈（？）であ

る。とは言ってもこちらの書き方がまずいために朝めし前でない向きもあるかも知れないが、だか

らと言ってあなたのパターン認識能力、学習能力にケチをつけるつもりは毛頭ありません。

第6章データの型

FORTRANでは数値型変数名の場合、 I,J,K,L,M,Nで始まるものは整数型、それ

以外、すなわちA-H,0-Zで始まるものは実数型という、暗黙の型宣言があった。 PL/Iで

も全く同様で、 I, J, K, L, M, Nで始まる変数名は整数型、それ以外の場合は実数型と見な

される。これをI-Nルールと呼ぶ。 FORTRANにおける暗黙の型宣言のように、プログラマ

がいちいち指定しなくてもコンパイラが「気を利かせて」解釈する機能をPL/Iでは省略時解釈

機能（或いは標準ルール、英語ではdefault rule, 又はdefault feature という。

defaultとは不履行，怠慢，欠席，欠乏等の意味である）と呼ぶ。 FORTRANにも上述の

暗黙の型宣言以外に、例えば最初のREAD文やWRITE文でファイルのオープンを自動的に行

うなど、この種の機能を備えているが、 PL/Iの方がより豊富である。尤もFORTRANには

もともとファイルをオープンする文はないが…………。

FORTRANでは文字型はJISでは規定されておらず、通常は整数型として扱われる。但し、

ACOS-6 FORTRANでは文字型を設けている。 PL/Iでは文字型が許される。この他

にFORTRANの論理型に相当するBIT(ビット）型がある。複素数型はFORTRANのよ

うに実数型、整数型と区別されて独立した型としてあるのではなく、実数型、整数型いずれにもオ

プション的に指定できる。従ってFORTRANのように複素数型といえば実部も虚部も実数型と

は限らず、実部と虚部が整数型の複素数型もありうる。 FORTRANでは複素定数、例えば2.5

+ 4.5 iを表わすには (2.5, 4.5)と書いたが、 PL/Iでは2.5+ 4.5 Iと、虚数部に Iを付

けて和（差）の形で書く。単に4.5Iとすれば純虚数4.5iを表わす。

PL/Iにおけるデータの型にはこの他にラベル型等、プログラム制御用データの型があるがこ

こでは省略する。

-58-

FORTRANでは変数名は6文字以内と決められていたが、 PL/Iでは普通31文字迄許し

ている。 （但し、 ACOS-6ではTYPE(A) , TYPE (AB)とも 25 6文字迄許してい

る。しかし、そんな長い名前を付けると落語のジュゲムジュゲムのように混乱のもととなるだろう）。

変数名として使える文字はFORTRANでは英字と数字だけだったがPL/Iではこれに加えて、

TYPE (AB)では、＠（アットマーク，単価記号），＃（ナンバーマーク，井桁印），＄（又

は¥)'一—（マイナスではなくて下線，アンダーライン）の 4 文字が使える。 TYPE (A)では

＄と＿は使えるが、＠と＃は使えない。これら 4文字のうちu以外の＠，＃，＄は英字として扱わ
れるので変数名の頭に使ってもよい。なお、前回でも触れた力L」まマイナスとまぎらわしくなる恐

れがあるのでなるべく使わない方が無難であろう。

PL/Iでは変数名，外部手続き名（サブルーチン名等），ファイル名等をまとめて名標と呼ん

でいる。

第 7章型宣言文

数値型のデータ（算術データ）は暗黙の型宣言 CI-Nルール）に従う場合は無宣言で使ってよ

いが、そうでない場合は明確に宣言する必要がある。

なお、 ACOS-6ではTYPE(AB)にI-Nルールがあるが、 TYPE(A)には I-N

ルールがないので要注意である。これは不自然かつ不便なことだと筆者は思う。 TYPE(A)で

I-Nルールを付加する方法はあるが章末で述べる。又、文字型やビット型では明確に宣言しなけ

ればならない。 PL/Iでは宣言文は全て、 DCLという言葉から始まる。 DCLはDECLARE

の省略型である。省略型というのは、本来、 DECLAREと書くべき所をDCLと書いてもよい

ということである。省略型は殆んどのPL/Iで互換性があり、パンチミスも少なくできるので、

以降は省略型を主に使っていくことにする。

(1) 整数型

FORTRANで、

INTEGER A

なる整数型宣言は、 PL/Iでは、

DCL A FIXED BIN;

となる。 BINはBINARY (2進数）の省略型である。 2進数というのは計算機内部での話で

あり、気にする必要はない。 Aは普通の 10進数の整数と考えてよい。変数名が 2つ以上のとき、

すなわち、

INTEGER A, B, C

のような場合は、

-59-

DC L (A, B, C) F I XE D B I N ;

