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Abstracts:

The generator coordinate method is formulated so as to be suitable. for a
description of the transitibn region nuclel. To. take into account the pairing
correlation the BCS wave function constructed with various single particle
states in the deformed potential well is used as an intrinsic wave function,
ﬁom which elgenstates of angular momentum are projected out. Using the quadru~
pole deformation parameters B, y and the gap parameter A as generator coordinatés,
the trial wave function is constructed by superposing the projected wave func-
tions with various values of B, y and A. Such a choice of the generator coordi-
nates enables us to treat the rotation, the surface-vibrations and the pairing’
vibration in a unified way. The generator function, which serves as a weight
function, is obtained by solving an integral equation derived through the varia-
timal principle. It is shown that our projected wave funcitons have the same
symmetry properties as those of wave funcfians given by the Bohr model. This
method 1s first applied to a schematic pairing vibration problem. It seems that
this method 1s powerful enough in the description of real nucled. Second, the
energy surface of Cd'!® is calculated as a function of the deformation parameters

B, Y.



§1. Introduction

It is well known that in the nuclel far from the double closed shell the
law-lying excited states have collective nature. We restrict ourselves to the
doubly even nuclel in this paper.

In the region of the spherdical nuclei, the energy spectra and the electro-
magnetic properties of the low-lying excited states are at’'least qualitatively
well described as the vibration in the frame work of the Bohr model with the

harmonic potential of defor'mationl’ 2, 3, ll),.

The microscoplc treatment based
on linearization approximation of the equation of mtion5’6) is equally success-
ful in the description. There are observed, however, many deviations from the
predicted harmonic vibration such as violation of the systematics of excitation
energy, splitting of the two-phonon triplet states, missing of one or two mem-
bers of the triplet and so on. Furthermore unexpectedly large quadrupole mo-
ments of the first 27 states have been observed in the typpcal vibrational nu-
clei’). It was shown by Tamura and Udagawad) that existing models, which start
from harmonic vibrations around a spherical shape cannot explain such large
quadrupole moments. Therefore, anharmonic effects must be taken into account
more rigorously in a theoretical treatmentg) .

The low-lying excited states of the deformed nuclel constitute several rota-

1,2,11). These

tional bands whose energy spectra seem to obey the I(I + 1) rule
spectra are understood as the rotation of a deformed nucleus as a whole, which

is given as a limiting case.in the Bohr model, A microscopi‘c method to evalué.’ce
the monel:xts of inertia is the cranking modello).' In order to reproduce the order
of magnitude of experimentally obtalned moments of ilnertia it is essentially Im-
por‘cantll) to use wave functions in which the pairing correlation is taken .fnto

acéount. Deviations of the energy spectra from the I(Z + 1) rule are always



observed in actual nuclel. Many works have been performed to explain the devia-

tions from various points of view, which may be classified into three groups;

(1) the rotation—vibration coupling including the centrifugal stretching ®® 137,

(2) the Coriolis anti-pairing effectl2’lu’15)

16)

, (3) higher order effects of the
cranking model However, if all of these effects are taken into account
sirmlta.neou:‘alyl 9) , theoretical estimate of the deviation becomes too large.

There are two defects in the usual treatments; (1) semi-classical nature of the
cranking model and (2) the special assumption about the nuclear shape.

From the above-mentioned facts we can see that there are many difficulties
in the usual treatments in which all nuclei are divided into two categories, i.e.,
spherical or deformed, and the approximation of harmonic vibration either around
a spherical shape or a deformec‘i shape.

Bésides spherical and deformed nuclear reglons of the periodic table there
is a region of onset or disapperance of nuclear deformation, which is called the
transition region. Properties of the low-lying exclted states of nuclei in this -
region are very much different from the predictions of either the phonon model or
the rotational model. The experimental evidences suggest a strang vibration-
rotation coupling. It is expected that a more rigorous method to treat the low-
lying excited states of these heavy nuclel should be developed.

There are experimental evidences that nuclear shapes change with not only
mass numrber but also excitation energy. For example, at higher excitation energy
rotational spe"ctralB) ‘were observed in the double closed shell nuclei 0!, This
fact shows that even the double closed shell nucleus can be deformed. The pos-
_sibility' of‘ variation of the nuclear shape with excitation energy may be common
iﬁ all nuclei. So there arises an interesting problem to investigate how the nu-
clear shape varles with increasing excitation energy.

19,20,21)

Baranger and Kumar made a lot of calculations to get nuclear energy



surfaces and investigated collective motions in the transition region nuclei with

2) was enployed. |

the aid of the Bohr model. The "palring-plus-quadrupole model"2
It is shown that dependence of the potential energy of deformation on non-axiality
is 'very important to explain various properties of low-lying excited states of the
transition region nuclel. Rather good agreements with experimental results were
obtained. However, the method used has some defects: (1) The pairing-plus- |
quadrupole model is too simple to be a realistic description of nuclei because the
other multipole components of the nuclear force than monopole and quadrupole anes
are neglected. (2) Exchange characters of the nuclear force are not considered
at all. (3) As they pointed out in their series (V), the fluctuations in the
energy gap.A are not cansidered. |

In studying the properties of the low-lying excited states of heavy nuclei
far from the double closed shell, the generator coordinate method (GoM)23 = 28)
seems most appropriate. This method 1s based on the varlational method and i§
superior to the macroscopic treatment of the collective motion (Bohr model)
because redundant variables inherent to the Bohr model are integrated out and
interactians between nucleons are considered rigorously. In the GCM trial wave
functions are eigenstates of angular momentum-in contrast to thé usual self-
consistent field n*e’chodszg). Equilibrium deformations and fluctuations around an
equilibrium deformation in exclted states can be described naturally. This method
has been already applied to the transition region nuclei by Onishi and Yoshida®!’
with restriction to axlally symmetric deformabion and to Light nuclel by Une2d).
A purpose of the present paper is to generalize thelr formulation to ‘axially non-
symmetric deformation. |

Since the generator coordinate method 1s based on the variational principle,
it is very much important to choose & trial wave function which simulates the

actual wave function as far as possible. In cholce of generator coordinates we



should make full use of successful results obtained by many authors in the course
of various attempts.

