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資料

連立一次方程式の解法

反復回数と計算量削減の工夫

一共役勾配法について一

大阪大学工学部昔5 田艶子

〔〇〕はじめに

n次の連立一次方程式 Ax=bの解法には、 Gaussの消去法に代表される直接法（有限回の演

算で丸め誤差がなければ厳密解に到達するもの）と、適当な近似解％からはじめて、方程式より

変形した同値な式か呼は） =Hx+c を用い、逐次代入 xk+1= cp(xk)を行なうことによって解を

求めていく反復法があり、その代表的なものに Gauss-Seidel法， SOR法， SSOR法，

Jacobi法がある。今、ここでとりあげる共役勾配法(ConjugateGradient Method―略し

てCG1法）は、反復解法であると同時に、有限回のステップで解に到達するという直接法の利点を

あわせもち、この点で他の反復解法と異なる特徴をもっていることが知られる。しかしながら、そ

の絶対値が減少数列である残差の列の線形結合により修正方向を決定していくアルゴリズムである

ことから、丸め誤差の影磐に対し非常に敏感であるという欠点をもっていた。

しかし、係数行列Aが大型でかつ疎行列(sparsematrix)であるならば、その疎(sparse)で

ある性質が大きくきいて、反復回数は理論上のn回よりずっと小さくて解に収束することが知られ

た。このことはきわめて注目してよいことであった。そしてまた、最初は一般化CG法(general-

ized CG method)として考えられた手法が、係数行列Aが大次元かつ sparse である場合
〔21)

に、非常な効果をもたらし、収束の速さを飛躍的に速めるということを発見したのは Reid であ

り、それ以後、この generalized CG法の手法は、連立一次方程式がより解きやすい条件下に

おかれ、そして収束が速くなるようにあらかじめ条件を整えておくという Preconditioning の

手法として非常な注目を集めている。

ここでは、 このCG法に対する Preconditioning の手法について若干解説するとともに、さ

らに、そのアルゴリズムを考慮する中で、一反復における計算量を画期的に減少させる方法につい

て述べる。

〔l〕古典的 ConjugateGradient法

T 
係数行列Bが nxnの正則行列とすると、 BBは正定値対称行列である。 そこで、連立一次方

程式 Bx=b に対し、正値2次形式
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<p(y) =½ ばー y{亙幻— y)
を考えると、 yが真の解;に近いほど <p(y)の値は小さくなり、 y=xのとき <p(y)= 0となる。

そこで、一つの近似解のKに対し、適当な修正をほどこして <p(xk+1)< <p(xk) となるような xk+1

を定め、真の解ふつまり <p(y)の極小値0を与える点へ収束する列｛咋｝をつくっていく方法が考

えられる。修正方向ベクトルの定め方によりその方法は種々考えられるが、これらは総称して傾斜法

と呼ばれる。共役勾配法(CG法）は、そのうちの一つである最大傾斜法(SteepestDescent 

Method)に修正を加えたものとして、最初に、 1952年 HestenesとStiefelによって提唱さ

れたものである。

ここで、改めて解くべき連立一次方程式を次のようにする。

Ax= b, A; nX nで、正定値対称 (1 -1) 

その最小値を求めることを目的とする誤差函数は

叫x)=(x-x,A(云―x))= (A-1 r , r) (1 -2) 

ただし X ; 真の解

r =b -Ax ; 残差

とする。ある近似解究から、修正ベクトルpkを用いて新しい近似解 Xk+Iは次のようにして求め

るものとする。

xk+1 = xk + CX,.Pk 
砂(X)

この修正方向において （ 
k+l 

cp xk+1)を最小にする％は、 ＝ 
如

0 より
k 

(pk'な）
a 
k+I = (烈， A烈）

(1 -3) 

(1 -4) 

であり、これから次の残差に対する式がでてくる。

rk+i = b-A烈＝冗― akApk (1 -5) 

修正ベクトル烈+!の選び方としては、釘， Pz'・・・, pkに対し、 A一直交であるようにする。

A一直交であるとは

(p. , Ap.) = 0, iキj

(列,Api) > O 
(1 -6) 