とカッコでくくればよい。 FIXEDとBINの順序は逆でもよい。

(2) 実数型

FORTRANで、

REAL K

なる PL/Iでは、

DCL K FLOAT DEC;

とすればよい。 DECはDECI MAL (1 0進数）の省略型である。同様に、

REAL K, L, M

はPL/Iでは、

DCL CK, L, M) FLOAT DEC;

とカッコでくくればよい。 FLOATとDECの順序も逆でもよい。

(3) 複素数型

前述の整数型又は実数型宣言にCPLX(COMPLEXの省略型）を付け加えればよい。すな

わち、実部と虚部が整数型からなる複素数Z

DCL Z CPLX FIXED BIN;

とすればよい。又、実部と虚部が実数型からなる複素数zの宣言は、

DCL Z CPLX FLOAT DEC;

とすればよい。変数名が 2つ以上あるときは前と同様にカッコでくくればよい。変数名が暗黙の型

宣言に従うときはCPLXの後は省略してよい。例えば、実部と虚部が整数型からなる複素数Kの

DCL K CPLX;

でよいし、実部と虚部が実数型からなる複素数Aの宣言は、

DCL A CPLX;

とすればよい。

(4) 倍精度型

倍精度実数型の宣言は、 FLOAT DECの後に (p)を付け加えればよい。カッコ内の数字

pは精度を表わすもので、コンパイラによって異なる。 ACOS-6の場合、 TYPE(A)では

p=5 9, TYPE (AB)ではp=3 1となる。ちなみに京大センターのFACOM M2 o 0

用の0SN/F4 PL/Iコンパイラではp=3 3となる。これらのpの値を書いた場合、前述

の普通の実数型宣言のときの5倍程度の精度となる。 FORTRANの、

DOUBLE PRECISION X

60-

は、 PL/IのTYPE(AB)では、

DCL X FLOAT DEC (31)

とすればよい。同様に倍精度複素数、

DOUBLE PRECISION COMPLEX Z

は、 TYPE(AB)では、

DCL Z CPLX FLOAT DEC (3 1) ;

とすればよい。 TYPE(A)や0SN/F4では (31)をそれぞれ (59), (33)とすれ

ばよい。変数名が 2つ以上のときはカッコでくくる。

ところで、もしベテランの方が読まれていて苦情が出るといけないので書いておくが、 (1),(21,

(3)の宣言文にも実際には精度指定を書くべきかも知れないが、本稿はFORTRANユーザが、な

るべく容易にPL/Iを理解できることが目的であるため、簡略化できる所は極力簡略化して書い

ている。又、実数型はFORTRANと厳密に対応させる場合は、 FLOAT BINであり、更

にPL/IプログラムをFORTRANプログラムと結合させる場合には精度指定もきっちり行わ

なければならない。しかし、ここでの話はまだその段階ではないので、実数型は暗黙の型宣言に合

せてFLOAT DECとしてある。整数型についても同様である。

(5) 文字型

前述のように文字型は]IS-FORTRANでは規定されていないが、 PL/Iでは次の例の

よう る。

DCL A CHAR (10);

ここで、 CHARはCHARACTERの省略型である。 (1 0)というのは文字列の長さが 10

文字であることを示し、もっと長くてもよい。 FORTRANのように 1つの変数名には4文字な

いし6文字しか入らないということはない。許される長さの最大値はTYPE(A)では25 4,

TYPE (AB)では51 2となっている。カッコを書かず単にCHARとすれば長さは 1と見な

される。変数名が 2つ以上のときはカッコでくくる。

文字型のデータはFORTRANではnHOO……〇で表わしたがPL/Iでは両側を引用符で

はさんで表わす。例えば、 5HJAPANは、 I JAPAN' となる。これはJI Sを越えたFO

RTRANでも使われている。9

(6) ビット型

ビット型はFORTRANにおける論理型を拡張したものと考えてよい。 FORTRANの論理

型宣言は例えば、

LOGICAL A

と書くが、これに対応するPL/Iのビット型宣言は、

-61-

DCL A BIT (1);

となる。カッコ内の 1はビット列の長さであり、もっと長くてもよい。ここがFORTRANと違

うところで、 FORTRANの場合、論理型はその値として。 TRUE。か、 。FALSE。すな

わち、真（ビットで言えば 1)か、偽（ビットで言えば 0)のいずれかしかとれない。従ってFO

RTRANの論理型はPL/Iのビット型の長さ 1の場合に相当する。ビット型で許される長さの

最大値はTYPE(A)では 253,TYPE (AB)では 51 1となっている。長さを省略する

と1と見なされる。変数名が2つ以上のときはやはりカッコでくくる。ビット型のデータは引用符

ではさんで後にBを付ける。例えば、 '1・o 1 1 o 1 o'Bというように表わす。

(7) 配列の宣言

配列の宣言は簡単で、今まで述べた(1)-(6)の各変数名のところを配列名に変えればよい。例えば、

暗黙の型宣言に従うサイズ sx1 0の2次元配列A(5, 10)は、

DCL ACS, 10);