It has been established that the low-lying excited states of the heavy nu-
clel far from the double closed shell are closely connected with quadrupole defor-
mation of the nuclear density as can be seen from the structure of the Bohr modell’22
Since the nuclear force is of short-range nature, we can reasonably expect that a
nucleon feels a field ofv the same shape as the nuclear density, For the sake of
simplicity., we employ the anisotropic harmonic oscillator potential well with

various quadrupole deformations30)

without restriction to axlal-symmetry as the
generating field. The parameters 8 and y which characterize deformations are used
as generator coordiantes,

After Bohr, Mottelson and Pines3l) pointed out the existence of an‘energy gap
in fhe intrinsic excitation spectrum of nuclei, it was proposed by Beliaev32) to
apply the BCS wave function for a description of nuclei. This wave function has
attained many successes particularly in calculations of various matrix elements of
‘cr'ansi’cionu’a‘3> and moments of inertla. Though the BCS wave function, which is
specified by a value of the energy gap, can explain many~ properties of nuclel,
there remain residual interactions which are not taken into account in it. A
more favourable wave function can be obtained by superposing BCS wave function
with va.r-ious energy gaps. In this way fluctuations around an equilibrium energy

34,35,36)

gap can be considered So we employ the energy gap A as another genera-

tor coordinate.
 Intrinsic wave functions prepared in the above-mentioned way are nct eigen-

states of angular momentum. Using the projection operator introduced by Peierls

24)

and Yoccoz ,» elgenstates of angular momentum are projected out from the intrinsic

wave functions. This kind of angular momentum projection is just a quantum mecha-

nical treatment of nuclear ro’cations37) .



Fluctuations around an equilibrium defcrmation may be interpreted as the so--
called surface vibrations including B-and y-vibrations and fluctuatid’ls around an
equilibrium energy gap is the palring vibration. Our method enables us to treat
the nuclear rotation, the surface vibrations and the palring vibration in a uni-
fied way, and mutual couplings are taken account of automatically.

The Hamiltonian used consists of the single particle energy and the iﬁterac—
tion between nucleans with all the exchange characters. The interaction can be cf
any non-singular radial dependence.

In Sec. II our formalism is developed. The present method 1s applied to a
schematlic problem of the pairdr‘ig vibration in Sec ITI. In the subsequent sec-

tions an energy surface of Cd'!'® is calculated, and scme dlscussions are 'given.



§2. Description of the Formalism

2-1. Single-Particle States in Quadrupole Field

As mentioned in Sec. 1, we use the following generating field to obtain

single particle wave functions,

. 2, » , . , - -
H3= -%‘3‘]‘4»% (uix’-&mﬂ%wi z‘)-\-C,Q-S‘-I-Df‘

= Hsph+Hagp

where M_is the nucleon mass and Hsph

a deformed fleld. After a transformation of the variables
M ..
x= JR AL (2-2)

was performed, these are given as

(2-1)

stands for a spherical field and Hdef for

ngk='§.?‘?.&‘b9 o]+ cLs +DT°

2 (2-3)
Fwals,}) WaBY) w; g (BY) 2, wgwo(e,r)
HJ“& ——-—E’-—-[Mw oD Cih IeYs y+ o Z G

Introducing parameters a's, Hiep Can be written as

Ha% = -ﬁwo(@x)#;\dm\ﬁm(&?) , (2-5)

In the coordinate system whose axes coinclde with the principal axes of the el- -

lipsold (2-1), a's can be chosen as



ch=da=f 4inf, ol=oli=0, Gbp=gem. @6
Then, in the B, y-representation,

| H‘% = _;Q,G(P,Y}{% F [m(y.%a'!)'x‘-:- coo(t+ %’-‘) 3’+ cot Y-ZQ]) (2-7)

and

wi=wh(en (1~ 24 Beos (- D)

wF = wbgn [1-2f pers(t+ )]

(2-8)

Wz =0, (B, r>[1—2~l;%?m v]

From the volume conservation, we(B, y) is determined by
. Y%

Wo(, ¥ )= Wi(Bmo) {[1 —2\% pm(\*—‘-})} [1—2\}:5; Beos(g+ 2})}[1—2\%#&6“] }) (2-9)
where |

Kwgor= 41-A% MaV,
amd

A = mass cwmben
We expand the eigenfunctions of Hg In terms of the ones of Hs ph which are
denoted as ¢a, o being an abbreviation of a set of quantum nunbers (nalajama).
Since H Sef causes Am = 2 mixing, the energy matrix is divided into.two parts,
one of which belongs tom=J, J =2, + - -, =J + 1, and the other tom=J - 1,
J-3,+°+,=3. Introducing a quantum nunber q, we assign q = 1/2 to the wave
functions belonging to the former group and q = -1/2 to the remaihings. Denoting

the expansion coefficients byQ (B,y), the eigenfunctions woq(B , Y) of H_ are

0q,0 g



siven as

Yoyt =] O (s OB e

" . : . R AN 0w
where o represents a sebt of obher ausntum nuwabers tinin )

We- write down the secular equations obeyed by O.'s,

2. qu,q'm‘<a~'m‘ﬂl H%\ b'm.?> = Ec-y,_ al’){, b‘)\\e ,

@, 70 (2-1;a)
Z Qo--g ‘(L.ﬁ «<0-"Mu\ Hs\ b _Mf> = ‘Ec-}{ a...% by (2-11b)
&, M0 a :

Here m > O implies that the summation is made over md = ... ,=32,1/2,

5/2, -.+ + , and a stands for (hala;]a). Noticing that < a|Hg|B > 1s real and

Ja'ma-('jb_mB‘) |

< a'manglb'“% > = (=) < amu[Hglme >, we can see that Cl'cl/2?ama

-IM .
and (=) 2 % Q. obey the same secluar equation and (K 's are real
ongamh- :

quantities. Then we get

Eey = Eeyy =Ee | (2-12)
and the following phase convention is used,
d"o.“""u
Qegome =V CGegaoma . C (2-13)

Under the above phase convention the time reversed state “45;,
5
0

of Wé: ié connected to \A;_Z
%-3 | |
Yoy - e

as follows,



2-2. Trial Wave Functions and Symmetry Properties

Since the pairing correlation plays an essentilally important role in low-
lying excited states of heavy nuclei as mentioned in Sec. 1, we employ wave
functions téken account of the pairing comela‘cién for intrinsic ones. These
can be obtained by applying the BCS procedure to the following generating Hamil-
tonlan,

HP:ZEL ~N)Cog 40 oo 1" ;‘:2{' CIERCH GO AR, (2.15)
where C ( B, Y) is the creation operator of a nuclean in a state labelled by
quantum nu:rber o, ¢ which assign an orbit in the deformed field specified by 8
and v, and A 1s the chemlcal potential which ensures the expectation value of the
nucleon nunber operator to be the neutron or proton nuaber. Here it should be
noted that the Hamiltonian (2.15) is only a generating one, and g is the strength
of the pairing Inferaction used to get wave functioms taken account of the pair-
ing correlation. Therefore g 1s a varisble to generate wave functions with vari-
ous energy gaps.

