
Title FORTRANとの比較によるPL/Ⅰ入門（3）

Author(s) 塩野, 充

Citation 大阪大学大型計算機センターニュース. 1980, 38, p.
79-95

Version Type VoR

URL https://hdl.handle.net/11094/65456

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

資料

FORTRANとの比較によるPL/I入門 (3)

大阪大学工学部塩野 充

今回は代入文、メインプログラムとサププログラム、初期値設定等について解説しよう。

第9章代入文

(9 -1)代入文の形式

PL/Iの代入文はFORTRANと殆んど同じである。ただ、忘れてはならないが忘れやすい

のが終りにつける；（セミコロン）である。しかしこれは代入文に限ったことではなく、 PL/I

のステートメントを書くときは必ずつけなければならないものである。この、セミコロンというし

ろもの、 FORTRANに慣れた者にとっては実にわずらわしく、うるさいものである。 「五月蠅

い」と書いて「うるさい」と読むそうだが、まさにこのセミコロンは蠅のようなものである。セミ

コロン 1つ忘れただけでエラーになる。つまり、

A=l. 2 3

は誤りで、

A=l.23;

としなければならない。セミコロンの効用は 1行（すなわちカードで言えば 1枚）にいくつもの文

が書けることであり、セミコロンがない限り、行（カード）を改めても自動的に継続行と見なされ

るので、 FORTRANのように第6カラムにこだわる必要がないことである。しかし、実際に1

行にいくつもの文を詰めて、例えば、

A= 1. 2 3; B=O。s;c=2. 5 ;K=1 o ;L=23 ;x=11. 9…………

などと書くと、ソースリストが見にくく、間違いの元となりやすい。やはり少々ぜい沢（？）なよ

うでもFORTRANのように 1行1文というのが見やすくて良いようである。セミコロンを忘れ

ないための 1つのアイデア（？）としては、使用するカード全部にあらかじめ 72カラム（すなわ

ちプログラムの書ける最後のカラム）にセミコロンをデュープ（複写キー）で打っておいてから、

プログラムをセミコロンなしでパンチする、という手もあるが、果たしてどちらが能率的か……？。

ACOS-6 FORTRANではPL/Iと同様にセミコロンで区切って 1行にいくつもの文

が書ける＂多重文”という機能があるが、実際使ってみるとソースリストが見にくく、又、他機種

との互換性もないので、カード枚数を極力少なくしたいというような特殊な場合以外はお勧めしか

ねる。

大阪大学大型;lt紅機センターニュース -79- No. 38 1980-8

(9-2) FORTRANとの差異

話を代入文に戻そう。 PL/Iの代入文で、 FORTRANとは異なる点、又、 FORTRAN

にはない機能について説明しよう。

まず、加減乗除の演算子はFORTRANと同じく、＋，ー ＊ ／ となる。べき乗も同じく、

＊＊であるが、この場合は少し注意を要する。それは、例えばFORTRANで、

A**2**N

と書くと（このような書き方はJIS FORTRANでは許されていないが）、処理系によって

は左から右へ計算されて、

(A** 2) * * N

と同じ意味になる場合もあるが、 PL/Iでは右から左へ計算されて、

A** (2**N)

と同じ意味になる。 （但し、 ACOS-6 FORTRANや、 FACOM OSN FORTR

ANではPL/I同様、右から左へ計算される）。従って、例えばA=l0, N=3とすると、

A**2**Nの値は左から右へ計算されると、

(10**2) **3=100**3=1000000

となるが、右から左へ計算されると、

10** (2**3) =10**8=100000000

となり、全然違った結果となる。従ってこのようにべき乗が続く場合は、自分の意図している演算

が確実に行われるように、カッコできっちりと包んでおく方が無難である。

加減乗除の場合は優先順位もFORTRANと同じで、計算は左から右へ行われる。 PL/Iで

はFORTRANと違って、右辺や左辺、あるいは右辺の式の中で、実数型や整数型、複素数型等

が入り混じっていてもよい。すなわち混合演算が許されている。これはデータ型の変換機能がある

ためであり、人間が筆算で計算する場合と同じである。人間が普通に計算を行う場合は実数とか整

数の区別は殆んど意識していない。 1 0 0円をいちいち 10 0. 0円などと言う人はいないであろ

う。 STAR TREKに出てくる宇宙人のスポックなら話は別だが………。ところで話を元に戻

して、右辺の計算の結果は左辺のデータの型に合わされる。例えば、

K=l 2. 3+5. 8;