とすればよい。暗黙の型宣言に従わないときは、例えば整数型として、

DCL A(5, 10) FIXED BIN:

というようにすればよい。配列の添字はFORTRANでは正整数と決まっていたが、 PL/Iで

は負整数でもよい。例えば、

DCL A(-2:2, -6:3);

は配列のサイズは前の例と同じ sx1 0であるが、配列の第 1添字は一 2,-1, 0, 1, 2, 第

2添字は一 6,-5, -4, -3, -2, -1, 0, 1, 2, 3の各値をとりうる。このように

： （コロン）で添字の上限と下限を表わす。従って、

D C L A C 5, 1 o) ;

は、

D C L A (1 : 5, I : 1 o)

と等価である。

この機能はFORTRANの最新版とも言えるFORTRAN77にも取り入れられているが、

整数座標を配列に置き換えて考えるときなど非常に便利である。配列の次元数はFORTRANで

は最大7次元までであるが、 PL/IではTYPE(A), (AB)共に31次元、 0SN/F4

では 15次元まで使用できる。配列で気を付けなければならないことは、 2次元以上の配列の要素

の並び方である。 2次元以上の配列の要索は実際の主記憶上では 1次元的に直列に並んでいる。そ

の並び方がFORTRANとPL/Iでは異なる。例えば 2次元配列A (2, 3)は、 FORTR

ANでは、

-62-

A (1, 1)

A (2, 1)

A Cl, 2)

A (2, 2)

A Cl, 3)

A(2, 3)

の順に並んでいるが、 PL/Iでは、

A Cl, 1)

A (1, 2)

A(l, 3)

A (2, 1)

A (2, 2)

A (2, 3)

という順に並んでいる。つまり、 FORTRANでは左側にある添字ほど忙しく変化していくが、

PL/Iでは右側にある添字ほど忙しく変化していく。 2次元の場合は画面と考えればFORTR

ANでは縦走査、 PL/Iではテレビと同じ横走査と言えよう。

2つ以上の配列や、スカラと配列をまとめて宣言することもできる。例えば、

DC L (A (5 , 1 0) , B (8) , C, D) F I XE D B I N ;

などとできる。 CとDはスカラである。

2つ以上の宣言文を 1つにまとめるにはカンマでつなげばよい。例えば、

DCL X (5) ;

DCL Y FIXED BIN;

DCL S CHAR (3 0) ;

DCL T BIT (20)

は次のように書いてもよい。

DCL X (5), Y FIXED BIN, S CHAR (30), T BIT (20);

しかし、先のように分けて書いた方が見易いかも知れない。ところで、 FORTRANでは宣言文

は必らず実行文より前になければならなかったが、 PL/Iではどこにあっても前にあるのと同等

に見なされる。

以上、各種の型および配列の宣言文について説明した。 PL/Iにはこの他に構造体という、ツ

リー状のデータを格納するのに便利なものがあるが、 FORTRANには存在しないのでもっと後

章で改めて説明することにする。なお、最後に付け加えておくがPL/Iでは暗黙の型宣言のよう

に省略時解釈を適用した名標は全てWARNINGとして出力される。この場合のWARNING

-63-

はFORTRANの場合の「警告」というような強い意味ではなく、 「確認」 「念押し」程度の意

味である。

又、前述したようにACOS-6のTYPE(A)には I-Nルールがないが、プログラムで付

け加えることができる。それにはFORTRANのIMPLICIT文に対応する PL/IのDE

FAULT文を使えばよい。すなわち、 FORTRANにおける、

I MP L I C I T RE AL (A -H)

IMPLICIT INTEGER CI-N)

IMPLICIT REAL (O-Z)

をPL/Iで書いて、

DFT (RANGE (A: H)) FLOAT DEC;

DFT (RANGE (I : N)) FIXED BIN;

DFT (RANGE (0: Z)) FLOAT DEC;