なる関係を満たすことである。このようにして選ぶ pl'p2'…, Pnは一次独立なベクトル系であ

り、 n次元空間を張る基底をなしている。ゆえに、連立一次方程式の解盃=A一lb はこのベクトル

系で展開され、

x = c?, + c2p2 +…+c占 (1 -7) 

と書くことができる。各係数は{p. }の A一直交性より
i 
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(pk'b) 
C = 
k (Pk'Apk) 

k=l,2,・・・, n (1 -8) 

である。反復の初期値 x1= 0 とすると、 K回目の反復での修正の最適係数 akは、 {pJのA一直

交性より

(Pk'rk) (Pk'b) 
ak = = 
(Pk'Apk) (Pk'Apk) 

＝令 (1 -9) 

であり、解;の展開係数に等しい。共役勾配法の反復回数はたかだかnまで、というきわだった特

徴はここからいえることである。

さて、この A一直交系のとり方にはまだ任意性が残っているが、共役勾配法では各近似解”い Xv

…における残差ベクトルの列 r1, r2, ...'rk より、以下のようにしてつくる。この残差ベクト

ル系は直交系である。つまり、

(r. , r .) = 0 (iキj) (1-10) 

ゆえに、一次独立なベクトル系であるから、これにより Gram-Schmidtの直交化法を用いてA-

直交系 Pi'P.i, …を求めていく。

Pi = r1 
k-1 

烈=rk―貞り"kpj , k = 2, 3, …， n (1-11) 

(r , Ap.) 
ただし r = k .J 

jk (p. , Ap.) 

{ r.}の直交性と{p. }のA一直交性を用いて、上式は、以下のような簡単な形に書きなおすことが

できる。

pk+!= rk+I十各pk

ただし /Jk = 
(r 
k+i 
, r 
k+i 

(rk,rk) 

） 

以上より、共役勾配法のアルゴリズムは以下のようになる。

〔CGAlgorithm 1〕

初期値町

行=b-A叫， P1= r1 

k = 1, 2, … に対して

(pk'rk) 
a = 
k (Pk'Apk)' 

(r , r)  

ft = 
k+l k+l 

k (rk , が’

大阪大学大型計鐸機センターニュース

xk+1 = xk +~ 占

r 
k+t 
= r -a Ap 
k k k 

pk+!=冗+!+ ,8i凸

- 57 -

(1 -12) 

(1 -13) 
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さらに、 P=p I 
k k 
(r , r 
k k 
）とおきなおすと、簡単な計算により、上と同値な次のアルゴリズムが

でてくる。

〔CGAlgorithm 2〕

初期値；叫

r1 = b -Ax1 , p1 = r1 

k =1, 2, …に対して

1 
a = 
k (列， Apk)

/3 = 
1 

k (r , r)'  
k+I k+I 

X =x + 
k+I k a P k k 

(1 - 14) 

r 
k+I 
= r -a Ap 
k k k 

pk+I = pk+ ,Bk rk+I 

以上が基本的な CG法のアルゴリズムである。解法自体に対する変形版も種々あるが、ここでは

ふれない。なお、上の〔 CGAlgorithm 2〕は高橋版といわれる変形版である。以後、このア

ルゴリズムを基礎におく。これにもとづき、最初は一般化CG法(generalized Conjugate 

Gradient method)として考えられた Preconditioning について次節以降で述べる。

〔2〕 Preconditioned Conjugate Gradient Algorithm 

連立一次方程式を解く際には、通常、その解きやすさというのが問題とされ、それは行列の条件

数(conditionnumber)の大きさで測られる。 Aの条件数に(A)は、ノルムを用いて、 ,c(A)= 

IIAll・IIA-111 と定義される。またAの固有値 {aJが、大きさの順に <Jnく<Jn-1<…く(JI ならば、

これを用いて IC(A)=a/an とも定義される。そしてこの時は spectral condition numberと

いう。 Preconditioning とは、もとの系を変換し、関連する条件数を減少させて、連立一次方程

式が解きやすくなるように、あらかじめ条件を調整することである。

連立一次方程式に対する反復法への Preconditioningとしては、次の2つのタイプが考えられ

る。適当な正則行列Cを用いて、

(a) AC一1x=b, の=C-1寄

(b) c-1心 =d一lb

どちらの場合も、 Aの条件数より C一IA又は AC一1の条件数がよくなるように、 つまり、係数行

列の固有値の多重度を増し、収束を速めることができるようにCは選ばれる。 CG法では残差の情

報を用いるので、 (b)のタイプの Preconditioningを考慮する。

解くべき線形系

Ax=b, A; 正定値対称 (2 -1) 

