
Title FORTRANとの比較によるPL/Ⅰ入門（4）

Author(s) 塩野, 充

Citation 大阪大学大型計算機センターニュース. 1980, 39, p.
41-63

Version Type VoR

URL https://hdl.handle.net/11094/65464

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

資料

FORTRANとの比較によるPL/I入門 (4)

大阪大学工学部 塩野 充

9月初めの新聞の経済欄に、日本電気がACOSシステム 10 0 0を完成したという記事が載っ

ていた。阪大センターのACOSシステム90 0はもはや上から 2番目の機種になり下ってしまっ

たのである。記事によると、 ACOS1000は、 ACOS900の4倍ないし5倍の能力を持っ

ているそうである。どういう面での比較かは分からないが、単純に考えても現在の阪大センターの

ACOS900を2台並べたシステムの2倍以上の能力があるということであろう。出荷は来年

（昭和 56年）の 10月ということだから、遅かれ早かれいずれ阪大センターにも出現するであろ

う。しかし、考えてみるとACOSシリーズは、システム 10 0 0で予定終了打ち止めという訳で

はないだろうから、システム 1100, 1200, ………と続々と、より大きいシステムが日本電

気がツプれない限り、開発されてゆくであろう。 ACOS2000やACOS3000などという

のはどんなコンピュータであろうか。その頃にはFORTRANとかPL/Iとかいうプログラム

言語はまだ存在しているだろうか。人間に話しかけるように音声で入出力できたり、知能を持って

人間と対抗したり、などとそこまで考えるといささかSF映画の見過ぎという感じもするが、現実

的に考えると、少なくとも紙カードや紙テープといった原始的なものは姿を消して、博物館へ行か

ないと見られなくなっているだろう。磁気テープも今のオープンリールタイプのようなバカでかい

重いものではなく、超高密度なマイクロカセット的なものになるか、更に進歩して、テープやディ

スクといった機械的な回転メカニズムを全く必要とせず、電子的ないし光学的な走査のみによって

情報の読み書きができる、いわば半導体カード（？）やホログラムカード（？）のようなものが、

今の IDカードのような大きさで、できるのではないかと思う。あと 20年後の21世紀まではか

からず、 20世紀中にできてしまうのではないかと思う。

こんなことを考えていると一体何の原稿を書いているのか忘れてしまいそうなので、頭を現実に

引き戻して、 PL/Iの話に入ろう。今回は、 GO TO文， IF文， DO文，ファイル入出力文

について解説しよう。

第 12章 GO TO文

FORTRANのGO TO文には次の3種類がある。

Ci)無条件GO TO文（単純GO TO文）

C ii)計算形GO TO文

(iii)割当て形GO TO文

大阪大学大型計算機センターニュース -41- No. 39 1980-11

このうち、 C iii)の割当て形GO TO文は Cii)の計算形GO TO文で十分代用できるもの

であり、さして存在価値のあるものとは思われない。多分岐の場合、計算形GO TO文ではどう

しても具合が悪く、割当て形GO TO文でなければ使えない、という状況の例は筆者には思い浮

かばないのである。ところで、割当て形GO TO文というのをよく知らない人のために少し説明

を加えておこう。計算形GO TO文はよく御存知のように、例えば、

GO TO C 1 o, 1 5, 2 s, 3 5) , K

という形で、 K=lなら 1 0へ、 K=2なら 1 5へ、 K=3なら文番号 28へ、 K=

4なら文番号35へ飛べという文である。 K=1, 2, 3, 4以外のときの処置はコンパイラによ

って異なり、 ACOS-6ではエラーとなるが、 OS1V/F4では、このGO TO文の次の文へ

移るようになっている。ここでKは普通の整数型であるが、そんなこと言わなくても当然じゃない

かと思われるかも知れないが、実はここが大事なポイントなのである。上例と同じ文を、割当て形

GO TO文で書くと、

GO TOK, (10, 15, 28, 35)