とすればよい。 DFTはDEFAULTの省略型である。

第8章入出力文

PL/Iの入出力文は大別して 2種類あり、 1つはGET文（入力文）と PUT文（出力文）か

らなるストリーム型入出力文であり、もう 1つはREAD文（入力文）とWRITE文（出力文）

からなるレコード型入出力文である。このうち、後者のレコード型入出力文はCOBOLの入出力

文に対応するので、 FORTRANユーザにはあまり関係がない。 FORTRANのREAD,

WRITE文に対応するのはGET,PUT文，すなわちストリーム型入出力文である。

ストリーム型入出力文も更に次の 3種類に分けられる。

ストリーム型入出力文 F~;ロニ文
DATA型入出力文

このうち、 FORTRANの書式つき入出力文に対応するのはEDIT型入出力文である。 LI

ST型入出力文はFORTRANのリスト指示入出力文（暗黙書式つき入出力文）に対応する。

DATA型入出力文はFORTRANのネームリスト型入出力文をずっと使い易くしたものと考え

てよいだろう。

以下に出力文と入力文について解説するが、ここでは簡単化のため、出力装置はラインプリンタ、

入力装置はカードリーダとして考える。

(8 -1)出力文（ラインプリンタ）

ここではまず出力文について解説する。入力文より出力文を先に説明するのは奇異に思えるかも

-64-

知れないが、入力文のないプログラムはあっても出力文のないプログラムはまずないと言ってもよ

い程、出力文は不可欠なものなので、まず出力文から説明することにする。

<a> EDIT型出力文

FORTRANの書式つき出力文、例えば、

WR I T E (6, 1 0 O) A

1 0 o FORMAT CF 7.3)

をPL/Iで書くと、

PUT ED IT (A) CF (7, 3))

となる。すなわち、一般的には、

PUT EDIT(変数名） （書式）

となるC FORTRANにおけるF書式（固定小数点書式）のF7. 3はPL/Iでは、 F(7, 3)

と数字部分をカッコで包み、 ドットはカンマにする。同様にE書式（浮動小数点書式）、例えば、

E 1 3. 5はPL/IではE(13, 5)となる。又、出力様式も多少異なり、ー 12 3 4を

FORTRANのE1 1.4で出力すると、一0.12 3 4 E+ O 4となるがPL/IのEC 1 l, 4)

で出力すると、一 l.2340E+03となり、 1の位に有効数字が入る。 I書式（整数書式）は

PL/Iにはなく、 F書式を用いる。すなわち、例えばFORTRANでのI8は、 PL/Iでは

F (8)とすれば同じ機能となる。 FORTRANではF8という書き方は許されない。 F書式で

は出力すべきデータの値が下位桁で書式よりはみ出していれば丸め（絶対値の四捨五入）が行われ

る。例えば、 2.5や一 5.5をF (2)で書かせるとそれぞれ、 3,-6になる。

A書式（文字列書式）は、例えばA4はPL/IではA (4)となる。ここでカッコと数字を省

略して単にAとしてもよい。この場合、長さは可変長となり、出力すべきデータの長さに合わされ

るので非常に便利である。

空白を作るためのx書式（空白書式）は、例えば lOXは、 PL/Iでは、 X (1 0)となり、

数字部分がカッコに包まれて後にくる点が異なる。とにかく、 F,E,A, X各書式いずれにして

もPL/IではFORTRANと違って、数字部分をカッコで包まなくてはならないこと、及びド

ットはカンマにするということを覚えておくとよい。

PL/Iではこの他に次のような書式がある。ビット型データのためのB書式（ビット列書式）

は、 A書式と同様で、長さが 5ならB (5)と書く。これも (5)を省略して単にBとしてもよい。

複素数のためのC書式（複素数書式）は、 F又はE書式が2つペアになった形で、

C CF C 5, 1) , F C 7, 3))

などと書く。

-65

C CF (5, 1))

と1つだけ書けば、

C CF Cs, 1) , F C 5, 1))

と同じ書式を2つ書いたものと見なされる。 C書式の場合、虚数単位を示す文字 Iは出力されない。

この他にP書式（ビクチュア書式）があるが、 COBOL的なものなので省略する。

同じ書式が続くときは 1つにまとめることができる。 FORTRANでは、

WR I TE (6, 1 0 O) X, Y, Z

100 FORMAT(3Fl0. 3)

と書くような場合， PL/Iでは、

PUT EDIT(X, Y, Z) (3 F(lO, 3));

と書くか、又は、

PUT EDIT ex, Y, Z) ((3) F (10, 3))
と書く。両者の違いは繰返しの回数を示す 3の部分にあり、前者は 3とFの間に空白を入れ（入れ

なくてもよいコンパイラもある）、後者は 3をカッコで包んである。どちらを使ってもよいが、後

者のカッコで包む方を覚えておいた方が間違いも少なく、あとあと都合がよい。

EDIT型入出力文はFORTRANの書式つき入出力文に対応すると書いたが、厳密に対応す

るのはEDIT型入出力文のうちのR書式を使った場合である。 R書式はリモートフォーマット

（遠隔書式）と呼ばれ、 FORTRANのFORMAT文を使う場合にびったり対応する。すなわ

ち、 FORTRANで、

WRITE(6, lOO)A,K

1 o o FORMAT (F 7. 3, I 6)