に対し、適当なか<nの正則行列Mを選び、次のように一般化した系を考える。
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-! -! 
M Ax =M b (2 -2) 

-1 
簡単にわかるように、 M はAの逆行列に近いものをとれば一番よい。従って Preconditioning

とは、 Aの逆行列への非常によい近似行列をさがすことだともいえる。 Aは正定値対称であるから、

MもAと同様正定値対称であるとすると、 (2-1)に同値な次式を解くべき線形系とすることがで

きる。
1 I I 1 -- -- - -ァ
M 2AM濯位=M b (2 -3) 

これを冗ア=bと書き、この系に対してCG法のアルゴリズムを適用すると

〔Algorithm〕

?! ; (2-3)に対する初期値 (M2x の近似値）
-., -., -., -., -., -., 

r1 = b -A Xi'Pi = r1 

k = 1, 2, …に対して

a = 
k 

,8 = 
k 

1 
-., -., -., 

(Pk'A Pk 

1 

～～  (r 
k+l 
, r 
k+l 
） 
， 

---の＝”k+l k 
+ap 
k k 

～～～～  r =r -a 
炉1 k 

Ap  
k k 

～ ～～  
pk+!=~ ん^＋各冗+!

である。これを、もとの系 (2-1)についての記法で書きなおすと、以下のようになる。

〔PreconditionedCG Algorithm〕

町； (2-1)に対する初期値

r1 = b-Ax1, ~=M-1r1, Pi =h1 

k =l, 2, ... に対して

1 
a = 
k (pk , Ap) 

， 
k 

1 
/J = k ( r'  
k+I 
, h) 
k 

X =x 
k+I k 
+a P 
k k 

r 
k+I 
= r -a Ap 
k k k 

ーI
h =Mr 
k k+I 

pk+I = pk十各％

(2 -4) 

CG法のアルゴリズム(1-13)と、 (2-4)を比較してわかるように、 Preconditioningを考

慮したとしても、アルゴリズムとしての違いはーケ所 h の計算がはいってくるところである。
k 

～ 
新しい係数行列Aを計算する必要はない。そこで、 hkの計算のしやすさということも、 Precon-

dit ioning matrixを作る時の一つの目安となる。それゆえ、 Mとしては、三角行列の積ととる

ことが行なわれている。 CG法に対するよく知られた Preconditioningには、三角行列を用いる
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SSOR型(Symmetric Successive Over-relaxation Methodに基づく）のもの（〔3〕

で述べる）と、係数行列の sparse性を利用し、不完全三角行列分解したものから Preconditio-

ning matrixをつくるもの（〔4〕で述べる）がある。

〔3〕 SSOR型のPreconditioning

〔2〕でみたことからもわかるように、一般に、よい Preconditioningmatrixがもつ性質と

して、以下のことが考えられる。

ーI
(a) MAの spectral condition numberがAより小さい。

(b) M をつくるのは簡単であること。

(c) MはAと同様の sparse性をもつこと。

(d) M を係数行列とする連立一次方程式を解くことは、 Aを係数行列とするものより、 ずっ

と簡単であること。

係数行列 Aの分割に基づき、三角行列の積として Preconditioning matrix をつくるものを
〔7〕

総称して、 SSOR型 と呼ぶ。これは最初に 0.Axelsson が SOR法の加速のための Precon—

ditioningと、 CG法のPreconditioningとの類似性を認めて、 SSORPreconditioningと名
〔5〕，〔22〕

付けたことによる ようである。ここでは、この型に属するものの一つとして、高橋• 野寺の
〔8〕，⑲〕，〔11〕

Preconditionmg をあげておく。

係数行列 Aを次のように分割する。

A=L +D+L 
T 

ただし D; 対角行列

L; 対角要素はすべて 0の下半三角行列

そして、
I I 
―す―T T 

A'= D AD = I + L'+ If , (I ; 単位行列）

より、

C == I +cvL', 

ただし CV ; SOR法加速パラメータ， O<cvく2

とし、

MーI=(Cふー1

とおく。

(3 -1) 