では、 K=lSとなる。

A=2s-11;

では、 A=1 7. oとなる。この程度の、右辺の結果を左辺の型に合わせる変換はJISを越えた

FORTRANでも行われている。

四則演算で注意すべきことが1つある。例えば、 FORTRANで、

大阪大学大型社罪機センターニュース -80- No. 38 1980-8

M=N/2 * 2

という代入文を考えよう。今、 N=3ならば、

M= (3+2) X2

=t rune (1. 5) X2

=1X2

=2

と計算される。ここで、 truncは小数以下の切り捨てを意味する。これがPL/Iでは、

M= (3+2) X2

=1. 5X2

=3

と計算される。つまり、同じ式でも違った値になる。 PL/Iでは途中の truncが行われない。

FORTRANではこの場合、右辺のオペランド (3とか2とかの計算される数値）が整数なので

結果も整数であり、全て整数演算が行われる。すなわち、まず3+2を行い、その結果の 1. 5も

整数化して 1としてから 2をかけて、結果は2となる。ところがPL/Iでは混合演算が許されて

いるので、結果が整数であるなしにかかわらず、右辺の計算は実数で行われる。従って、 3+2の

結果の 1. 5に2をかけて結果は 3。 Oすなわち 3となる。

FORTRANでは左辺に変数名（又は配列要素名）は 1つしか書けなかったが、 PL/Iでは

2つ以上書いてもよい。すなわち、

A, B, c=x;

というような書き方ができる。これは、

A=X;

B=X;

c=x;

と書いたのと同じである。

FORTRANでは例えば次のような、

A---B

という式は許されない。しかしPL/Iではこれは、

A-(-(-B))

と同じと解釈される。すなわち、＋や一の演算子がくっついて続いていると、一番左のものが演算

子（二項演算子）と見なされ、それ以外は正負の符号（単項演算子）と見なされる。次のように＊

や／とくっついた書き方も許される。

A/-B , A* *-B

大阪大学大型社罪機センターニュース -81- No. 38 1980-8

これらはそれぞれ、 A/(-B) , A* * (-B)の意味となる。従って、

A-*B , A+/B

などは一や＋が符号ではなくて二項演算子となり、＊や／が意味を失うので誤りとなる。

配列名どうしや、配列名とスカラとの加減乗除は配列要素毎の演算を表わす。例えば、 3つの配

列A (2, 3), B (2, 3), C (2, 3)について、 PL/Iでは、

A=B+C;

と書くと、 FORTRANの、

DO 1 I= 1, 2

DO 1 J = 1, 3

1 A CI, J) =B CI, J) +CCI, J)

に相当する。これらのことは第 3章にも書いたので、そちらを参照されたい。

PL/Iでは、

A=B=c;

という文は誤りではない。この結果は、 B=Cが真ならば、 Aは '1'Bとなり、 B=Cが偽なら

ば、 Aは IOI Bとなる。すなわち、左の＝は代入記号であり、右の＝は比較演算子である。もし

これをFORTRANで書くと、

A=B。EQ。C

となる。論理型に慣れていない人のためにもっと説明的に書くと、

IF (B。EQ.C) A=。TRUE.

IF(B.NE.C) A=。FALSE。

となる。

PL/Iでは、文字型としての数字の列を算術演算できる。例えば、

DCL M CHAR (4)

M= 11 9 8 0';

N=M+20;