となり、計算形GO TO文のときのKとカッコの順序が逆になる。この文の意味は先程と少し異

なり、 Kが10なら文番号 10へ、 Kが15なら文番号 15へ、 Kが28なら文番号28へ、 Kが

3 5なら文番号35へ飛べという命令である。ここで、 K=1 oとか、 K=1 5という書き方をせ

ず、 Kが10, Kが15, という書き方をしたのはそれなりの理由がある。ここでのKは見かけは

整数型であり、データの型宣言としては INTEGERなのであるが、実は整数型ではなく、算術

演算にも使うことはできないし、代入文で 10や 15という値を入れることもできない。強いて言

うならば＂文番号型＂なのである。整数型のようで整数型でない、文字型のようで文字型でない、

それが＂文番号型＂である。 ACOS-6のマニュアルでは、これを「スイッチ変数」と呼んでい

る。ところで、代入文の使えない＂文番号型＂に値を代入するにはどうすればよいか。例えば、 K

に15を入れるには次のように書く。

ASSIGN 15 TOK

これは、 K=1 5という代入文とは全く異なる。 K=1 5としたのではKは整数型の 15となる。

上記のASSIGN文では、 Kは＂文番号型＂の 15となる。見かけは同じ 15でも整数型の 15

と、 ＂文番号型＂の 15とでは計算機の内部表現が全く異なる。文字型でもないから、

DATA L/2Hl5/

K=L

という入れ方でもダメである。従って、割当て形GO TO文には必らずASSIGN文がつきも

のなのである。割当て形GO TO文があるのにASSIGN文のないプログラムはありえない。

この点からも、計算形GO TO文よりも面倒なのである。従って、ここでは (i)と (ii)につ

大阪大学大型計算機七ンターニュース -42- No. 39 1980-11

いて、 PL/Iに置き換えて説明しよう。ところでFORTRANでもPL/Iでも、 GO TO

を、間に空白を入れずに、 GOTOと書いてもよいのだが、ここではやはり英語に忠実にするため

空白を入れて書くことにする。

<a>無条件GO TO文（単純GO TO文）

FORTRANでは文を識別するために、文番号というのがあり、カードの第2-6カラムに打

った。 PL/Iでは文番号というのは無く、代りにラベル（名札）というものを使う。簡単に言え

ば、文番号は数字であるのに対し、ラベルは英字で始まる英数字を用いているだけのことであり、

本質的には変りはない。

FORTRANで例えば、

GO TO 10

10 A=B

をPL/Iで書くと

GO TO LlO;

LlO:A=B;

となる。ここでLlOというのはラベルである。ラベルは変数名と同じく、英字で始まる英数字の

列である。その長さはTYPE(A) , (AB)では6文字以内、 OSIV/F4では7文字以内で

ある。しかし、この長さを超えてもエラーにはならず、システム固有の変換規則に従って短縮化が

行われ、 WARNINGメッセージが出されるだけであるが、そんな長いラベルをつける必要はな

く、ラベルは 6文字以内と覚えておけばよいだろう。ラベルの付け方は上例のように、付けたい文

の前に： （コロン）を介して書けばよい。これは、第 10章で述べたPROC文に付けた手続き名

と同じ付け方である。ラベルと手続き名をひっくるめて、ラベル型（ラベル定数，ラベル変数，ラ

ベル配列）という。ラペル型は強いて言えば前述したFORTRANの＂文番号型＂に相当するも

ので、やはり算術演算には使えない。しかし、 ＂文番号型＂とは違って、代入文には使える。これ

については次ので述べる。又、 PL/Iでは 1つの文に2つ以上のラベルを付けることもで

きる。例えば、

TARO:JIRO:A=B+C;

などと書いてもよい。しかし、 1つの文に 2つ以上のラベルを付けなければならない場合というの

はあまり考えられない。

大阪大学大型計算機センターニュース -43 No. 39 1980-11

計算形GO TO文

FORTRANの計算形GO TO文は前述したように、例えば、

GO TO C 5 , 6, 7 , s , 9) , K

5 A=B+C

6 A=D+E

7 A=F+G

8 A=H+P

9 A=Q+R

というような形式の多分岐のGO TO文である。これに直接対応するGO TO文は、 PL/I

には存在しない。しかし、同じ働きをする文を書くことは可能である。次のように書けばよい。

DCL X (5) LABEL INIT (L5, L6, L7, LS, L9);

GO TO X CK)

L5:A=B+C;

L6:A=D+E;

L7:A=F+G;

L8:A=H+P;

L9:A=Q+R;

このDCL文では、 LABEL属性により配列XC 5)がラペル型であること（すなわちラペル

配列であること）を宣言し、その初期値をL5,L6, L7, LS, L9としている。従って、 K

大阪大学大型計算機センターニュース -44- No. 39 1980-11

=lならL5へ、 K=2ならL6へ、 K=3ならL7へ、 K=4ならLSへ、 K=5ならL9へ飛

ぶ。ここで、ついでながらラベル型についてもう少し補足説明を加えておこう。 FORTRANの

文番号のうち、 FORMAT文の文番号はGO TO文の行先になってはいけない。例えば、

GO TO 100

1 o O FORMAT (……………)

などとするとエラーになる。この意味で、 FORMAT文の文番号は普通の実行文などの文番号と

は性質が異なるので、区別して "FORMAT文番号＂などと書いてある本やマニュアル類もある。

このことはPL/Iでも全く同様で、第 8章で述べたR書式（リモートフォーマット）のFORM

AT文のラベルについて同じことが言える。例えば、

GO TO LB;

LB: FORMAT (………………）

などとするとエラーになる。従って、実行文のラベルと、 FORMAT文のラベルは明確に区別し

なければならない。 ACOS-6のTYPE(A), (AB)では、これを区別するため、 FOR

MAT文のラベルを特に＂書式データ＂と呼んでいる。又、 FORMAT文のラベルであることを

宣言するためのFORMAT属性というのを設けており、例えば、

DCL LB FORMAT;

などと書く。 OSIV PL/Iでは特に区別はしておらず、 FORMAT属性も設けていない。し

かし、 LBがGO TO文の行先になればエラーになることに変りはない。

第13章 IF文

FORTRANのIF文には、

(i)論理 IF文

(ii)算術 IF文

の2つの種類があった。 PL/Iにはこのような区別はなく、 IF文は (i)の論理 IF文に対応

するものだけである。しかし、 FORTRANでも (ii)の算術 IF文は (i)の論理 IF文でも

代用できるように、 PL/IのIF文は両者を十分カバーしているし、それどころか、もっと大き

な機能を持っている。以下、様々なタイプの IF文を説明しよう。なお、以下に記した種々の型名

は筆者が名付けたものである。

大阪大学大型計算機センターニュース --45- No. 39 1980-11

<a>片側単一文実行型

図13-1に示すタイプで、 FORTRANで例えば、

IF (K。GT。M) A=B+C

というような文である。図では、判断を表

わすひし形の分岐出口に通常、右にYES,

下にNOを書くことが多いが、 PL/Iで

はどちらをYESにすることも可能なので、

ここでは省略してある。

この文をPL/Iで書くと、

IF K>M THEN A=B+C;