をR書式を用いたPL/Iで書くと、

PUT ED IT (A, K) (R (L 1)) ;

L 1 : FORMAT (F (7 , 3) , F (6)) ;

となる。 FORTRANの場合のFORMAT文番号 10 0が、 PL/IのFORMAT文のラベ

ルLlに対応する。すなわち、 R書式のR C)のカッコ内にあるのがFORMAT文のラベルを

表わす。ラベルというのは、 FORTRANの場合の文番号に相当する。 PL/Iでは文番号とい

うのは付けないで、その代りに必要ならば文に名前を付ける。その名前のことをラベルというので

ある。上例ではLlがFORMAT文のラベルである。ラベルと文の間には必らず： （コロン）を

はさむ。 R書式ではリモートフォーマットの名の通り、 FORMAT文は入出力文から遠く離れた

所にあってもよく、この点FORTRANのFORMAT文と全く同じである。 R書式は同じFO

RMATを使う入出力文が沢山あるときや、場合によってFORMATを種々切り換えて使いたい

-66-

ときに便利である。これは先の例で言えば、例えばR (LX)としておき、場合に応じて、 LX=

Ll, L2, L3, ……と種々変化させて所望のFORMAT文を引っ張ってくればよい。しかし

通常は普通のPUT EDIT文で十分であろう。

次にFORTRANにおける nHOO……Oのように文字列を出力させる方法を述べよう。

FORTRANで例えば、

WR I TE (6, 1 0 0) X

100 FORMAT(F7. 2, 9HKILOMETER)

はPL/Iでは、

PUT EDIT ex,'KILOMETER') CF (7, 2), A (9));

となり、 KILOMETERという文字列が、 FORTRANでは書式の所に置かれるのに対し、

PL/Iでは変数名（データ）の所に並べられる点が異なる。 A (9)はKILOMETERと書

くための書式であり、前述したように単にAと書いてもよい。

次に改頁や改行等の書式の制御について述べよう。書式の制御には制御書式を用いる方法と、書

式制御用オプションを用いる方法の 2通りある。まず制御書式について述べる。制御書式には次の

ようなものがある。

PAGE書式

SKIP

LINE書式

COLUMN書式

x書式も制御書式の 1つであるが既に述べたので省略する。

PAGE書式は改頁を行い、 FORTRANのlHlに相当する。例えば、

WR I TE (6, 1 o o) K

1 0 O F O R MAT (1 H 1 , I 5)

をPL/Iで書くと、

PUT EDIT (K) (PAGE, F (5))

となる。

SKIP書式は改行を行い、 FORTRANのlH+, lHO, lH 等に相当する。通常

SK I P C n)の形式で用い、 nはn行改行することを表わす。 n=Oなら改行しないで重ね打ち

することを表わし、 FORTRANのlH十に相当する。 n=lなら 1行改行で lH に相当する。

n=2なら 2行改行で lHOに相当する。 nは3以上でもよい。

次のようなFORTRANの例、

WRITE(6, lOO)A,K

-67-

1 O o FORMAT (1 H 1 , F 1 O。3/////lH, 13)

は、 PL/Iでは、

PUT EDIT (A, K) (PAGE, F (10, 3), SKIP (5), F (3));

となる。 Cn)を省略して単にSKIPと書くと SKIP(1)と見なされる。

LINE書式はその頁の上から何行目に印刷せよという意味で、 FORTRANにはない機能で

ある。 LINECn)の形で用いられ、上からn行目に印刷することを意味する。

PUT EDIT (X) (LINE (10), F (10, 2));

とすれば、その頁の上から 10行目にXの値を印刷する。 LINE書式の Cn)は省略できない。

又、逆に前述のPAGE書式には (n)は付けられない。 2回改頁しようと思って、 PAGE(2)

などと書くと誤りで、そんなときは、 PAGE,PAGEと2つ並べればよい。

COLUMN書式はその行の左端から何カラム目に印刷するかを表わし、 JISを越えたFOR

TRANにある位置欄記述子Tに相当する。 FORTRANで例えば、

WR I TE C 6, 1 O o) A

1 o O FORMAT (1 H , T 2 1 , F 7 . 3)

をPL/Iで書くと、

PUT ED I T (A) (SK I P, COLUMN (2 0) , F (7, 3)) ;