とすると、 Nは2000となる。これもデータ型の変換機能により文字型が算術型に変換されたわ

けである。文字型としての空白が算術型に変換されると0になる。このようなことはFORTRA

Nでは不可能である。

以上述べたようなことがPL/Iの代入文の特徴である。

大阪大学大型社罪機センターニュース -82- No. 38 1980-8

第 10章 メインプログラムとサププログラム

(10-1)メインプログラム

FORTRANではサププログラムは、 SUBROUTINE文、 FUNCTION文、 BLO

CK DATA文のいずれかで始まるが、そうでなくていきなり宣言文や実行文で始まるのがメイ

ンプログラムである、という区別があった。又、メインプログラムにはプログラマが名前（プログ

ラム名）を付けることができなかった。 ACOS-6 FORTRANでは......, OSN

/F4 FORTRANではMAINという名前をシステムが自動的に付けている。

PL/Iではメインプログラムにもプログラマが名前 CPL/Iでは手続き名や外部名と呼ばれ

る）を付けなければならない。手続き名の長さはACOS-6ではTYPE(A) , (AB)共に

6文字以内、 FACOM OSNでは7文字以内である。だからFORTRANのサプルーチン名

と同じ 6文字以内と覚えておけばよい。

メインプログラムは、例えば名前をREIDAIとすると、

RE I DA I : P RO C OPT I ON S (MA I N) ;

という文（プロシージャ文）から始まる。 PROCはPROCEDUREの省略型である。手続き

名はこのようにPROCの前に書き、手続き名とPROCの間に：（コロンであり、セミコロンで

はないことに注意/)を書く。 0PT I ON S (MA I N)という語句がメインプログラムである

ことを表わしている。メインプログラムの最後は、

END REI DAI;

と、 ENDの後に空白を置いて手続き名を書き、 ；で終る。 FORTRANのようにSTOP文は

不要である。 （書いてもよいが書く必要はない）。

(1 0-2)サプルーチン

<a>パラメータのあるサプルーチン

サプルーチンは、例えば名前をSUB1, 仮引数をA,B, Cとすると、

SUB 1: PROC (A, B, C) ;

という文で始まる。すなわち、メインプログラムのときと比べると、 OPTIONS(MA IN)

という語旬がなくなって、代りにカッコで包まれた仮引数が続く。最後はやはりメインプログラム

のときと同様に、

END SUBl;

となる。 ENDの直前のRETURNは書いても書かなくてもよい。しかしENDの直前以外の場

所でRETURNさせたいときは当然書かなければならない。

このサプルーチンを引用するにはFORTRANと全く同じで、 CALL文を使えばよい。例え

大阪大学大型社鉢機センターニュース -83- No. 38 1980-8

ば、実引数をX,Y, Zとすると、

CALL SUB 1 ex, Y, Z)
とする。但し、 FORTRANのときと同じように仮引数A,B, Cと、実引数X,Y, Zの個数、

順序、データの型は必ず一致させておかなければならない。特にデータの型は一致していなくても

エラーにならず、一見うまくいったかのように見えて実はオカシナ結果になる場合があるので気を

付けなければならない。

サププログラム（サプルーチンや関数）を引用する方のプログラムでは、

DCL SUBl ENTRY;

というように、 SUBlはサププログラム名でありますよというENTR

ばならない。これはFORTRANとは異なる点である。

しておかなけれ

ところでFORTRANでの仮引数、実引数という言葉はそれぞれ英語の、 dummy argu-

ment, actual argument燭訳であるが、 PL/Iの場合、英語では仮引数に相当

するのはparameter, 実引数に相当するのはargumentとなっている。従って大抵の

PL/Iのマニュアル類では、 FORTRANのように仮引数と実引数という言葉を使わないで、

英語のまま、パラメータとアーギュメントとして使っている。従って本稿でも以降はパラメータと

アーギュメントを使う。すなわち、サプルーチンの頭のPROC文に書くのがパラメータ、メイン

（とは限らないが、サプルーチンを呼ぶ方のプログラム）のCALL文に書くのがアーギュメント

である。

余談だがPL/Iではdummy argument は仮アーギュメントと訳され、全く別の意味

に用いられている。これはパラメータとアーギュメントのデータの型が一致しないとき、両者の橋

渡し的役目をする記憶域のことであるが、話が複雑になるので省略する。

パラメータのないサプルーチン

仮引数すなわちパラメータのないサプルーチンのときは、

SUB 1 : P ROC;

とすればよい。パラメータのないサプルーチンというのはFORTRANではCOMMON文によ

ってデータの受け渡しを行う場合であるが、 PL/Iでこれに相当するのは、 EXTERNAL宣

言である。

FORTRANで、例えばメインプログラムで、

COMMON/BLK/X, Y, Z

CALL SUBl

となっており (BLKは共通領域名）、サブルーチンで、

SUBROUTINE SUBl

大阪大学大型,tt鉢機センターニュース -84- No. 38 1980-8

COMMON/ELK/A, B, C

となっているのを、 PL/Iで書くと、メインプログラムで、

DCL ex, Y, Z) EXT;
DCL SUBl ENTRY;