となる。 FORTRANで、。EQ。と書いた

所が＝となり、 IFの後の条件節を包むカッ

図13-1

1つの実行文

コがなく、条件節と実行文の間に、 THENという言葉が入る点が異なっている。ここで、 FOR

TRANの。GT.が＞となるように、 PL/Iではより通常の数学表現に近くなっている。この

。GT。のようなものをFORTRANでは関係演算子 (relational operator)と呼んで

いるが、 PL/Iでは＞のようなものを比較演算子 (comparison operator)と呼んでい

る。このように用語は異なるが、その意味は全く同じである。又、 FORTRANのIF文で用い

る、。AND。) , ,OR, C論理和），。NOT。（否定）なる 3つの演算子は論理演算子

(logical operator)と呼ばれているが、 PL/Iでこれに対応する演算子&, I,, は

ビット列演算子 (bit stripg operator)と呼ばれ、やはり全く同じ意味である。表 13

-1にこれらの対応を示す。ここで注意すべきは、<=ゃ，＞＝を、＝＜や，＝＞と順序を間違え

て書いてはいけないことである。これはFORTRANでも、 .LE。や。GE。を、。EL。や。EG。

と書いてはいけないことを想起すれば容易に覚えることができる。同様に'--,=を=,と書いては

いけないことは、。NE。を。EN。と書いてはいけないことと同じである0 ,<や、・>はFORT

RANでは1つの演算子で直接対応するものはないが、。NOT。を使って書くことができる。

両側単一文実行型

図13-2に示すタイプで、 FORTRANで例えば、

IF CK。GT。M) GO TO 1

D=E+F

GO TO 2

1 A=B+C

2・・・・・・・・・・・・・・・・・・

大阪大学大型計算機センターニュース 46- No. 39 1980-11

表 13。 1 IF文における演算子

数学的表現 FORTRAN

A=B A。EQ,B

A=¥cB A。NE。B

A<B A. LT。B

A~B A。LE。B

A>B A。GT.B

A~B A。GE。B

A<l::B 。NOT。CA.LT. B)

A半B 。NOT。(A。GT。B)

(A, Bは算術型）

P八Q P.AND。Q

PVQ P. OR. Q

p 。NOT。P

(P, Qは論理型）

あるいは 2つの IF文を使って（この場合、実行速度

は遅くなるが）、

IF CK. GT. M) A=B+C

IF CK.LE。M) D=E+F

と書けるようなタイプである。

これをPL/Iで書くと、

IF K>M THEN A=B+C;

ELSE D=E+F;

となる。ここで出てきたELSEというのがFORT

RANにはない強みで、 FORTRANという言語の

最大の欠点の 1つは、このELSEがないことである

と言っても過言ではないと思う。 ELSEが使えない

PL/I

A=B

A--i=B

A<B

A<=B

A>B

A>=B

A--i<B

A-i>B

(A, Bは算術型）

P&Q

PIQ

ー,p

(P, Qはビット型）

図 13-2

ことと、後で述べるように IFの条件節の後に単一の実行文しか書けないことが、やたらGO T

0文を多く発生させ、最近よく言われる構造化プログラム Cst ru ct u red program : 簡単

に言えばGO TO文のないプログラム）とは程遠いものになってしまう原因となっている。この

大阪大学大型計算機センターニュース -47- No. 39 1980-11

ために、 FORTRANの最新改良版とも言える FORTRAN77という新しい言語ではELS

Eが使えるようになっている。言うまでもないが、 THENは「それなら」， ELSEは「そうで

なければ」という英語である。 THENとその後の実行文を合せて、 THEN節（又はTHEN単

位）， ELSEとその後の実行文を合せて、 ELSE節（又はELSE単位）と呼ぶ。上例を、フ

ローのひし形の分岐出口のYESとNOを逆にして書くと、

IF K•>M THEN D=E+F;

ELSE A=B+C;

となる。

<c>片側複数文実行型

図 13-3に示すタイプで、 FORTRANで例えば、

IF CK。LE。M) GO TO 1

A=B+C

D=E+F

1・・・・・・・・・・・・・・・・・・

というような場合である。これをPL/Iで書くと、

IF K>M THEN DO;

A=B+C;

D=E+F;

END;

j
[

複数の実行文

ELSE;

と書ける。 ELSE;はELSE節の実行文が空文（す

なわち；のみ）であることを示している。すなわちELSE節では何もしないことを意味しており、

図 13-3

省略してもかまわない。 THEN節 (ELSE節でもよい）に複数の実行文を置きたいときはこの

ように制御変数もなにもないDO文（繰返しのないDO文、又は単純DO文と呼ぶ）を用いてまと

めると、単一の実行文として扱われる。勿論、

FORTRANではこのようなことは許されない。

の繰返しのあるDO文を書いてもかまわない。

<d>両側複数文実行型

図13-4に示すタイプで、 FORTRANで例えば、

I F (K. L E. M) GO TO 1

A=B+C

大阪大学大型計算機七ンターニュース -48- No. 39 1980-11

D=E+F

GO TO 2

1 u=v+w

X=Y+Z

2•......