According to the usual BCS theory, we perform the Bogoliubov-Valatin trans-

formation,
oy = Ueg Cor = Vg Cor
o3 c'% 54 o'% '(6. R (2.16)
+
% = 'Ucd + Uﬂﬂd P (2.17)

where a oq 1s the creation operator of a quasi-particle The coefficlents of the

transformation, 'ucq andJ o, are glven as



“H\“%‘*T—“‘“ﬁS.

(2.18)

a2 \{(_ _Ee=9
m—"t) = 'A‘ 'Jf;.%-m%& ‘S)

where A is :ca,lled the energy gap. The quantities A and A are determined by solv-
ing the BCS equatians: '

!

.7 |
q = \KE-,,x-x)‘-rA‘ s (2.19)

(2.20)

2N= 2;[1 “_K?"iﬁl

where N is the neutron or proton number. By operating the time reversal opera-

tion on eq. (2.16), we get
+ * v % '
Aeg = gy Coz + C (2.21)
. v'z mz vz Urz ,.z .
On the other hand, from the definition we have

T M . (2.22)
dri' ""Uq-l.c"i’ +vt‘z Crz .

From egs. (2.21), (2.22), (2.18) and (2.12) it is clear that we can use the fol-

lowing phase cmvention

Uy =g = e =4zl

(2.23)

Ueq = “f“"*‘*ﬂ‘ ==

The BCS wave function is glven as



= * + | (2.2L4)

da,(gk 8) =TT (Ueprad+ Vslp¥a)Coy (BYa) oy (a1 IIO)

where |0> stands for the nucleon vacuum. This wave fuiction 1s the quasi-

particle vacuum; u¢O(ByA) = 0, Thus the intrinsic wave functions are obtained.
The BCS wave function (2.24) can be wr'itten. as follows without any approxima-

tion:

<\>qsm [TT'U (@u)lwp[v u,cpw Crx(t’m cm (F“)“0> (2.25)

because extfa terms appearing when the right-hand side is expandé‘d in a power
series vanish ldentically. (Allug are assumed not equal to zero; if some of
them are zero, eq. (2.25) should be modified.) The expression (2.25) is of a
form convenient to the later development. The nuclean operators in the exbonent
expressed an the deformed well basis are now transforned into the spherical basis.
Any spherical basis may be used, but it 1s convenlent to choose so that the single
particle states with various values of deformation parameters may be expressed as
simply as possible. We make an approximation to neglect the dependence of ‘

th(S v) on deformation parameters (eqs. (2.9) and (2.10)). In this case, as a
spherical basis we can use the single particle states of Hsph in eq. (2.3) with
replacement of wo(s Y) by wO(B- = 0), The intrinsic wave function (2.25) may be
rewritten in terms of the nuclemn ‘o'perator defined in the sphericall _potential

well and the results are glven by

Qeptay= [Tm(pm}up(‘zg“e(emg C?]\(,) , (2.26)

where C+ is the creation operator of a nucleon in an eigenstate of Hsph specified

+ +
by quantum number o = (nalaj amu) The relation C, and C oq(B y); is just the same



as eq. (2.10), that is,

+ = +
C,? 8.0 ::Z' Q’B'“ @0C.

Here, £5(B v A) are glven as

¥~
§“F (g éa) .=§f> %afz,dcﬂ 2 aveg. y1c18 Veple)

U«Cp!lg ) )
and have the following properties
Jc..fcle ra) = —Jggd (Bra),
3.-10.‘4-3,-7&
fem, by PO =D fpCptar,

where subscript a stands for (nalaj a)

(2.27)

(2.28)

(2.29)

(2.30)

The intrinsic wave functions given by eq. (2.26) is not an eigenfunction of

angular momentum. Therefore 1t is necessary to project out the wave function

with definite angular momentum I and its z-companent M. This projection can be

performed by using the projection operator:

: Il )
Bk = 52 Q?Saxgmeaeo@m (997) Repy

is defined by -

In eq. (2.31) the rotation operator R¢6x

" Rsy = o e—«:SJ', Pt

2

where J 2> Jy are z-, y-components of angular momentum operator and

(2.31)

(2.32)

Tt
Dy (¢ e,X) is



the hermitian conjugate of the ordinary representation of rotational group. The
projected wave function is given by '

@r_n\( (§&4) - ’PI.HK Cbo (p ta)

(oo possn5,

B dngimﬁo\S : :
dg)41) Anddd 9, (98I, (pra: ), (2.33)
where

cmsu ;)= [\;[’U.FPu)}wy[—‘z-%&‘,cphsn)ci c;]\())) (2.34)

and Q stands for Eulerian angles (¢, 6, X). The qunatities faB(B y A; Q) are

written as

i (mermg)G “i(miemdX .
§«f<f“}9)= e‘ # J_Z, ? e <]°-W‘aleF‘_TMu+‘Mf>
.""«.”‘p

-. /7 ’ ’, ! J 4
» Kl Jo mg|T mormg> 0\.‘.,,.'.,.'_’,,,; (%)5—;,\; bmg (B hs}, (2.35)

In eq. (2.35) diVIM, (8) 1s defined by removing the ¢ and X dependent factors from

Dm, (o 8 %) . The projected wave function (2,33) constitutes a trial wave
function for variational calculation. |

At this stage, it may be useful to investigate the symmetry propér*ties .of

tihe projected wave functions (2.33).