CALL SUB 1 ;

となり、サプルーチンで、

SUBl: PROC;

DCL ex, Y, Z) EXT;
となる。 EXTはEXTERNALの省略型である。ここで注意すべきことは、 FORTRANで

はメインで、 X,Y, Zという名の変数がサプでは、 A,B, Cと、違った名前になっていても、

XがAに、 YがBに、 ZがCに順番に対応付けられた。しかしPL/Iでは違った名前になること

は許されない。 （パラメータとアーギュメントを用いる場合は勿論違った名前になっていてもよい）。

その代り、並ぶ順番は違っていてもよい。つまり今の例のサプルーチンで、

SUBI:PROC;

DC L (Y, Z, X) EXT ;

となっていてもよい。 （パラメータとアーギュメントを用いる場合は勿論並ぶ順番が違ってはダメ

である）。

上述のPL/IのEXTERNAL宣言はこの場合、 FORTRANのEXTERNAL文とは

全く意味が異なり、似ても似つかないものなので要注意／。なお、 1つのPROC文に書けるパラ

メータの個数はTYPE (A) , (AB)共に12 8個となっており、十分すぎるであろう。

<c>再帰的呼び出し

サブプログラムの再帰的呼び出しについては第 3章で階乗計算を例にとり説明した。すなわち、

サププログラムが自分自身を呼び出すことである。この再帰的呼び出しを行うには、プロシージャ

文で、

SUB 1: PROC (A, B, C) RECURS I VE;

と書かなければならない。但し、 TYPE(A), (AB)では共に、サププログラムは全て再帰

的であると設定されているので、 RECURSIVEと書いても書かなくても再帰的呼び出しがで

きる。 OSNでは書かなければ再帰的呼び出しはできない。

<d>整合配列

FORTRANにおける整合配列、例えばメインで、

DI MENS ION A (2, 3)

CALL SUBl (A, 2, 3)

大阪大学大型社罪機センターニュース -85- No. 38 1980-8

となっており、サプで、

SUBROUTINE SUB 1 (A, M, N)

DI MENS I ON A (M, N)

となっているのを、そのままPL/Iに書き直して、メインで、

DCL A (2, 3) ;

DCL SUBl ENTRY;

CALL SUB 1 (A, 2, 3)

サプで、

SUB 1 : PROC (A, M, N) ;

DCL A (M, N) ;

とするのは大きな誤りである。 PL/Iでは整合配列という用語はない。しかしこれと同じことはで

できる。次のようにすればよい。メイントで、

DCL A (2, 3) ;

DCL SUBl ENTRY;

CALL SUB 1 (A)

サプで、

SUB 1 : PRO C (A)

DCL A(*, *) ;

とする。すなわちサププログラム中にある、大きさが可変の配列の大きさは、＊（星印）で表わせ

ばよい。これはむしろ整合配列よりも便利である。

(10-3)関数

関数についてもサブルーチンと大体同じことが言えよう。ただ少し異なる点があるので説明しよ

う。 FORTRANの関数の例を 1つ考えよう。メインで、

A=l. O

B=2. o

X=FC 1 (A, B)

関数で

FUN CT I ON FC 1 (A, B)

FCl=A**2+B**2

RETURN

END

としよう。これをPL/Iで書き直すと、メインでは、

大阪大学大型社鉢機センターニュース -86- No. 38 1980-8

DCL FC 1 ENTRY RETURNS (FLOAT DEC)

A= 1. o ;

B= 2. o ;

X=FC 1 (A, B)

関数では、

FC 1 : PROC (A, B) RETURNS (FLOAT DEC)

R ET UR N CA * * 2 + B * * 2) ;

END FC 1 ;