というような場合である。これをPL/Iで書くと、

IF K>M THEN DO;

A=B+C;

D=E+F;

END;

となる。

ELSE DO;

U=V+W;

X=Y+Z;

END;

<e>ひし形横並び型 (IF文の入れ子）

図 13-5

複数の実行文 複数の実行文

図 13-4

図 13-5に示すように、判断のひし形が 2個以上横に並んでいるタイプである。各々の実行文

は単ーでも複数でもかまわないが、以下の例では簡単化のため単ーにしてある。 （複数のときは前

大阪大学大型計算機センターニュース -49- No. 39 1980-11

述のDO文を使えばよい）。この一例をFORTRANで書くと、

IF (I。GT。J) GO TO 1

A=B+C

GO TO 4

1 IF CK. GT. L) GO TO 2

D=E+F

GO TO 4

2 IF (M。GT.N) GO TO 3

u=v+w

GO TO 4

3 X=Y+Z

4

となる。これが、更にひし形が増えたりすると、まさにGO TOだらけになってしまう。これを

PL/Iで書けば、

IF I> J

THEN IF K>L

THEN IF M>N

THEN X=Y+Z;

ELSE U=V+W;

ELSE D=E+F;

ELSE A=B+C;

となる。このようなものを IF文の入れ子 Cnesting)という。 FORTRANではDO文の入

れ子はあったが、 IF文の入れ子はない。入れ子の IF文で注意すべきことは、入れ子になってい

ない普通の IF文では、前述したようにELSE節が空文のとき（すなわち、 ELSE節で何もし

ないときであり、 ELSE; く）， ELSE節そのものを省略してもよいが、入れ子になって

いるときは、たとえ空文でも省略してはいけないということである。なぜならば、例えば、

IF X> 1. 5

THEN IF Yく 3.0

THEN K=K+ 1;

ELSE;

ELSE z=o. 0;

という文で、 4行目のELSE節が空文なので省略してしまうと、

大阪大学大型計算機センターニュース -50- No. 39 1980-11

IF X> 1. 5

THEN IF Yく 3。 O

THEN K=K+ 1 ;

ELSE Z=O。 0;

となる。これをよく見ると最後のELSE節は 2行目のTHEN節に対応しているとも考えられる

し、 3行目のTHEN節に対応しているとも考えられ、どちらかはっきりしない。どちらに解釈す

るかでプログラムは全然異なったものになる。 （目で見る限りは段下げ（カラムの対応）で、 2行

目のTHEN節に対応しているらしいことは分かるが、 PL/Iプログラムは自由形式でカラムの

位置は関係ないので、コンパイラはそこまで気を利かせることはしない）。

PL/IのIF文は、 ELSE節があることと、 THEN節やELSE節の実行文にDO文が使

えることの2つの理由により、 GO TO文を殆んど必要としないスッキリとした形に書くことが

できる。

第 14章 DO文

DO文については第 3章でも触れたが、 FORTRANに比べて相当豊富な機能がある。以下、

各種のDO文を順に説明していこう。なお、各々の分類名は筆者が名付けた。

<a>繰返しなしのDO文（単純DO文）

これは前章の IF文のTHEN節やELSE節における複数の実行文をまとめて単一の実行文と

して取り扱うために用いられるもので、繰返しを行わない 1回限りのDO文である。例えば、

DO;

A=B*C-D;

PUT LI ST (A)

END;

などと書く。このようにDO文の最後（端末文）は、 END文となる。 FORTRANの場合は、

CONTINUE文であった。 PL/IでFORTRANのCONTINUE文に相当するのは、

； （セミコロン）だけからなる空文であり、何もしないという意味では同じであるが、空文をDO

文の端末文に使うことはできず、必らずEND文でなければならない。

上例をもし強いてFORTRANで書こうとすれば、

DO 1 I=l, 1

A=B*C-D

WR I TE (6, *) A

大阪大学大型計算機センターニュース -51- No. 39 1980-11

1 CONTINUE

となるが、これは全く意味がない。総返しなしのDO文は、 THEN節やELSE節の実行文とし

て使えるからこそ意味があるのであって、 FORTRANではそれができないのだから、このよう

なDO文は全く意味がない。

FORTRAN型DO文

FORTRANで例えば、

DO 5 K=l, 10, 2

5 CONTINUE

をPL/Iで書くと、

DO K=l TO 10 BY 2;

END;

となる。すなわち、 FORTRANのようにDOの後に端末文の文番号は書かず、いきなり制御変

く。又、開始値（初期値，出発値） 1と終了値（終値） 1 0の間のコンマがTOに、終了値

1 0と増分2の間のコンマがBYに変っている。増分を省略した場合、すなわち、

DO K= 1 TO 1 O;

END;

とすると、増分は 1と見なされることはFORTRANと同じである。 FORTRANにはない機

能として次の2つがある。

(i) WHILE節による途中終了が指定できる。 FORTRANで例えば、

DO 1 K=l,13,3

IF (A. GT. B) GO TO 2

1 CONTINUE

2

というように、 DOグループ CPL/IではDO文から端末文のEND文までをまとめて「DOグ

ループ」と呼び、 FORTRANでいう「DOの範囲」に相当し、通常よく使われる「DOIレー

プ」と同じような意味をもつ）の繰返しの途中でも、 A>BとなればDOグループを終了して次の

大阪大学大型計算機センターニュース -52- No. 39 1980-11

文へ飛びたいとき、 PL/Iでは、

DO K= 1 TO 1 3 BY 3 WHILE (A<=B)

END;

というふうに、後にWHILE節を付加しておくだけでよい。 WHILE節というのは、 WHI

LE C条件式）という形式であり、条件式が真のあいだだけDOグループを実行し、条件式が偽

となればたとえ制御変数が終了値まで来ていなくてもDOグループを終了する。

C ii)制御変数，開始値，終了値、増分の各々のデータ型は整数でなくてもよいし、整数と実数が

混在してもよい。又、それらはマイナスでもよい。従って、開始値は終了値より大きくてもよい。

例えば、

DO A=-3. 5 TO 2 BY O. 5;