(1) The intrinsic wave function (2.26) has the following property

Puip-t,8) = Rz (. 1.0) (2.36)



Proof: The explicit expressions of both sides of eq. (2.36) are glven by

CE(,B.—S'.A)=[Lru,(p.-&.a)]c«\o{-‘;gl',’3(;’(,3,-3,4)c;‘c;l\o>) (2.37a)

where
' £ Velp-f
~§4)=).(1 y _ [4Y:Z ,d) (2.37p)

'S'«F(p 6.4) 2. ) ch,d(,a. ) a,.wcp, ) i) |
and

Ruzbeara) =[m u‘r(p.m]wr[-‘,-g;, funtptaio)C s 1|0 (2.382)
where

UE TR Vs (BEa) 53 Cmat )
Jffcp r4; 002 >-§,3c D ey o ) Oy o 1) -—E—-wae (2.380)

In order to prove eq. (2.36), we nust know the relation between A __ (B, -y)

0q,G
and (L oq a(s’ Y). The secular equations for these quantitles are
ga,%.“(p,r)«\ Hﬁ.h\,sy = E,,‘(p.n a,,, P @1 (2.392)
g Re o=t <R Hytp-121p2 =E«3 () Qg 5 (B0, o (2.39)

where the explicit form of Hg({B, y) is given in eq. (2,1). If we use the relation

. | -4
| Ha(P-?) b Pooli. HZ(?,"?)Poﬂg R (2.140).



where R is the inverse of R, the matrix element appearing in the left-hand side

of eq. (2.39) becomes

(al H«é(p.—‘s)\ > = éi?(mm') <a\ Hacfsf)\p>. (2.41)

If we insert eq. (2.41) into eq. (2.39b), it is seen that the two secular equa-
AiE

tions are identical. The quantities ch a(s’ v) and Q B, =Y)e : are
3

: oq,a(
equal o eacn other except an arvitrary common phase. Since 1T 1
convenient to make both of them real, we use the following phase
convention \
-\ F(mu-9)

a,z,,,c,e,-n e = QeguCh0). (2.42)

It is also clear that the energy eigenvalues of the secular equations~ (2.39a) and

(2.39b) are equal to each other,
Ec«z% )= ,Z<,e,-f) , (2.43)

From eqs. (2.19), (2.20), (2.23) and (2.43), we get

U, CIQ. -1.8) = VQ'(@. t.4)
(2.44)

H

_uc.(P.-& a) ur((l ' 4)

which is a short form of two equations, By making use of'eqs. (2.42) and (2.4b)

it can be easlly proved that

T‘\_"u..((a,t.a) = TULp o) (2.45)

1S



and

S‘ae(ﬁrhd)" 'S:ae(p.t.aioo?-:_-) ) (2.46)

Thus eq.(2.35) is proved.

Operating the projection operator on the both sides of eq.(2.3%6), we get
X
P 064, =60 R (10) ey

where the expression of the right-hand side 1s obtained as follows:
’ ot
R Rt 670 = {42 45k00 0 Ra Rosg R g 1)
rt Al
= (407 880D Ra(p18)
K .

=€) Ruchpted. (2.472)

From eq. (2.47) 1t 1s said that there do not exist odé~-K componénts in our pro-

jected wave functions. The symmetry property ‘considered here corresponds to the

Re-symetry of the Bohr model »2»2%)

(2) Then we can prove the following relation:

ﬁ\),,(P.S'.A)‘= R ‘h((i.M) i (2.48)
Proof: We write down the right-hand side of eq. (2.48),

Roxw ¢([3. ra)={Tup “ﬂmr["f%éf‘l“ﬁ tason®) G 1\0).



Then, we proceed as follows;

_ _ jn -
'f.,f( pla; oww) -§“§f“\; - (B¥a)d9, ;00 zrvr)JS.'ﬁ oxm)

=2(T)%.1 eiw(m‘h')@g‘.?“(-l)iv”'.a o (BE) e V(g ra)
% pemt Fepomy® U (pra)
= Fup :4)
FeEe, (2.49)

where eq. (2.13) and the relation, m, + mg = even, for non-vanishing f 5(8,y,4)
were used. Thus eq. (2.48) 1s proved directly.
This equation presenta! another useful relation:

PIMKCb,(p?A) —eh) RM«¢°(P k). (2.50)

In deriving the above equation, the same technique as used in eq. (2.47a) was
used. It follows that the projected wave function with odd spin has not K= 0
companent. There does not exist a state with I = 1 among the projected wave |

functions. The symmetry property (2.50) corresponds to Ri-symmetry of the Bohr
modell,2 ’21) .

(3) Finally the symmetry property, which corresponds to the Rz-symmetry of the

Bchr mode11’2’21) , 1s proved. We start by proving the following relation:

Ch(p,h%vr. 8)= R%Cﬁ,(ﬁ, ra). - (2.51)

Proof: We glve here the expression of the right-hand side of eq. (2.51),

Romz:zz: 42 (Bt =[Tug ro)]wp[%%§.P( pro,e3L)el c/;']\o) . (2.52a)



where
. jo » o,
DCGPCF*A“’%I‘:)"Z\ 5«»&»»,'(#“)‘\9,.,,.;“’51':)&97,.,«0752‘). (2.52b)
Since the deformed potential well Hg(B, Y + % 7) is connected with Hg(B, Yy) by -

-4 '
}_\2((3,?) = Ro’%‘{ H?(?,‘(*%TOR‘,%:E (2.53)

the secular equation for a.oq 0‘(B Y + % 7) can be written as

Z[ZQ.% - <p¥ 3L E DK am | HaCp, )] bmy>

IS RY
= Erz(ﬁ.t*%u)(:zgOvc%.bﬁ'QF't*gw)Js nﬁ((’gg)} - (2.54)

This is identical with eq. (2.39a). Therefore the energy elgenvalues of eq.

(2.54) are equal to those of eq. (2.39a),
and, moreover, we get

‘ J ,..
\ ’Il.’ o Vet

N
»
=
=

n

where the phase factor, e*rz' was inserted to guarantee that both of QL oq 0L(B, Y)
3

and QL oq, o Bs Y+ -‘:2,’-17) be real. From egs. (2.19), (2.20), (2.23) and (2.55),

we get
Uq—(lg,k-r-g—n') = 'U;-(F.?)
(2.57)
.u,(g.n-j}n) '\1«(@.?)