となる。すなわち、 FORTRANの関数では最後に

関数名＝返される値

としたのに対し、 PL/Iの関数では、

RETURN (返される値）；

となる。従って必ずRETURN文が要る。又、関数の場合はサプルーチンのときと違って、 PR

oc文にRETURNS属性を書かなければならない。前述のRETURNと違って、 RETUR

NSと、 Sが付いているので、混同しないようにしよう。ここには返される値のデータの型を

RETURNSの後のカッコ内に書くのである。又、同時にメインのENTRYの後にも同じ

RETURNS属性を書かなければならない。このことは、 FORTRANでも返される値（関数

値）のデータの型によって、

INTEGER FUNCTION 000

とか、

REAL FUNCTION 000

等と書くことに相当する。又、 FORTRANの場合でも、関数名が I-NJレール（暗黙の型宣言）

に従うときはこのように書く必要はなく、ただ、

FUNCTION 000

と書くだけでよい。これと同様にPL/Iでも関数名が I-Nルールに従うときはRETURNS

属性は省略してもよい。但しTYPE(A)では I-NルールがないのでRETURNS属性は省

略できない。

例として正整数Nの階乗を求める関数KAIJOを示そう。

KAIJO:PROC (N) RECURSIVE;

IF N= 1 THEN RETURN (N) ;

ELSE N=N*KAI JO (N-1)

RETURN (N) ;

大阪大学大型計鉢機センターニュース -87- No. 38 1980-8

END KA I JO;

関数名KAIJOはI-NJレールに従って整数型となるのでRETURNS属性は省略している。

書くとすれば、

KAIJO:PROC (N) RECURSIVE RETURNSCFIXED BIN);

となる。再帰的手続きであることを示すRECURSIVEは前述したようにTYPE(A) ,

(AB)では書く必要はない。

(1 0-4)外部手続きと内部手続き

FORTRANのサププログラムにはサブルーチンと関数の他に、 BLOCK DATA文で始

まる初期値設定副プログラムというのがあるが、 PL/Iには存在しないし、又その必要もない。

PL/Iでは 1つのプログラム単位を、プロックと呼ぶ。今まで述べたメインプログラムも 1ブ

ロックであり、サププログラムも 1プロックである。これだけでは別にFORTRANと変りがな

いが、 PL/Iではブロックの入れ子、すなわちプロックの中にプロックを含むことができる。外

側のプロックを外部プロック、内側に含まれているブロックを内部プロックという。内部プロック

の中に更に孫、ひ孫という風に内部プロックが含まれていてもよい。たとえて言えば、カバンとい

う外部プロックの中に弁当箱という内部ブロックが入っており、更にその弁当箱の中にオカズ入れ

という内部プロックが入っていると考えればよい。この場合、弁当箱をカバンから取り出して外に

並べればカバンと弁当箱は共に外部プロックであり、オカズ入れだけが弁当箱の内部プロックとな

る。

内部プロックの形のプログラムを内部手続き、外部ブロックの形のプログラムを外部手続きと呼

ぶ。

今まで述べたサプルーチン、関数は、 FORTRANとの対応にポイントを置いていたので全て

外部手続きであった。しかし、サプルーチン、関数は内部手続きの形で書くこともできる。 （メイ

ンプログラムは外部手続きでなければならない）。 FORTRANに文関数というのがある。これ

は非常に簡単な形の内部手続き関数であると考えることもできる。内部手続きのサブルーチンに類

するものはFORTRAN しないが、もしあるとして文関数から類推してこじつけの名前

を付けるとすれば、｀文サブルーチン" C ?)とでもなろうか。

いずれにしてもPL/Iの内部手続きはFORTRANの文関数のような簡単なものではなく、

外部手続きと全く対等である。従って、任意のサブルーチンや関数は外部手続き、内部手続き、ど

ちらの形式ででも書くことができる。しかし、 FORTRANに慣れた者にとっては外部手続きの

方が書き易いようである。しかし計算時間に関しては内部手続きの方が速いといえる。

例としてカードから球の半径を読み込み、その体積を求めて半径と共に印刷するプログラムを外

大阪大学大型,It祁機センターニュース -88 No. 38 1980-8

部手続きと内部手続きの両方で書いてみよう。

まず外部手続きの場合である。

/*GAIBU TETSUZUKI NI YORU TAISEKI KEISAN*/

RE I 1 : PROC OPTIONS (MA.IN);

DCL VLM ENTRY;

GET LIST(X);

CALL VLM ex, Y) ;
PUT LIST(1HANKEI=', X, 1TAISEKI='Y)

END REI1;

VLM: PROC CR, V) ;

V=4*3。14159*R**3/3;

END VLM;