や、

DO B=7. 1 TO -1. 1 BY -1;

という書き方もできる。

C iii)開始値や終了値に配列要素名を書いてもよい。例えば配列M (2)があるとき、

DO K=M(l) TO M(2);

のような書き方もできる。 FORTRANでこれをするとエラーとなるので、

Ml =M (1)

M2 =M (2)

あるいは

EQUIVALENCE (Ml, M (1)), (M2, M (2))

としておいてから、

DO 1 K=Ml, M2

としなければならない。

PL/Iの、 FORTRAN型DO文で、 FORTRANのDO文と比べて注意すべき点を次に

3つ並べる。

Ci) GO TO文によってDOグループから外に飛び出すことはかまわないが、外からDOグル

ープの中へ入ってくることは絶対に許されない。 FORTRANではDOの拡張範囲といって、

DOグループから一旦外へ飛び出して、再び同じDOグループヘ戻ってくる場合のみ、これを許

していたが、 PL/IではこのようなDOの拡張範囲というものは認めていない。但し、 PL/

Iでも繰返しなしのDO文に関しては外から入ってくることを許している。

C ii) J I Sを越えたFORTRANでは、開始値が終了値より大きい場合もエラーにはせず、 1

大阪大学大型計算機センターニュース -53- No. 39 1980-11

回だけDOグループを実行する。例えば、

DO 3 I=5, 1, 2

という形では、まず制御変数 Iが開始値5で、とりあえず 1回DOグループを実行し、次に開始

値5に増分 2を加えて 7となった制御変数を終了値 1と比較すると、既に終了値を超えているの

で、 DOグループの実行を止める。これに対してPL/Iではこのような場合、 1回もDOグル

ープを実行しない。すなわち、

DO 1=5 TO 1 BY 2;

では、まず制御変数Iが開始値5となり、すぐ終了値と比較し、増分がプラスのときは Iが終了

値を上回っていればDOグループの実行を止める。もし増分がマイナスのときは Iが終了値を下

回っていればDOグループの実行を止める。従って上例ではDOグループの実行は0回となる。

この点はFORTRANとPL/IのDO文の本質的な違いであろう。

(iii) FORTRANではDO文が入れ子になっているとき、端末文である CONTINUE文を

1つにまとめることができた。例えば、

DO 1 I=l, 10, 2

DO 2 J=l, 35, 3

DO 3 K= 5, 1 o

疇● ● ・・・・....

3 CONTINUE

2 CONTINUE

1 CONTINUE

のような場合は、

DO 1 I=l, 10, 2

DO 1 J=l, 35, 3

DO 1 K= 5, 1 o

．．曹............● 疇...● 鴫..

1 CONTINUE

とまとめることができる。 PL/Iの場合は、

DO I=l TO 1 0 BY 2 ;

DO J=l TO 3 5 BY 3 ;

DO K=5 TO 1 0 ;

END;

大阪大学大型計算機センターニュース -54- No. 39 1980-11

END;

END;

における 3つのEND文をやはり 1つにまとめることができる。そのときは、最も外側のDO文

にラベルを付けて、 END文にもそのラベルを付ければよい。すなわち、

L 1 : DO I= 1 TO 1 0 BY 2 ;

DO J=l TO 35 BY 3;

DO K=S TO 1 0;

END L 1;

とすればよい。この方法をEND文の重ね閉じ（多重閉鎖）という。

Civ)終了値のないFORTRAN型DO文は、 WHILE節を伴なうか、又は IF文によるDO

グループの外への飛び出しを含んでいるかのいずれかである。 WHILE節を伴なう場合は、例

えば、

DO K=O BY 3 WHILE (K<L) ,

という文では、 K<Lが成り立つ限り、 K=o, 3, 6, 9, 1 2 , ……………といくらでも続

く。これは後述する<d>のWHILE型DO文を用いて、

K=O;

DO WHILE (K<L)

K=K+ 3;

END;

と書いたのと同じである。

IF文による飛び出しを含むのは例えば、

DO K=O BY 3;

IF K>L THEN GO TO Ll;

END;

L 1 : ・・・・・・・・・・・・・・・・・・

という形である。終了値のない場合で、 WHILE節も伴なわず、 IF文による飛び出しも含ま

ないときは、無限ループになってしまう。

大阪大学大型計算機センターニュース -55- No. 39 1980-11

<c>制御変数値列記型DO文

これは名前の通り、制御変数のとる値を順に並べて書いたDO文である。例えば、

DO A=O. 5, 1. 1, 2. 8, 4. 5, 7. 3, 10. 1;

という文では、 A=O.5, A=l, 1, A=2. 8, A=4. 5, A=7. 3, A=lO. 1の

6回についてDOグループを順次実行する。並べる制御変数値は大きい順や小さい順になっていな

くてもよく、バラバラでよい。このDO文が出たついでに、前述のFORTRAN型DO文に関す

る注意を補足しておこう。例えばFORTRAN型DO文、

DO K=l TO 6 BY 2;

を、 FORTRANのときの馴れから、 TOとBYをうっかりコンマにして、

DO K= 1, 6, 2;