If we substitute egs. (2.56) and (2.57) into egs. (2.52a) and (2.520), the
validity of the (2.51) will be seen.

Using eq. (2.51), an important property of the projectéd wave function can
be obtained,

B (8 1437.4) = L e FD e R0 (2.58)

In the above consideration concerning the symmetry properties, only the
quadrupole nature of the deformation was used. Therefore the results obtained
are valid for any other single parﬁicle field with quadrupole deformation than
the anisotropic harmonic potential well.

According to the method of the generator coordinate, the wave ﬁﬁction which
describes the collective motion 1s expressed as superposition of the projected
wave functions @M(B,Y,A)“with various values of the deformation parameters and
the energy gap parameter, If the generator function is denoted by fﬁ’n(ﬁ,y,A),

then the wave function 1is glven by

qfx: = Ygd; Sc\égd? 5BW<F¥A)§ (em (2.59)

where A m and Bm are taken to be sufficiently large. The integral domain of the

variable y is reduced from [0, 2w] to [0, %w] by using eqs. (2.47) and (2.58)21).

The quantum nunber n specifies the mode of the collective motion. The generator
:

function fi’n(ﬁ,y,A) is determined by making the followlng expectation value of

the energy sta‘cionary with respect to any varlatlion of the generator function:

EI - <'QIV:1\H\%:1>
n = ) (2.60)

<Un | Bmd



where H represents the Hamlltonian of the system of nucleans under cansideration.
The condition making the above expectation value of the energy staticnary leads

to the integral equation

) 1.0 0 T.T ’ " , in ve” ¢ ‘ ’
% go\? Avd "] Hie(pta,p18)~Ep Ny (pta, pra )\ § e pran=o. (2.61)

The projected energy kernel HIIQ{,(ByA, B'y'A') and overlap kernel NI . (ByA, Bry'ar)

are defined by

—

HEK'(P?“-F,""") - <@xn\<(P‘;A)i 11 @mK/({i""A')>

(2.62)

N,I(K,(?YA, pY8) J 1

\, .

When we solve the integral equation (2.61), the symmetry properties (2.47),

(2.50) and (2.58) provide sufficient boundary conditions.

2-3, Calculation of Kermels and Matrix Elements

This subsection is devoted mainly to the evaiuation of the two kernels
defined in (2.62). To avoid complexity, we use the abbreviated notation in the

following discussions:

85((3?4) , SAQSAXS&AES}N , 2=2(99,7) .

If egs. (2.33) and (2.34) ‘into eq. (2.62), then the following expression is

cbtained by using the invariance of the Hamiltonian under rotation and the

' 2
closure property of the D-function. 9):



./ *
N:;«(S,&) = Sdfl JST(K,(Q) ’Y]_(S,&’;n)
Hie (5,87 (5.8 (2.63)

where

NG 552) |= NEINGD olerpld 25-;“’%} 1 wy[—Z& KT

£.65.5-0) H ' (2.64)

\/
£
-+
z.-—d

In eq. (2.64) N(8) 1s the normalization constant glven by

N(s) = '{Iu,( $).

‘It is now necessary to give the explicit form of the Hamlltonlan. Assuming
that the effective interaction is a two-body interaction which has no hérd core,

it is represented as

H 25 PC«* CF *z% Valsys Ca Cf CsCy. ' (2.65)

The single particle energy 1is expressed by eaB’ which may contain the kinetic
energy and other single particle po’céntial such as the spin-orbit force if neces-
sary. The matrix element of the effective interaction is given by V g sy Which

satisfies the following antisymmetric relation:

Vx/es:' =‘\{e«$r = —V,,/,“ = \{g.,(rf (2.66)



The matrix element, n(ByA, B'Y'A'; ¢6X) is evaluated as follcws39):
i .

N8 )= NCEINCED exp (3T faCi+ MCES5 2D} | (2.67)
where

Mdf,(X,Xf;rz)= -%&tcs.’; mfgp(S) . (2.68)
According to the method gliven in ref. 39), the other matrix element (s, &', Q)
is given by

A5 /nG,550) = 2 E.ﬁ f’,ﬂ (5.8%0)

+%rsvafrs [;’ Ry (S,a";a)j}:CJ.SEa) + i't..l,(&sin) g (5,650, (2.69)

where the generalized density and palr metrices are defined by

. M(8.5" @)
Jp&550= T5 NG 5y “w, . - (2.702)
= ‘, 1 -
X?CS.S, )= %qu(f) {1 + M(S.S’;Q)l;/g , : (2.70b)

(2.70c)

y f ‘.
u.,/ecas;m.—g{”M(ﬁ_agml‘s fipsha).

The energy kernel, n(s, §'; ), can be brought into a form convenient to the
numerical computations using the technique developed by BarangerS). The matrix
element of the effective interaction is written in two ways; the one is con-
venient to treat the pairing type interaction



anks = -%;Z"G‘(a.ka\;.]')(i. m«jbmp\3H><jo“\'i&l mg | TMD | (2.71a)

and the other is useful for describing the particle-hole interaction

\ : L ‘ |
\/.;Fxsr- -z%F(aca\x,s ) Sp o Mafe-me |TMD Sp<lams Ju-me |TMD, (2.'le)

Je=m ‘
where SY = (=1) . Next the density and the palr matrices are expanded as

follows:

- |
e (5,8,0) = —3' ! laMa Jo=mp |TM 6.5
Favian : ,.,%; ClemaJomp 13 >?“{3 ) (2.72)

}zc.l»;,m(x,s’;fl)‘z (ju'maj»'mp\l)'ﬁ>%..f(&8';ﬂ) . (2.73)
B

Then, the energy kemel is expressed as

%(8.8". )= % 3-«; fas;00

5 |- L FlabdeiT e 1 ” (.74
+JI" \-g I (abdes])- Savisn Bedszn + 7 GabediJ Maizm "cdmA . .

The process of the numerical calculation is as follows: After the single
particle states in the deformed field (2.1) are obtained, the BCS equations are
solved. Then, the intrinsic wave functions are canstructed. The energy kermel
and the overlap kernel are calculated as a function of 8, Y, A and the Eulerian
angles. 'From these kermels the projected overlap and energy kernels are calcu-
lated by eq. (2.63). When the integral equation (2.61) is solved, the elgen-
function and the corresponding energy elgenvalue Ei are obtained.