次に内部手続きの場合である。

/*NAIBU TETSUZUKI NI YORU TAISEKI KEISAN*/

RE I 2 : PRO C OPT I ON S (MA I N)

GET LI ST (X)

CALL VLM ex, y)
PUT LI ST (1 HANKE I= 1, X, 1 TA I SEK I=', Y)

VLM:PROC CR, V);

V= 4 * 3. 1 4 1 5 9 * R * * 3 / 3 ;

END VLM;

END REI2;

この例から分かるように内部手続きの場合にはENTRY宣言は要らない。又、内部手続きは、

この例では含まれる手続きの終りに入っているが、冒頭でもよいし、どこに入れてもよい。

ところで、内部プロックには、上述したようにPROC文で始まる内部手続きの他に、 BEGI

Nプロックと呼ばれるものがある。これはサプルーチンや関数のように、どこか他の箇所から引用

されるという性質のものではなく、プログラムの流れがそこへ来てそのまま通り過ぎてゆくという

もので、さしたる意味のあるものではない。強いて言えばFORTRANのオープンサプルーチン

（普通のサプルーチンはクローズドサプルーチンと呼ばれる）に類するものである。

(10-5)組込み関数

FORTRANではコンパイラに備わっている機能として、組込み関数と基本外部関数がある。

大阪大学大型計鉢機センターニユース -89- No. 38 1980-8

両者の違いは前者の方がやや算術的で、後者がやや数学的という程度である。 PL/Iではこのよ

うな区別はなく、全て組込み関数と呼ばれている。 FORTRANでは、例えば最小値を求める関

数でも、 MI N O , M I N 1 , AM I N O, AM I N 1のように引数や関数値の型により種々変え

て使わねばならないが、 PL/Iではデータ型の変換機能があるので、 MINという 1つの関数で

すませている。 PL/Iでは多くの組込み関数が用意されているが、それらの 1つ1つをここで説

明する紙数はないので、詳しくはマニュアル等で御覧頂きたい。

第 11章初期値の設定

(11-1)数値型の場合

FORTRANで変数又は配列に初期値を設定するには、 DATA文を用いる。但し、名前付き

COMMON文に出てくるものに対しては、 BLOCK DATA文で始まる初期値設定副プログ

ラムを使わなければならない。前述したようにPL/Iではそのような区別はなく、全て宣言文に

おいて初期値の設定ができる。

例えば、 FORTRANで、

DATA A/1. 23/

なる文をPL/Iで書くと、

DCL A INIT (1。 23) ;

となる。 INITはINITIALの省略型である。この場合、 Aのデータ型は I-Nルールに従

うものとして省略してあるが、書くとすれば、

DCLA FLOAT DEC INIT(l。 23) ;

というように INITを一番後に書く。変数が2つ以上ある場合も同様で、 FORTRANで、

DATA A/1. 0/, K/5/, M/4HABCD/

なる文をPL/Iで書くと、

DCL A INIT (1。0), K I N I T (5) , M C HA R (4) I N I T

となる。

配列の場合、例えばFORTRANで、

DI MENS I ON X (2 O)

DAT A X/ 2 0 * 0 . 0 /

なる文をPL/Iで書くと、

DCL X (20) INIT ((20) 0. O);

となる。すなわち、 FORTRANでの、

20* o.o

大阪大学大型Jt鉢機センターニュース -90- No. 38 1980-8

が、 PL/Iでは、

(20) o. 0

となる。次のようなFORTRANの例、

INTEGER F (2 0, 2 0)

DATA F/400*0/

をPL/Iで書くと、

DCL F (20, 20) FIXED BIN INIT ((400) 0)

となる。

(11-2)文字型の場合

文字型の場合、少し気を付けねばならない点がある。例えば文字列の長さ 50の文字型変数Mに、

5 0個の＋（プラス記号）を入れたい場合は、

DCL M CHAR (50) INIT ((50)'+');

とすればよい。ここでMは配列ではないことに注意されたい。もし、 Mが配列M(5 0)で、各配

列要素の文字列は長さ 3とすれば、

DC L M (5 0) CHAR (3) I NIT ((5 0) (3) 1 + 1) ;

と書かねばならない。あるいは次に示す2つのいずれかでもよい。 INITの部分だけを書くと、

INIT((50) (1)'+++1)