(3 -2) 

(3-3) 

Aがsparseであるならば、 Cもまたsparseな三角行列である。ゆえに PreconditionedCG 

一1
Algorithm (2 -4)における h=Mr の計算は、次の2つの連立方程式を相ついで解くこ

k k+I 

とに相当する。
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1) Cs= r 
k+I 

T 
2) Ch = s 
k 

(3 -4) 

これらの連立一次方程式は、係数行列が三角行列であることから、簡単に解を求めることができる。

〔4〕不完全分解によるPreconditioning

実の係数行列 Aが

A=K-N 
-1 

ただし Kは正則かつ K :;:::: 0 

N2〇

(4 -1) 

であるよう分割できるとき、この分割を Aの正則分割(regular splitting)といい、このK,N

を用いて、一般に反復法は次のように定式化される。

kの =Nx + b 
k+I k 

(4 -2) 

そしてこのとき、この反復法は収束するということが示されている。

たとえば

A=L+D+U 

L; 下半三角行列， D; 対角行列， U; 上半三角行列

と分割したとき、 K=D, N=-(L+D) とすると Jacobi法であり、 K=D+L,N= -U 

ととると Gauss-Seidel法， K=点(D+叫）， N=心((1-Ct>)D-叫 T) ととるのが
SOR法である。

CG法はまたこの観点からみると、反復行列 I-Aとする Richardson法の変形版

x = (I-A)x +b 
k+l k 

(4 -3) 

に対する多項式加速のアルゴリズムの形となっている。 A=K-Nと正則分割でき、このKを用い

てあらたな係数行列を K―hとしたとき、これに対して
-! -! ー1

x = (I -K A) x + K b = K Nx + K b (4 -4) 
k+I k k 

となる。これから、係数行列 Aに対し、正則分割したときの正則行列 kを Preconditioning

matrixに用いると、反復法に対する議論がそのまま使え、収束性も保証される。 Preconditionー

一1
ed CGアルゴリズムとは、反復法 x =K Nx +Kbに対する多項式加速であるといえる。

k+I k 

さて、正定値である行列 Aは、次のような三角行列の積に分解される。

A=LDU, (4 -5) 

D = diag (/J1 , /J2, …, f}n)'/Ji > O 

L; 対角要素 1の下半三角行列， U; 対角要素 1の上半三角行列
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これに対し、不完全分解は、 A=K-R と分解する方法である。 Kは、以下のようにする。
八八八 八
K = L D U , D = diag(a1, a2, …, an) , ai > 0 

八
L;  対角要素 1の下半三角行列

(4 -6) 

八
U;  対角要素 1の上半三角行列

八八T 八八八
Aが対称ならば U=L となり不完全コレスキー分解である。 L,D, U のとり方は次のよう

にする。

今、正定値対称行列 A=(a..)より、第一添字と第 2添字の組を考え、次の 2つの集合を考え
り

る。

n = { (i , j l I ai; キ0} 

”。={ (i , j l I aij = o } 
八 八八T

これらに基づき、 LとR(今、 U=L である）を、

八八 八
L = (l-.) , l--=0, i<j 

Z) ZJ 

八

ij 
l キ0, (i,j) Ellかつ i>j

八
l-. = 0, (. . 
り

i, J) E几かつ i>j

R= (r ..), 
刃

r. =O, (i, j) Ell 
り

r. ・キ 0,
i; 

(i, j) E几）

この不完全コレスキー分解は、以下のようにして順次求めることができる。

i-1八2
a. =a .. —:s l (J 
i ii k-1 ik k 

j = i+l, …， n に対して

1, -rft —認 t, .,)/町， (;,i)Ell

O, (j,i)EII,。

(4 -7) 

(4 -8) 

(4 -9) 

このように、係数行列 Aの非零要素の2つの添字の組の集合に基づいて、その上で行なう不完全

分解は、 Aが対称な M-matrix であるなら、 Aの正則分割であり、 ai>O, i=l, 2, ・・・, n 

であるなら、作り方より一意である。このことを示したのはMeijerink とvander Vorst 
〔2〕

＊ 実行列 Aは、次の条件をみたすとき、 M-matrix という。

A=(a ..)としたとき、
刃

大阪大学大型社罪機センターニュース
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u. 