となる。 FORTRANの場合は 1カラム目は制御文字として使われるので、 T21と書いても実

際には 20カラム目から印刷される。 COLUMN書式も (n)は省略できない。

以上が制御書式であるが、前述したように書式制御用オプションを用いる方法もある。このオプ

ションには次の 3つがある。

PAGEオプション

SKIPオプション

LINEオプション

すなわち、 COLUMN書式とX書式に相当するものがないだけで、あとは使い方も意味も全く同

じだが、書く場所が異なる。オプションは、 PUTとEDITの間か、又は一番後へ書く。例えば、

PUT SK I P C 3) ED IT (A) CF (7, 3))

あるいは、

PUT EDIT (A) (F (7, 3)) SKIP (3);

などと書く。両者は全く同じで、前者はAを印刷する前にスキップするが、後者は印刷してからス

キップするという意味ではなく、どちらも印刷する前にスキップする。すなわち、 SKIP書式で、

PUT ED I T (A) (SK I P (3) , F C 7 , 3)) ;

と書いたのと同じである。なお、ついでに述べると、 Aを印刷してからスキップさせようと思って、

-68-

PUT ED IT (A) (F (7, 3) , SK I P (3)) ;

としてもSKIP(3)は無視される（書いていないのと同じ）から要注意である。これは他の制

御書式についても同じである。この点FORTRANとは異なる。 FORTRANでは、

WR I TE (6, 1 0 0) A

1 0 o F O RMA T (F 7。 3///)

とすると、 Aを印刷してから 3行改行される。 PL/Iで、こうしたい場合は、

PUT ED I T (A) (F (7, 3))

PUT SK I P (3) ;

とすればよい。又、改頁だけさせたければ、

PUT PAGE;

とすればよい。すなわち、オプションを使う場合はEDIT以降がなくてもよいのである。これは

オプションの存在理由の 1つと言えよう。勿論、オプションの存在理由はこれが主ではなく、後述

するLIST型やDATA型のように書式を書かない入出力文では必要不可欠なものなのである。

オプションを使うときの注意として、 1つのPUT文に同時に指定できるのはPAGEオプショ

ンと LINEオプションだけであり、 SKIPオプションはPAGEオプションやLINEオプシ

ョンとは共存できない。すなわち、

PUT PAGE LINE (5) EDIT (A) (F (7, 2));

は許される。この場合、順序を逆にして、 LINE(5) PAGEとしても最初に改頁が行われ、

次に5行目へ行送りされる。しかし、 PAGE SKIPや、 LINE(n) SKIPの組合せ

は許されない。

LIST型出力文

LIST型入出力文は前述したようにJI Sを越えたFORTRANにあるリスト指示入出力文

（暗黙書式付き入出力文）に相当するものである。 FORTRANのリスト指示入出力文は、

ACOS-6 FORTRANの場合、

WRITE (6, LIST) A, B, K

などと書く。すなわち、 FORMAT文番号を書く所にL・ISTと書くだけで、 FORMAT文は

不要である。 （これは書式なし入出力文とは違うので誤解のないように！）。 FORMATはデー

タの型に応じてシステムが選択する。つまりシステムおまかせ型のFORMATである。しかし互

換性はなく、 FACOM 0SlV/F4 FORTRAN HE (GE)では、

WR IT E (6, *) A, B, K

と、 LISTではなく星印を用いる。 ACOS-6では複素数を除いてはこの形式も許しているの

-69 -

で、複素数を出力する場合以外は星印を用いた方が互換性が保てる。

以上はFORTRANの話であるが、 PL/Iでは上例は、

PUT LI ST (A, B, K) ;

と書く。すなわち、 EDIT型の場合と比べると、 EDITと書いた所がLISTとなり、書式を

並べる 2番目のカッコがいらない。

FORTRANのリスト指示入出力文では改頁とか改行等の書式制御はできなくて、いつもベタ

打ちとなるが、 PL/Iでは前述したオプションを使っていくらでもできる。例えば、

PUT SK I P (2) L I ST (A, B, K)

などと書ける。又、文字列を混ぜて、

p u T p AGE L I s T (M, I GA T s u I'N'I N I CH I I) ;
のような書き方もできる。

LIST型出力文は使い方が大変簡単なので、初心者や不精者におあつらえ向き、もってこいの

出力文である。しかし、もっと不精者向きの出力文がある。それが次に述べるDATA型出力文で

ある。

<c>DATA型出力文

DATA型入出力文は形式的には、 J I Sを越えたFORTRANにあるネームリスト入出力文

にやや類似しているが、ネームリスト入出力文は使い方がややこしいのでベテラン向きであるが、

PL/IのDATA型入出力文はLIST型入出力文と同様、非常に簡単に使えるので初心者や

FORMATを考えるのが面倒な不精者に最適である。

LIST型出力文では印刷はおまかせ型FORMATであったが、 DATA型出力文ではそれに

加えて、ごていねいに変数名と＝を印刷してくれるのである。すなわち、

変数名＝値

の形式で出力してくれる。例えば、 K=1 2 3 4, X= 1 . 2 3 X 1 08だとすると、

PUT DATA(K,X);