INIT((50) ('+++'))

となる。すなわち、全部で 3通りの書き方がある。少しややこしいので一般的に書くと、要素数k

の文字型の配列M Ck)があり、各要素の文字型としての長さは£のとき、各要素に£個の文字X

を入れたい場合、

DC L M (k) CHAR Cf)

のあと、次の3通りの書き方がある。

INIT C Ck) ⑫） I X I) ;

£個

INIT C (k) (1) 1 XX………XI)

£個
•"""',,.、

’’ INIT((k)(XX………X))

以上が文字型配列の場合の注意点である。

大阪大学大型計算機センターニュース -91- No. 38 1980-8

(11-3)やや複雑な場合

FORTRANのDATA文で、 DO型並びを伴なうものがある。例えば、

D I MENS I ON A (1 5)

DAT A (A (I) , I = 1 , 1 0) , A (1 1) , (A (J) , J = 1 2 , 1 5)

/ 1 0 * 1. 0 , 2. 0 , 4 * 3. 0 /

ではA (1)からA (1 o)に1。 O,A(ll)に2。 O,A(l2)からA (1 5)に3.0

が入る。これをPL/Iで書くと、

DCLAC15) INIT((lO)l。o,2. o, (4) 3. 0);

となる。 FORTRANで、

DI MENS I ON B (1 O O)

DATA (B (I), I=51, 100)/50*1. 23/

とすれば、 B(1)からB(5 0)は初期値設定されず、 B(5 1)からB(lOO)には 1.23

が入る。これをPL/Iで書くと、

DCL B (100) INIT ((50) *, (50) 1. 23)

となる。すなわち、初期値設定しないときは＊（星印）で表わす。

(11-4) AUTOMATICとSTATIC

FORTRANのDATA文で注意すぺきことは、サブプログラムの中のDATA文は初回に引

用されたときのみ機能して、 2回目以降の引用では機能しないことである。例えば、

SUB ROUT I NE SUB 1 (X)

DATA P/3。14/

P=P**X

X=X*P

RETURN

END

というサプルーチンでは、初回にCALLされたときはDATA文が機能してP=3。 14である

が、 2回目以降はDATA文が機能せず、 Pの値は変化しているので3。14ではない。 2回目以

降もPを初期値設定したければDATA文ではなく代入文を使うしかない。 U:.例はプログラムと

しては多少不自然だが、言わんとする所は分かって頂けるだろう）。

PL/Iではサププログラムにおける初期値設定をFORTRANのように初回の引用時のみ行

うか、 2回目以降も行うかを選択できる。例えばサブルーチンSUBlにおいて変数Xを初回のみ

o. 0に初期化したければ、

大阪大学大型計算機センターニユース -92- No. 38 1980-8

SUB 1 : P RO C (A, B, C) ;

DCL X STATIC INIT (O. 0);

という風にSTATICという属性を付け加えればよい。この逆に変数Xを引用の度に毎回o.0

に初期化したければ、 DCL文を、

DCL X AUTO INIT (0. 0);