Since the intrinsic wave functions have various values of K, we are forced



to perform integration over all of the Eulerian angles. This procedure to
evaluate the projected kernels requires a large amount of computation time. A
method to reduce the computation time 1s developed by naking use cf some synmetry
properties of -the density and palr matrices, and explained in Appendix.

Once the wave ﬁmc’cion 1s obtalned we can calculate the various nuclear
quantlties such as the magnetic moment, the quadrupole moment and the transition
probability of electric and magnetic radiations. To calculate these quantitiles
we \need the matrix element of the general one-body tensér operatof Oz,' whose eXx-—

pression is given:

| O 1) m;z CangIOT G kol

S@#K‘(a)dagf <s)§ "(5) 4§ 4 <au0ub>jibk»(s,a QNEER) | (5,759

where the reduced matrix element is given by
e . . . ey . |
(&l OFlb> = {Zjor g}:ﬁm k{ljamoCjeme|Cgljome (2.76)

The method explained in Appendix to reduce the integral domain of the Eulerian

angles can be used in the evaluation of the matrix element (2.75).



§3. Application of the GCM to a Schematic Pairing Vibration Problem

We apply the GCM to a system of n-particles moving in two non-degenerate
J-shells and interacting via the pailring force.  Being aneﬁable to exact treat-
ment, this two-level problem has been conveniently usei to see how well various
models work.

In this problem the Hamlltonlan is given as

A=l

2 +
H=2&d ¢ -%checf{cm- . (3-1)

The energy of the system is obtalned by solving the following integral

equation,
ST @IH IV > = B 1) 626 o, G-2)

where fn(_A) is the generator function corresponding to an energy elgenvalue En

and Y(4) is the BCS wave function of the generating Hamiltonian
/ + + .+
H'= 7.8 -a)¢ ¢ - EF.¢l ¢ eres (3-3)
‘ £ 3 3
. Y ‘I oJ
The corresponding wave function is glven by

g, = g\!/‘(A) fuadda . (3-1)

Expressions for the kernels are



U; () UL &h
U; (A) U (&) + Vi @)Y % ()

F@OIR VD = <Yalv @[ ZE

G Z{ V; (4 5 (&) }l_ Gy Vi) w) L U(Eduy (a) -X
T 22 L@ @O W] F55 UW@OWEA OB wj@uje i@ @A,
| (3-5)
@IV = T (W@OWED + R @%RE) | (3-6)
1)

Numerical calculations are made for the case of Ji=J2=19/2, N=20 and
€; - €1 =0,5MeV, The excitation energy, E; - Eq, 1s plotted against G in Fig. 1
and the generator functions, £, (8), are illustrated in Fig. 2. In Fig. 1
predictions of the linearization method are also given.

It can be seen that the GCM works well enough except the reglon where the
energy gap corresponding to the Hamiltonian (3-1) takes very small values, while
the linearization method breaks down in a physically interesting region w;vhere the
energy gap assunes abouf 0.6 MeV. Since the values of energy gap lie 0.5~ 1.5
MeV inhuclei far from the doubie closed shell, the GCM seems a very satisf‘ying‘

method to treat those nuclel.



§4. Energy Surface of cqll®

In this section the method developed so far is applied %o
an actual nucleus. Because of the restricted memory capacity of
the computers we can use, the full calculation is impossible at

present. We compute the intrinsic energy

EG (0= & LolHR@h0Y | @G-

which has a simple form

: jejath 1 .
=§ Ea? ?ab-,ao +§ [—ZF(QNCQI Pl Sabi Sedignt FGabediT) Kabiry )QJ:JH] @-2)
The first terﬁ of eq.(4-2) is the single particievenergy pars.
The second term is the contribution from the particle-hole inter-
action and the third term is that from the particle-particle inter—
acfion.
The values of the quadrupole deformation parameters, £ and

Y, and the energy gaps, A and Z}n, at which the intrinsic energy

P
is minimum can be interpreted to give the equilibrium deformation

of the nucleus considered. The corresponding wave function is
expected to be a pretty good approximqtion of that obtained with
the Hartree-Bogoliubov Qalculat;on4o). Moreover, the dependence
of the energy surféce, E(B;YMA)) on the parameters in the
neighbourhood of the equilibrium gives us information concerning
the nature of the vibration, becausg the energy surface is reason-

A

ably interpreted as the potential energy of the deformations.

The calculation is carried out for Cdlle, As mentioned in

Sec.l, this nucleus has long been considered from the energy



spectrum as a typical spherical nucleus making harmonic vibration
about spherical shape. However, the recently observed quadrupole
moment of the lst excited state is quite 1arge, which reveals the
existence of large ahharmonic effects. Therefore it is important
to investigate the nature of the existing anharmonicity by calcu-
lating the energy surface. |

A critical péint is the choice of the nucleon~nucleon inter-
action. Our formalism can be used for any nucleon-nucleon inter-
action which has no hard core. We choose the interaction used

40) which is of Gaussian shape with reasonable

by Dietrich et al.
range and of Rosenfeld exchange character. This interaction was
nzed in the self-consistent calculation and succeeded in explaining
the gradual appearance and disappearance of deformations as a
function of particle number. We do not fix the strengfh of the
interaction to the one used in ref.40), but vary it so that the

energeticaily most favourable values of A n and A D may be

close to experimental ones,

Ah. "~ 1-4 M¢V

Ap ~ 1.6 MeV.

Then the strength turns out to be two thirds of the one in ref.40).
The parameters of the interaction are tabulated in Table I.
We include only the kinetic energy in the single particle

energy matrix elements

?upé <°‘I'Tl(3>

The phenomenological shifts of the single particle energy are



necessary in the calculation taking account of only one major

shell28)

, where the kinetic energy is independent of deformation.
In the present investigation all single~particle states of principal
guantum number N=4,5 for neutrons and N=3,4 for'protons are
included.

| The condition of volume conservation (2-9) is not considered
and the oscillator frequency is kept fixed for all values of
deformation parameters. This approximation, whose main effect
is some reduction of the kinetic energy at large deformation, is

not at all serious in Cdll6

y, because the equilibrium deformation
is spherical.