とすれば結果は、

K= 1 2 3 4 X= 1。 23E+OS;

という形式で印刷される。 （最後に；が印刷される。又、実際には書式の関係で＝のあとに空白が

できるかも知れない）。文の形式はLIST型の場合のLISTをDATAに変えるだけで、 LI

ST型と全く同じである。オプションも使え、

PUT SKIP(3) DATA(A, B, C, L);

などとしてもよい。しかし、 LIST型のように文字列をそのまま印刷させることはできない。例

-70-

えば、

PUT DATA (M,'YEN') ;

などとすると誤りとなる。しかし、文字型変数を印刷させることはできる。この場合、 LIST型

と多少相異が生じる。例えば文字型変数NAMEの内容が文字列 'TARO'だとすると、

PUT LI ST (NAME) ;

の結果は、

TARO

となるが、

PUT DATA (NAME)

の結果は、

NAME='TARO'

と、 DATA型の場合は I (引用符）もそのまま印刷される。

このように、 DATA型出力文は変数名をそのつど印刷してくれるので、変数名をつけるとき、

その変数の意味内容をそのまま表わす名前をつけておけば便利である。幸いPL/IではFORT

RANの6文字と違って、もっと長い名前も自由に付けられる。しかし、 DATA型入出力文は便

利なだけに、 EDIT型やLIST型入出力文に比べて効率が悪く、処理時間が長くかかり、サブ

セット的なPL/Iでは割愛されている。 (ACO S-6や、 OSN/F4では勿論使用できる）。

C 8-2)入力文（カードリーダ）

入力文は原則的には前述した出力文のPUTという箇所をGETに変えればよいのである。しか

し、出力文の場合とは異なる点もあるので注意が必要である。 EDIT型入力文， LIST型入力

文， DATA型入力文の3つのタイプの入力文に共通していることは、出力文の場合とオプション

が異なることである。出力文のところで述べたPAGEオプション， SKIPオプション， LIN

Eオプションのうち、入力文でも使えるのはSKIPオプションだけで、 PAGEオプションや

LINEオプションは使えない。その理由はカードから入力することを考えればすぐ分るだろう。

SKIP(n)はFORTRANのREAD文のFORMATにおける／（スラッシュ）と同じで

カード送りを意味する。又、出力文にはなくて入力文特有のオプションで、 COPYオプションと

いうのがある。これは読み込んだデータをカードイメージそのままの形でラインプリンタに出力す

る機能であり、例えば、

GET ED IT CA) CF C7, 3)) COPY;

と書くと、入力と同時にカードにパンチされている形式のままでAの値を印刷する。

-71-

<a>EDIT型入力文

出力の場合と異なって制御書式として、 X書式， SKIP書式は許されるが、 PAGE書式，

LINE書式はオプション同様許されない。又、前述したようにCOPYオプションはあるが、

COPY書式というのはない。

F書式ではカードにパンチされているデータとそれを読み込む書式が一致せず、いずれか一方に

小数点があり、他方にないときは、小数点のある方が優先される。例えば、カード上に 18. 7と

パンチされていて、これをF (4)で読んでも 18. 7と入力される。 00 1 8や 00 1 9にはな

らないし、エラーにもならない。逆に、 1 8 7とパンチされたものをF (5, 1)で読むと、 18.7

と入力され、 1 8 7とはならない。又、データと書式の双方に小数点があるが位置が一致していない

ときはデータの方が優先される。例えば、 1 2. 3 4をF (5, 1)で読み込んでも 12 3。 4と

はならないで、 1 2. 3 4と入力される。

E書式についても同様である。例えば、 1 2 3 4 E 2とパンチされているデータを、 E (6, 2)

なる書式で読み込むと、書式の方が小数点をもつので優先されて、 12. 34Xl炉として入力

され、データ通りに 12 3 4 X 1 o2とはならない。同じデータをE (6, 0)で読み込むと、デ

ータと書式が一致して、 1 2 3 4 X 1 o2として入力される。又、 12. 34E2なるデータをE

(7)なる書式で読み込むと、データの方が小数点をもつので優先されて、 1 2 . 3 4 X 1 o2と

して入力され、書式に合せて、 1 2 3 4 X 1 02 とはならない。データも書式も小数点をもつ場合、

例えば、 12. 34E2なるデータを、 E (7, 1)なる書式で読み込むと、データの方が優先さ

れて、 12。 34Xl炉として入力される。書式に合せて、 12 3. 4 X 1 o2とはならない。

c書式の場合はデータに虚数単位Iを付けてはいけない。あくまで2つの実数（整数を含む）の

ペアと考える。

以上のルールはFORTRANの場合と大体類似している。しかし、 PL/Iで注意すべき重要

な点がある。それは、 FORTRANの入力文 (READ文）では、 1つのFORMAT文はカー

ド送りを示す／がない限り、 1枚のカードに対応している。例えば、

READ (5, 100) A

1 0 0 FORMAT (F 7。 3)