という風にAUTOという属性を付け加えればよい。 AUTOはAUTOMATICの省略型であ

る。

STATIC属性はXという変数のメモリがそのジョプの開始から終了まで確保されたままの状

態で続くことを表わす。これはFORTRANと同じである。 AUTO属性はサプルーチンSUB

1が引用されたときだけXという変数のメモリが確保され、 SUBlの引用が終るとメモリは解放

される。再びSUBlが引用されると又新たにXのメモリが確保されるという具合に、 SUBlが

引用される度にメモリの確保と解放が繰り返される。従って当然初期値設定も毎回行われるわけで

ある。たとえてみれば、 AUTO属性の変数は、仕事の度に雇われるアルバイトで、雇う度毎に人

（メモリ）が変るので、説明（初期値設定）をしなければならないのであるが、 STATIC属性

の変数は本雇いの正社員で、最初だけ説明（初期値設定）をすればよい。

メモリの使用効率から見ればAUTO属性では使用されていないメモリは常に解放されているの

で、 STATIC属性よりも効率が良い。従って、 AUTOともSTATICとも宣言されていな

い変数（配列も含む）に対しては省略時解釈としてAUTOと見なされる。但し、前述のEXTE

RNALを宣言している場合にはSTATICと見なされる。 EXTERNALと宣言している限

りは当然STATICでなければならないことは、 EXTERNALがFORTRANのCOMM

ON文に相当していることを考えれば容易に納得できるだろう。 EXTERNALでかつAUTO

というのは矛盾している。 EXTERNALの逆のINTERNALという宣言がある。これは、

その手続き（プロック）の内部でだけ通用する名前であることを意味する。これはたとえて言えば、

家族やグループのいわゆる身内でだけ通用する愛称やアダ名のようなもので、外部の人には通用し

ない名前である。 INTERNALと宣言して、 STATICともAUTOとも宣言しない場合は

AUTOと見なされる。しかし、 INTERNALでかつSTATICという宣言も可能である。

以上が特にサププログラムにおける初期値設定の注意事項であるが、やや古いPL/IではST

ATICでなければ INITによる初期値設定ができないものもある。勿論、 TYPE(A) ,

(AB) , OSNではそういう心配はない。

(11-5) IN IT CALL

PL/Iには以上の他にCALL文による初期値設定法がある。これはサプルーチンによって初

大阪大学大型計罪機センターニユース -93-- No. 38 1980-8

期値設定する方法である。

D C L X (5 0) I N I T CAL L S U B 2 (A, B) ;

この例ではSUB2は配列Xの初期値設定を行うサプルーチンである。 A,BはSUB2へ渡すア

ーギュメントで、これ以前に値が定義されているものとする。この例でXがアーギュメントに入っ

ていないのはSUB2が内部手続きであるゆえ、 SUB2の中でXを再宣言しない限り、メインの

X (5 0)がそのままSUB2の中でも通用しているからである。これを、 INIT CALLに

よる初期値設定という。この INIT CALLは、 TYPE(AB)とOSNでは使用できるが、

TYPE (A)では使用できない。又、 INIT CALLは、 STATIC属性をもつ変数には

適用できないから要注意である。

(11-6) DEFINED

最後にFORTRANのEQUIVALENCE文に相当するものを説明しよう。

FORTRANで例えば、

DI MENS ION A (10), B (10)

E Q U I VAL ENCE (A (1) , B (1))

という文をPL/Iで書くと、

DC L A (1 o) ;

DCL B (10) DEFINED A;

となる。すなわち、配列Aと同じ記憶領域をさす別の名前である。 1つのメモリを 2つ以上の名前

で呼びたいときに用いられる。人間で言えば本名と芸名のようなものであろう(?)。

上述の例は分かり易くするため2つのDCL文で書いたが、勿論1つにまとめて、

DCL A (10), B (10) DEFINED A;

としてもよい。なお、 FORTRANのEQUIVALENCEでは、 AとBは対等であったが、

PL/Iの場合、この文例ではAが主、 Bが従の関係となり、 AはINITによって初期値設定で

きる•が B はできない。

ここに述べた例はDEFINED属性の中の単純定義と呼ばれるものである。 DEFINED属

性の中にはこの他に、 iSUB定義，列重ね型定義というのがあるがここでは省略する。

今回は代入文に始まり、メインプログラムとサププログラム、そして初期値設定法について解説

した。段々と話が複雑になっていくのでサーッと読んだだけでは分かりにくい点もあるかも知れな

いが、繰り返し読んで頂けたらお分かりになるのではないかと希望的観測をしている。それでも分

からないときは文書等で御質問下されば、できる限りの御答えはしたいと思っている。しかし筆者

大阪大学大型計罪機センターニュース -94- No. 38 1980-8

自身も一体どれ程分かっているのか疑問である。それ程PL/Iは大きな言語であり、それゆえ重

い言語とけなす人もいる。その意味では確かにFORTRANは軽い言語であるというメリットは

ある。しかしFORTRANには、できないことや制限が多すぎる。プログラムの初心者はFOR

TRANでできることがそのままコンビュータでできることの全てであると思いがちなものである。

そういう人達に本稿を通じて、コンピュータではFORTRANでできること以外に、例えば再帰

的呼び出しやビット処理、あるいは人間のする筆算と同じような混合演算ができるということを知

ってもらえれば幸いである。

次回はDO文、 IF文、 ON文、ファイル入出力文等について解説する予定である。

（プログラム相談員）

大阪大学大型計算機センターニュース -95- No. 38 1980-8