The intrinsic wave functions are constructed according to
the procedure described in subsections (2-1) and (2-2) with
the parameters written in Table II. The resulfs of the calculation
are given in Table IITI. They may be summarized as follows:
1) The kinetic energy part increses with increasing energy gaps
as illustrated in Fig.3. This fact is easy to understand, because
the diffuseness of the Fermi level means the increase in the
number of particles in the upper shell.
2) The particle-~particle interaction "part decreases with increasing
energy gaps as shown in Fig.4. This may be & reason why the so-
called pairing force model works well.
3) The particle-hole interaction part decreases also with increasing
energy gaps as shown in Fig.5, but the variation is small (~1096)
compared with that of the particle-particle interaction.

Though the_illustrations (Figs.3,4 and 5) are made at $=0

as examples, these characteristics are common to all deformation.



4) The most favourable values of the energy gap parameters are
determined mainly by the kinetic energy and The particle-particle
interaction parts. The total energy varies very slowly with energy
gaps in the neighbourhood of a minimum (Fig.6). Therefore the
energy surface as a function of quadrupole deformation parameters
can be obtained with reasonable accuracy with the energy gap para-
meters determined through the eq.(2-15) in which the strengths

of the pairing forces are fixed as Gn=23.0/A, Gp=28.0/A .

S5) The kinetic energy part increases with increasing deformation
parameter B (Fig.8). .
6) The particle=particle and'the particle-hole interaction parts
decreases with . increasing B, and the variations are comparable
(Fig.9). |

The conclusion of the present calculation is‘that the equi-

116

librium shape of Ca is spherical and that the anharmonicity

i v=dependent(iipes.o = Jd).



§5. Discussion

The calculation carried out in the preceding section surpasses
the past calculations in that it uses the realistic nucleon-nucleon
interaction with natural radial dependence and exchange character.
and at the same time allows for axially non-symmetric deformation.

The main results of the calcula%ioﬁs made in Sects.3 and 4
may be summarized as follows:

1) The mode of pairing vibration can be treated‘successfully in
the ffamework of the method developed in this paper in‘the case
that the equilibrium values of the energy gans are large. Other-
wise, the quasi-particle excitations, which are not included in

our BCS configurations, will be important.

2) The equilibrium values of the energy gaps are mainly determined
-as a result of the competition of the kinetic energy and the
particle-particle interaction whereas the particle-hole inter-
action plays a negligible role. The dependence of the total energy
on.the gap parameters are very small. ‘

3) It is not only the particle-hole-~ but particle-particle inter-
action that gaines energy by quadrupo%e deformation.

'4) The equilibrium shape of CA1l®

is spherical and the calcu-
lated energy surface is consistent with the energy spectrum. The
deviations from the phonon spectrum méy be attributed to the
v-dependent anharmonicity.

The core consisting of all'nucleons in the lower orbits was
~assumed: to be sphérically symmetric in‘Sec.4. This is only an

assumption. This assumption is of course not realistic and in

’the stfongly deformed nucleus this leads to too small quadrupole



moments. The problem of how to treat the coie more accurately

is left for the future.

The preceding calculations were performed by making use of

the computor HITAC 5020E at the University of Tokyo. The computing

time required is about 5 minuites for each se¢t of parameters.
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Appendix

The method developed to reduce the integral domain of the Eulerian angles
is explained.

Operating a factor depending on ¢ among the three factors in R 60 anto the

bra vector in eq. (2.32), the matrix M defined in (2.68) can be rewritten as

Mdf,(s.s’; $9%)= -‘% Eg(i’)S'X,)&gf(fij’) ,

(A.1)
where
T (6551 = '
L $ ) gqg (S,O,%,X)) (A,2)‘
Ges 8593 = §y (55
gproi Pl = ‘:f<8' ~¢00) . (1.3)
Def‘ining a matrix M<l) by
) , *
M«P(S,S;?SX) = -‘/; Eg(S;SX)GlgF (5:9, A.Y)

another kind of the ‘density and pair matrices cannected with M(l) are introduced:

)

| , M (5,8599%)
P (5,55 4.9%)=
op [ ].,.,, )

(A.5
1+ M(5,5% 99%) )
. ) o
LAERY = = ’ A.6
IR [1* MCEs 9 o) F (S’”)!«,e, - (a8
-ul . o . _
Vs (5,55992)= 6 (55 0) 1 C5:8580%) |
’ 79 [G(g T x,s';sosx)] (A.7)

OtFo



It can be easily seen from the definitions of fozB’ (2.28), that there are re-

lations

Grup(5; 2T-$)= Giog (55 1-$) = Gigy (39, (4.9

Foe (85 9,200 = Ep (51 9,m-%)= Fop (539.), (8.9)

EpCS; 2-3.%X) =(-1)""m’ E,:(g;%,x), (A.10)
Using eqs. (A.8) ~ (A.10), the properties of M and M%) are verified,

Maf (6.8 2m%,6.X )= M"F (.85 =5, )= M?,;*( §55e0% ), ‘} - (A.. 11)

Map(6.556.8, 200 Mg (6539,9,1 )= M (5, 5% 9.9,0). (8.12)

If we put egs. (A.8) ~ (A.12) into egs. (2.70a) ~ (2.70¢) and (A.5)~ (A.?),’
then the following properties of the two kinds of density and pair matrices are
verified;

’ ’ w¥ ’
56,85 218, 9, 0) = £, (6,85 159,00 = 91,2, (5549 9%) (A.13)
§$6(5.559,9,210= Sep (589 9mx)= f’:; (68529 (A.14)
‘Kgs,sﬁzn-g&.x)'-.: n;&sfvr-y. X)) = xﬁ;(s,s';y&x)l (A.15)

M (5,559.9, 280= Wg (5,65 2.8, 7-2) = Ry (5,5%59,%) (4.16)



R (5,5% 21 Y 2 — o :
2 (5,57 210, 6,%) = Ny (6,819, 3,2) = xﬁ; (5.5 9.6.%). (A.17)
Rep(8,856,9,2m-X)= U0p (6,85 .0, wt ) = (5,55 5.9.%) | (A.18)

Egs. (A.13) ~ (A.18) are sufficient to reduce the integral domain of the variables ¢
and X from [0,2n1] to [0, -;13.' Here we define the second kind of the overlap and

energy kernels,

)] P : /, ' 4
TE85690)=  NENE)oxp (LT b1 M Gsies0)] | (A.19)
R6.55990)2 RV(5.5% 9 92)/MN%E5% 95%)