a .. :,;:: 0, 
り
A; 正則，

iキj
一1
A L 0 
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であり、
〔10〕、＊＊

これらの結果を Manteuffel か、 H-matrix に拡張できることを示している。

そこで、 Preconditioned 
-1 

CG Algorithm (2-4)の h=Mr 
k k+I 

型の場合と同様

八八｝
C=LD 

とおき、

-1 

M = ( 
八八½- 八八½T -1 
(LD)(LD)) 

とする。

〔5〕収束率について

CG法 (1-13)で”
k から”k 

を計算したとき、誤差関数は
+I 

(Pk'rk)2 

叫xk)-<p(xk+1) = （烈， Apk)

となり、必ず減少する。今、数列 {x}自身の収束をみるために、
k 

>o 

ルu,行列 Bに対して

I 

II u IIA = (u , Au)す
IIBvllA 

IIBIIA = sup 
ilvllA 

ー1
真の解x=Abであるとして、誤差ベクトルを
(k) 
c =x―る
k 

とする。

CG法のアルゴリズムから、それは”に関する漸化式
k 

次のノルムを導入する。ベクト

for 

の計算についてSSOR

(4 -10) 

(4-11) 

(5 -1) 

>” 

(5 -2) 

(5 -3) 

xk+1 = /Jk廿'{rk+1((I-A)xk+b) + (1-rk)xk} + (l-pk+1)xk-1 

(rk , 冗）
r = 
k+1 (r 

k 
, Ar 
k 
） 

1 rk+1 (rk'冗）ー1P,.,~[ 1-1了 I',一,• r,) l 
ただし

(5 -4) 

/J1= 1 

と書ることがわかる。 I-AはRichardson法での反復行列である。

に対する行列多項式

さらにまた、任意の行列G

＊＊行列 A=(a ..)が、 H-matrix
刃

行列 B=(b..)を
り

であるとは、次のことがいえるときである。

b ii =a .. ii 
b. = - a .. 
り I I i; ， 

としてつくったとき、 BはM-matrixである。

i =¥= j 
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k k 
Q (G) = a I + a G +…+ a G, (実数 a は S a = 1 , k = o, 1, … である）
k k O . k,1 k1 k n,i i-o k,i 

(k) 
とすると、上のことより cは次の形に書ける。

(k) 
c =~(I-A)c 

(o) 

ゆえに、

II c(k) IIA = I叩 I-A)c(o)IIA::s ¥¥Qk(I-A)IIA・lll)I¥A 

(5 -5) 

(5 -6) 

Aは正定値対称だから Q(I-A) も対称、 A~(I-A)£1 も対称であるから、行列のノルム
k 

の性質より、 Aの固有値入， i = 1, 2, …,n とすると

II Qk (I -A) IIA = max I~(1 -¥) I 

これから

(k) 
II s II 
A 

1 i n 

~max I Q (1 -A.) I (o) II II . k i 
e 1 i n 
A 

(5 -7) 

(5 -8) 

固有値を用いたもっと厳密な誤差の評価については、たとえば文献〔3〕,〔20〕等にその記述をゆ

ずるとして、結果だけを述べると、 JC= Amax/ Amin として

:: :::: :::'°2 [(~> + (~)']-, (5 -9) 

である。

〔6〕計算量削減の工夫

今まで述べてきたアルゴリズムをみればわかるように、 CG法はそれぞれの反復において Ap
k 

という行列とベクトルの積を行なわねばならず、一反復での乗算回数は 0(2nりを下まわらない。

〔15〕
我々は、この計算量を削減することも目的のひとつにして別の Preconditioning を試みてい

るが、最近、高橋•野寺の両氏が、係数行列の分割をうまく利用することにより、計算量をO(n2)
〔14〕

におとすという画期的な方法 をだしたので、これについて若干ふれることにする。

係数行列 Aの分割

T 
A=L+D+L , D; 対角行列

L; 対角要素 0の下半三角行列

とし、 Aの不完全分解を
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八八八T
A=LDL -R, 

八
D; 対角行列

八
L;  対角要素 1の下半三角行列

R; residual 

(6 -2) 

とする。そしてこれらを用いて、 SSOR型Preconditioning

八八4 八 T -1 
M一1=((D + L) D (D + L)) 

matrixを次のように書く。

(6 -3) 