と書いてしまうと、エラーにはならず、今説明した制御変数値列記型DO文に解釈され、 K=l,

K=6, K=2の3回についてDOグループが実行される。この点、注意が必要である。

なお、厳密にはこの制御変数値列記型DO文というのは、 のFORTRAN型DO文で、

開始値だけ書いて終了値と増分を省略した型式を多数つないだ形になるのであるが、ここではFO

RTRANユーザに理解しやすいように別の型として分類した。

<d>WHILE型DO文

このDO文は、 のFORTRAN型DO文のWHILE節だけを取り出したようなDO文

で、制御変数は存在しない。一般的に、

DO WHILE偉件式）；

の形式である。この文では条件式が真である限りDOグループを繰返し実行し、偽になったら実行

を止める。例えば、

DO WHILE (A<5. 5);

のような場合は、 Aが5.5未満である限り DOグループの実行を続ける。従ってこの場合、 Aは

最初 5. 5より小さく、 DOグループの中で増加してゆくことが前提となる。もし、 Aが最初から

5。 5以上の値であればこのDOグループは前述したように 1回も実行されない。又、もしAが最

初 5. 5より小さく、かつDOグループの中で減少してゆくのであれば、条件式は永久に真のまま

となるので、 DOグループは無限ループに陥ってしまう。ところで、次のような書き方は、つい行

いたくなりがちであるが誤りである。

DO WH I LE (0 . 0 <X < 1。0) ;

このような場合は、

DO WH I LE (0 . 0 <X & X < 1 . 0)

大阪大学大型計算機センターニュ＿ス -56- No. 39 1980-11

とすればよい。

<e>やや複雑なDO文

以上述べたと<c>のDO文を組み合せた形式も許される。例えば

DO A= -2 • 5 TO 3 . 5 BY O . 5 WH I L E (B < 1 2 • 5) , 3 • 8•

4. 3, 5. 9 ;

という文では、 Bく 12. 5という条件下で、 A=-2.5からA=3.5まで 0.5きざみで繰

返し実行し、それが済んだら、 A=3.8, A=4. 3, A=S. 9で実行する。 A=-2. 5か

らA=3.5までの間で、 B<l2. 5という条件が成り立たなくなったら、終了値のA=3.5

まで行っていなくても、 A=3.8へ飛ぶ。従って、最初からB<l2. 5という条件が成り立っ

ていなければこのDOグループはA=3.8から始まる。

DO N= 1 TO 1 0 BY 2 , 1 5 • 1 6 , 1 7 TO 3 O BY 3 ;

という例では、 N=lからN=1 oまで2きざみで繰返し実行し、次にN=1 5, N= 1 6で実行

し、その後N=1 7からN=3oまで3きざみで実行する。

DO M= 5 TO 2 5 BY 5 , 5 0 TO 2 0 0 BY 1 0 WH I LE (A

>B) ;

という例では、 M=SからM=25まで 5きざみで繰返し実行し、次にM=50からM=20 0ま

で10きざみで繰返し実行する。但し、 M=50からM=200の途中ででも、 A>Bという条件

が成り立たなくなればDOグループの実行を終了する。

DO A= -2 1 . 3 TO 1 2 . 5 BY O . 7 WH I LE (X> Y) ,

1 2 5 . 5 TO -5 8 . 3 BY -9 . 5 WH I LE (U<V) ;

という例では、 X>Yという条件が成り立つとき、 A=-21, 3からA=1 2。5まで増分0。

7で繰返し実行する。 A=l2。5の実行を終えるか、又はA=1 2。5まで行っていなくても条

件X>Yが成り立たなくなるか、のいずれかになると、次はU<Vという条件が成り立つときA=

1 2 5, 5からA=-5 8. 3まで増分ー9。5(言い換えれば＂減分"(?) 9。5となる）で

繰返し実行する。 A=-58.3まで行かなくても条件U<Vが成り立たなくなればDOグループ

の実行を終了する。

第 15章 ファイル入出力文

第 8章では標準入出力装置 すなわちカードリーダとラインプリンタを用いた場合の入出力文に

ついて解説した。しかし、入出力装置はカードリーダとラインプリンタと限ったものではなく、磁

気テープ (MT)や、カード出力（カードバンチ）、パーマネントファイル、テンポラリファイル等

大阪大学大型計算機センターニュース -57- No. 39 1980-11

々がある。本章ではそのような入出力装置 CJ:tい意味でのファイルである）のための入出力文につ

いて解説しよう。

(15-1)厳密な入出力文

FORTRANではカードリーダとラインプリンタの2つの入出力装置は標準入出力装置として

設定されており、これらを使う場合は、 J CL (ジョプコントロール言語）のファイル定義文が不

要である。すなわち、カードリーダはファイルコード5(ACOS-6 FORTRANでは41

でもよい）、ラインプリンタはファイルコード6 (同じく 42でもよい）を用いる限り JCLは不

要である。例えばカードリーダからの読込みは、

R EAD (5 , 1 0 0) A

1 0 0 FORMAT (………………）

というように、ファイルコード5を用いる。ラインプリンタで印刷するときは、

WRITE (6,200) A

2 0 0 FORMAT (………………）

というように、ファイルコード6を用いる。 ACOS-6 FORTRANではこの他にカード出

力も標準出力装置になっており、ファイルコード 43で使用できる。例えば、

WRITE (43,300) A

3 0 0 FORMAT (………………）

などと書く。 FORTRANでの、このファイルコード5や6に相当する PL/Iでのファイル名

は、 SYSINおよびSYSPRINTである。すなわち、数字ではなく英字名となる。 SYSI

Nがカードリーダ、 SYSPRINTがラインプリンタである。この両者を、標準入出カファイル

という。カード出力は標準入出カファイルには設定されていない。

ところで、第8章 (8-1)で述べたEDIT型出力文の例

PUT ED IT (A) CF (7 , 3))