= (0}
Zf"rf’-r(“ PN, Ve,aer[-ﬁ,,cssasz)ﬁ,;css,yoz)+4 Ry 5690 tyatigpef A-20)

Then, the projected kemels of the mtegral eq. (2.61) is written as
Hiw(5.6) = Ew Nw<8 8)

1 % | 1K)
=9 Lm&ds d.«'(a)[ fool‘f e 9&0!'1{( R85 90%)-En )M (5. 859 9%) K%

}) , o ’ . -1 A : -
+(&‘(8.5;?3'X.)-Ef\,)'fl )(8.8;5031)6 Kx} + c.c.l - (A.21)

Then we make the reduction concerning the variable 6. First, let us

prove the following equation,

M4F(5,8l3 ?.71’-‘9,1) =(“1)m‘-wp M:;(S‘S'; ¢, &x). (A.22)

Proof: From the definition the left-hand side of eq. (A.22) is written as



M.‘-FCS,&'; ¢ T-9Y) = —é F..;(a'; w9, %) 6y, (539,

making use éf eq. (A.10),
e % |
= ‘%@‘) E;;(&;S;'X.)Glgf(s;gs)

g . D ,
=e1) T Mo (5558,

" 'M.i-i-'mpa evem | gﬂ' WI.-U‘CM.AO-LM.M 3_ Gf/S .
Thus eq. (A.22) is directly proved.

Then it is easy to prove the relation

ﬁf(s,s'; ¢,-H,X) = @ S’:;)(x.s'; P92 (A.23)

Proof: We expand the left-hand side of eq. (A.23) in a power séries,

°Q
’- n 4 , 4
ﬁf( 8.8 » 3’,7(“& X) =Z&‘) Z Mqh,(&SZ ?.'?C-S,%)Mhh‘ﬁ&s} Y.W‘B,X)‘“ Mkﬁ-‘ P(&S; ?:‘t_-&X)

bl hh"' h\H

then inserting the relation (A.22) into the right-hand side,

_ oo- " . N"}"b.*“b.‘"n‘*f"hf ) , w) , (1) s

Tz( Dkg_&l) M.m.(&‘ $90Mu8.899%) - M, §(£55992)
My=Tig U

=077 £, 585990,

Thus the proof is completed. We can prove the similar relations of the pair

matrices in just the same way ,‘



-~ , WobMy :
Nep(5.55929.0=C0" "R s5tg9n), (A2

Ko G b )= o st say (8.25)

The last step is to prove the relations

Bs.s g0 = R(§8% 9.%) (A.26)

NS, ¢ -9, 0)= 76855 %.1). (a.27)

The proof of the second relation is easy. We prove here the first one.
Proof: Using egs. (A.23) ~ (A.25) the left-hand side of eq. (A.26) can be

written as

'ﬁ(&‘s'; ¥. T-9.%) =Z€'P ﬁ:‘;(&S'; y&x)c_ﬂm"fhf

+ J._ my-mg a) ’ W= (}) ’
g/%xvdim{ 2607 R Gsisimen” ‘)j;; (585997

™,
p - ) ”'fm

+en™ P css’ N (5.8
yy p(EEFINCN U5 (8854 8%).

Since the matrix elements EocB and VaB conserve the magnetic quantum number,

Y§
all the phase factors appearing in the right-hand side disappear, and eq. (A.26)
is shown to be valid.'.

All the preparaticns are completed. The kernel in the integral equation

becones .

k3 ’ . ’ 34 x
[HE (555 ~ 5 NEek8,873) = 2{ mind a8 A, (9) +60 diese®) Ar-sct9)]
o . ) (A.28)



where

‘ Wi 1K< V4 T 1KY
AKK:(S3E§39 e odx[(ﬁz(s,s’;g»sx)-En)%(8,5';99706 |

v _ KX
+(B6.599X)-ENLesie50e vee]  (a.29)

The computation time may be largely reduced by using this method.
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Figure Captions

Figure 1. Energy of the 1lst excited state relative to the ground
state 1s plotted against the pairing force strength G
in eq.(3-1). The solid curve is the result of ﬁhe GCM,
the dashed curve is the one of the exact calculation
and the dash-dot curve is the one of the linearization
method.

Figures 2a-2g. The generating function, f£(g), is plotted against
g for the value of G written in the figures.

Figure 3. The kinetic energy part of eq.(4-2) in MeV versus the
energy gaps at B=0.

Figure 4. 'The particle-particle interaction ﬁart of ea.(4-2) in
MeV versus the energy gaps at {=0. |

Figure 5. The particle-hole interaction part of eq.(#—é) in MeV
versus the enérgy gaps at B=0. |

Figure 6. The total energy of eq.(4-2) in MeV versus the energy
gaps at (=0.

Figure 7a-7d. The energy surfaces are plotted as a function of
B at each mesh of ¥, o' ) 20 , 40 and 60 .

The lowest one among the energies tabulated in Table III
at each set of B and Yy are adopted.

Figures 8-10. Plot of the kinetic energy part, the particle~
.particle interaction—'and the particle-hole interaction

part_agéinst B with v=0, respectively.



Table I.

Table II.

Table III,

.columns‘ Ek’ Eph’ E

Table Captions

Parameters of the interaction used in the calculation

of Sec.4. The interaction is written as

V= (Vw+ VoPe = VMP P = VR ) \T(r})

vy= exp YT

- with obvious notations.

Parameters used in the construction of the intrinsic

"wave functions in Sec.4. K and g 1is of the same

meaning as in ref.}O).
Results of the calculation carried out in Sec.4. The
columns (3 and ¥y give the values of the deformation

parameters at which the computation is performed.

- The columns GA and Gé give the pairing force para-

meters times mass number for neutrons and protons
respectively, which are used in the construction of
the intrinsic wave functions, and the columns A n
and Aﬁ give the corresponding energy gaps. The
PP gnd Et give the kinetic
energy-, the particle-~hole interaction-, the particle-

particle interaction part and the total energy in MeV,

respectively.
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* Table I-
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Table II _l
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wl o.ws | o0.45 | 0.45 | 0.5
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