を1回実行し、もう 1回この文を実行すると、 2回目には次のカードの 1カラム目から読むことに

なる。しかしPL/Iでは、

GET ED IT (A) (F (7, 3)) ;

を1回実行し、もう 1回この文を実行すると、 2回目は 1回目と同じカードの第 8カラムから 7桁

を読み込むことになる。だから次のカードの 1カラム目から読ませたいときは2回目のGET文を、

GET ED I T (A) (S K I P, F (7 , 3)) ;

-72-

とするか、 1回目と 2回目を同じ文にしたいならば、

GET ED I T (A) ((COLUMN (1) , F (7 , 3)) ;

とすればよい。

以上の事柄と関連して、もう 1つ注意すべきことは出力文の項でも少し触れたが、制御書式以外

の書式 CF,E, C, A, B書式）の最後尾にあるものより更に後にある制御書式は無視される。

例えば、

G ET E D I T (A, K) (F (8 , 1) , X (5) , F (7) , X (6 0)) ;

とすると、 X (5)は機能するが、最後のX (6 0)は無視される。つまり、 AをF (8, 1)で

読み、 5桁おいてKをF (7)で読み終えるとあとは見向きもしないで次の文に移るのだと考えて

よい。従ってもう 1回この文を実行すると 2回目は同じカードの第 21カラムから読み始める。

LIST型入力文

LIST型入力文はLIST型出力文のPUTをGETに変えるだけでよい。データをカードに

パンチするときは、 1つずつカンマ又は空白で区切ればよく、書式には気を使わなくてよい。又、

複素数は複素形式で入出力される。例えばカード上に、

1 . 2 3, 7 5 6 -8 I'JAPAN','1 1 0 1'B

とパンチされているデータを、

GET LI ST (A, K, C, S, T) ;

で読み込むと、 A=l.23, K=75, C=6-8 iとなり、 Sには文字列JAPAN,Tには

ビット列 11 0 1が代入される。 （この場合Cは複素数型、 Sは文字型、 Tはピット型の宣言がさ

れているものとする）。又、カード上に、

-63。 8,, 4。3

とパンチされているデータを、

GET L I s T ex'y'z) ;

で読み込むと、 x=-63。 8,Z=4。 3となるがYには何も代入されず、変化しない。すなわ

ち、カンマが 2つ続くとその間に対応する変数には何も代入されない。

<c>DATA型入力文

DATA型入力文もDATA型出力文のPUTをGETに変えるだけでよい。データをカードに

パンチするときはやはり 1つずつカンマ又は空白で区切ればよく、書式には気を使わなくてよい。

但し、 LIST型のときと違って、変数名＝値 の形式でパンチしなくてはいけないし、 1つの

GET文で読み込む一組のデータの終りには；（セミコロン）を打たなくてはいけない。又、カー

-73-

ド上のデータの順序はGET文中の順序と違っていてもよい。例えばカード上に、

B=O, 3+5。 6I, A=2 3, 1 C='DAY';

とパンチされているデータを、

GET DAT A (A, B, C) ;

で読み込むと、 A=23. 1, B=O. 3+5. 6i, Cは文字列DAYとなる。 （但し、 Bは複

素数型、 Cは文字型の宣言がされているものとする）。又、カード上に、

X=-2 3. 3, Y= 0. 8 ;

とパンチされているデータを、

GET DATA ex, Y, Z)

で読み込むと、 x=-23。3,Y= o. 8となるが、 Zには何も代入されず変化しない。又、こ

の逆に、カード上に、

s=1. s, T=3, u=s. s;

とパンチされているデータを、

GET DATA (S, T) ;

で読み込むと、 Uの入る場所がないので誤り（正確にはNAME条件の発生）となる。

以上で、ラインプリンタを対象とした出力文およびカードリーダを対象とした入力文の解説を終

る。ラインプリンタやカードリーダ以外の入出力装置（パーマネントファイルや磁気テープ、カー

ド出力等）を対象とした入出力文については後章のファイルに関連した部分で解説する予定である。

なるべく肩のこらない文章にするべく努力しているが、内容が細部に入ってくるとなかなかそんな

ことも言っておれなくなる点、御許し頂きたい。次回は代入文，メインプログラムとサププログラ

ム，初期値設定等について解説する予定である。次回 (8月）につづく。

（プログラム相談員）

-74-