を、厳密な本来の形式で書けば、

PUT FILE (SYSPRINT) EDIT (A) (F (7, 3))

となる。又、同様に (8-2)のEDIT型入力文の例、

GET EDIT (A) (F (7, 3));

を厳密な本来の形式で書けば、

GET FILE (SYS IN) EDIT (A) (F (7, 3));

となる。すなわち、一般的には、

PUT FILE (ファイル名） ED ITC…………) （…………）；

大阪大学大型計算機センターニュース -58- No. 39 1980-11

GET FI LE (ファイル名） ED IT (…………) （………・・・) ;

という形式になる。この形式で、ファイル名が標準入出カファイルSYSIN, SYSPRINT

の2つの場合に限って、

FI LE (ファイル名）

という箇所を省略してもよく、そのときの形式が、第 8章に述べた入出力文なのである。以上では、

EDIT型入出力文を例にとって述べたが、 LIST型やDATA型入出力文についても全く同様

である。

(1 5-2)ファイル宣言文

FORTRANではファイルコード5,6等の標準入出カファイル以外の入出カファイルを用い

るときは、 JCLでファイルコードを定義しておくだけでよく、 FORTRANプログラムの中で

は特に宣言文などは必要とせず、例えば、

READ (15, 100) X

1 0 0 FORMAT (……………）

や、

WRITE (22,110) Y

1 1 0 FORMAT (……………）

の15や22のように、そのまま入出力文に書くだけでよい。しかし、 PL/Iではファイル宣言

が必要である。今、例えばOSAKAという名前の入カファイルを宣言するには、

DCL OSAKA FILE INPUT;

とすればよい。 TOKYOという名前の出カファイルを宣言するには、

DCL TOKYO FILE OUTPUT;

とすればよい。出カファイルのうち、特に印刷ファイル（すなわちラインプリンタ）であることを

宣言するには

DCL TOKYO FILE PRINT;

とすればよい。すなわち、ファイル宣言の一般形は、

DCL ファイル名 FI LE INPUT (又はOUTPUT,又はPRI NT)

となる。勿論この他にもSTREAMとRECORDの指定や、 ENVIRONMENT属性など、

ファイル宣言文に書けることは山ほどあるが、 FORTRANユーザのPL/I入門としては上記

の形で十分であり、ややこしいことを並べたてても頭が混乱するだけなので、それらは全て割愛す

ることにする。ファイル名（上例でのOSAKA,TOKYOなど）の長さは、 TYPE(A) ,

(AB)では5文字以内， OSN/F4では 7文字以内である。標準出カファイルSYSPRIN

大阪大学大型計算機センターニュース -59- No. 39 1980-11

Tは8文字であるが、これは例外として許されている。

上記の一般形で、最後に書いてある入出力指定 CINPUT, OUTPUT, PR I NT)のう

ち、ラインプリンタを指定する PRINTはあまり使わないだろう。なぜならば、ラインプリンタ

を使う場合はわざわざファイル名を作って宣言しなくても、標準出カファィル SYSPRINT

を使えばよいからである。 FORTRANでラインプリンタを使う場合、ファイルコード6を使わ

ずに、わざわざJCLでファイル定義の必要な他の番号を使うことに相当する。但し、 SYSPR

INTは、 PAGESIZEやLINESIZEが決まっているので、これを変更したいときは、

印刷ファイルを宣言しなければならない。 PAGESIZEとは、 1頁に印刷できる行数で、 SY

SPRINTについてはTYPE(A), (AB), 0SN/F4いずれも 60行である。普通、

ラインプリンタはハードウェア的には 66行印刷可能である。 LINESIZEとは、 1行当りに

印字できる文字数で、 SYSPRINTについてはTYPE(A)では 13 2文字、 TYPE(A

B)と0SN/F4では 12 0文字である。普通、ラインプリンタでハードウェア的に印字可能な

文字数は 13 2文字である。

1つのファイルを入力と出力の両方に使いたい場合は、入出力指定を書かないで、例えば、

DCL OSAKA FILE;

としておいて、後述するOPEN文によって入出力指定を行えばよい。

(1 5-3) OPEN文とCLOSE文

OPEN文とCLOSE文は必らず書かなければならないという文ではなく、省略してもよい。

OPEN文がなくても最初のGET文やPUT文によって当該ファイルがOPENされる。又、 c

LOSE文がなくてもプログラムの実行が終了すると自動的にファイルがCLOSEされる。こう

書くと、 OPEN文やCLOSE文は全くの無用の長物で、存在価値がないように思えるが、実は

そんなことはなく、使わなければならないときがある。その2つの場合を次に示す。

<a>PAGESIZEやLINESIZEを指定するとき

前節で述べたようにTYPE(A)やOSN/F4ではSYSPRINTは1頁60行、 1行

1 2 0文字なので、 1頁66行、 1行 13 2文字フルに印刷したいときは次のようなファイル宣

言とOPEN文が必要である。

DCL SYSPRINT FILE PRINT;

OPEN FILE (SYSPRINT) PAGESIZE (66)

LINESIZE (132);

ここで、ファイル名は標準出カファイルSYSPRINTをそのまま使ったが、どうせファイ

大阪大学大型計算機センターニュース -60- No. 39 1980-11

(15-4)カード出力の方法

PL/Iでは、カード出力用の標準出カファイルは設定されていないので、プログラムの中でフ

ァイル宣言を行うとともに、 JCLでファイル定義をしなければならない。 JCLはシステムによ

って異なり、一般性を持った説明はできないが、 ACOS-6の場合について、 JCLを示してお

こう。ファイル名を例えばCARDPとすると、プログラムでは、

DCL CARDP FILE OUTPUT;

OPEN FILE (CARDP) LINESIZE (80)

PUT FI LE (CARDP) ED IT (…………...) (・・・ …………) ；

となる。 OPEN文のLINESIZEが80というのはカードイメージ Cso欄カード）だから

である。 PUT文はEDIT型で書いたが、勿論LIST型やDATA型でもよい。

この場合、 JCLは、

1カラム

＄

8カラム

PUNCH

1 6カラム

CP, Xl S

となる。 CPはPL/Iにおけるファイルコードであり、 FORTRANでは05,06, 43等

の2桁の数字からなるのに対して、 2桁の英数字からなっており、 1桁目は英字でなければならな

い。このファイルコードはプログラムで宣言したファイル名の頭とシッポの文字をつなぎ合せた形

であり、この例ではファイル名はCARDPゆえ、先頭のCと、最後尾のPをつないで、ファイル

コードはCPとなっている。ファイル名がOSAKAであればファイルコードはOA,TOKYO

であればTO,MTlであればMlというふうになる。他に OPEN文のTITLEオプション

というのを使う方法もあるが、ここでは省略する。ちなみに言っておくと、標準入出カファイルS

Y SIN, SYS PR I NTのファイルコードだけはSN,STとはならずにそれぞれ、 I*'p

＊となるが、これはプログラマーには無関係のことである。上記JCL中のXISはロジカルユニ

ットデジグネータであるが、分からない人は上記のまま打っておけばよい。

(15-5)磁気テープや磁気ディスクファイルの場合

磁気テープの場合も基本的には全く同様で、例えばファイル名をMTAPEとすると、プログラ

ムは、

DCL MTAPE FILE;

OPEN FI LE (MT APE)

PUT FI LE (MT APE)

OUTPUT;

LIST(・・・・・・・・・・・・・・・・・・)

などとなる。上例は出力の場合であるが、入力の場合も同様に書けばよい。 JCLは、 FORTR

大阪大学大型計算機センターニュース -61- No. 39 1980-11

ル宣言するのだから他の名前を使ってもよいだろうと考えて、例えばファイル名をJAPANと

すると、 PUT文でファイル名を省略することができないで、いちいち、

PUT FILE (JAPAN) LI ST (……………） ;

などと書かねばならない。これに対してファイル名をSYSPRINTとしておくと、省略する

ことができて、

PUT LI ST (……………) ;

と簡単になる。

入力と出力を兼ねるとき

入力（読み込み）と出力（書き込み）の両方に使うファイル（磁気テープやパーマネントファ

イル等）の場合、 OPEN文とCLOSE文が不可欠となる。

DCL MTl FILE;

0 P EN F I LE (MT 1) I NP UT ;

GET F I LE (MT 1) L I ST (……………）

CLOS E F I LE (MT 1)

0 P EN F I LE (MT 1) 0 UT PUT ;

PUT FI LE (MT 1) LI ST (……………）

CLO S E F I LE (MT 1) ;

END;

この例ではファイルMTlからデータを読み込んで、何らかの処理をして再びMTlに書き込

む、一種の更新処理を行っている。 1番目のOPEN文はMTlを入カファイルとして開き、 2

番目のOPEN文は同じMTlを出カファイルとして開いている。従って 1番目のCLOSE文

は必要不可欠であるが、 2番目のCLOSE文はここでは省略してもよい。

以上がOPEN文とCLOSE文の必要な2つの場合である。 PL/IのOPEN文はFORT

RANのREWIND文を含んでいると考えてもよい。又、 CLOSE文はFORTRANのEN

DFILE文とREWIND文を含んでいる。 FORTRANのREWIND文、 ENDFILE

文あるいはBACKSPACE文に単独に相当する PL/Iの文は存在しない。従って、磁気テー

プ上に、情報とEOFマークを交互に書き込んでゆくマルチファイルを作成する場合などは、 FO

RTRANに比べてやや不便である。

大阪大学大型計算機センターニュース -62- No. 39 1980-11

ANで磁気テープを使用する場合と全く同じで、 $TAPE9等を用いればよいが、ただファイル

コードが数字ではなく、この場合であればファイル名がMTAPEだから、頭とシッポをつないで、

MEとなる。

磁気ディスク上のパーマネントファイルやテンポラリファイルの場合も JCLはFORTRAN

の場合と同じで、 $PRMFLや$FILEを使えばよいが、ただファイルコードの部分だけ上記

の規則で変えればよい。

今回はGO TO文、 IF文、 DO文、ファイル入出力文について解説した。次回はON文，構

造体， JCLのまとめ等について述べる予定である。

／＊ 前回（第 3回）の誤植訂正 ＊／

(1) 8 6頁，上から 12行目

（誤）できる。次のようにすればよい。メイントで、

（正）できる。次のようにすればよい。メインで、

(2) 9 0頁，下から 9行目

（プログラム相談員）

（誤） DCL A INIT (1. 0), K INIT (5), M CHAR (4) INIT

（正） DCL A INIT (1. O), K INIT (5), M CHAR (4) INIT

(I AB CD I) ;

以上

大阪大学大型計算機センターニュース -63- No. 39 1980-11