もとの系に同値な系は、以下のものである。

八—1 八 -T 八 T 八一1
(D + L) A(D + L) (D + L) x = (D + L) b (6 -4) 

これを、冗x=7:と書くと、任意の近似値?=( 
八

i D +L fxi （”．はもとの系での近似値）
八

に対する残差 r.は

八~--八一1
r. = b -Aの. = (D+L) r. 
i i i 

ここで、

r. = b -Ax. 
i i 

i 

(6 -5) 

八 八 T
p. = (D +L) p. 
i i 

とおくと P 、 reconditioned

(6-6) 

CG Algorithm (2-4) は、次のように書きなおせる。

〔Modify 1〕

任意の初期値；叫

八 ～ 八 八八
r1=b-A引， p戸 ft1Dr1 

k = 1, 2, ... に対して

1 

ak =八 こ穴’
(pk,Apk) 

1 
/i = 
k 八八'
(r 
k+I 
, h)  
k 

ここで特に注目すべき点は、

うに考える。

八 -T八
x =x +a  (D+L) 
k+l k k 烈

八八～八
=r-aAp ？． 
k+l k k k 

八八八
h =Dr 
k k+l 

八八八
pk+!= pk十各％

八 -T八～八
(D+L) p とAP の計算である。

k k 

(6 -7) 

これについて、以下のよ

八ーl 八ーT八八—1 T 八～八
Ap = (D+L) A(D+L) p = (D+L) (L+D+L)(D+L) 

-Tl¥ 

k k 
p 
k 

ここで、

＝（分十L)一1{ (分十L)+ (分十LT)-(命-D)}(分十L)-T合

＝（分十L)-T合＋（分十L)一1{合― (W-D)(分十LfT合｝

八ーT八
¥= (D+L) 烈 とすると
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～ 
qk =A  
八
pk= t +(分十L)

-1 八
k {pk-stJ 

八
ただし S = 2D -D 

(6-9) 

ゆえに以上を整理すると、 Preconditioned CG Algorithmは次のように修正される。

〔Modify2〕

任意の初期値 町

八 ～ 八 八八
1i =b-A叫， P1=j]1 D r1 

k = 1, 2, ... に対して

八
t=(D+L) 

-T八
k pk 

qk = tk + (分十L)一1 信— s~い
1 

a = 
k 八 ’
(pk'qk) 

1 
/J = 
k 八八'
(r 
k+I 
, h)  
k 

X = X +a t 
le+I le le le 

八八
r = r -
le+I le 

a q 
le le 

八八八
h =Dr 
le le+I 

八八八
P1e+1 = pie 十各位

(6 -10) 

このようにすると、 Aが nxnの要素を全部もつ行列(fullmatrix) であるとしたときに、 t
k 

に対する計算において、三角行列を係数行列とする連立方程式を解くために乗算が n(n-1)/2,

八q の計算において St でn回、連立方程式を解くのに n(n-1)/2回、そして Dは対角行列だ
k 八八 K 
から Dr の計罪でn回、 1回の反復における乗算の総計算量は砧+6n+2となる。 修正以

k+t 

前のアルゴリズム (2-4) (高橋• 野寺の Preconditioningで）では、それは 2n2+ 4n+2 で

あるから、 の減少は目をみはるものであるということがわかろう。

計算のために必要な記憶容量(working storage) の方面からみるとどうなるかをみてみよう。

各反復において、 SSOR型PreconditionedCGアルゴリズムでは、 (3-4)での sとh は重ねる
k+I 

ことが可能であるから、 x,r, p, h, Apの5本のベクトルを準備することを必要とする。修正した

八
アルゴリズムでは、 んは t又は q に重ねることが可能であるから、用意すべきベクトルの数は、

k k 久
前と同様5本であるが、まえもってDとSを記憶しておくための2本のベクトルが必要とされよう。

しかし、演算鼠の減少による経済性の方が、多くの場合には有効であろう。

〔の数値例

ここで、 Preconditioningの効果をみるために、簡単な数値例をあげておく。 CG法のアルゴ
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リズム (1-14)とPreconditionedCG法 (2-4) を用い、高橋• 野寺のPreconditioningで

解いたときの反復回数の比較例である。このとき (i)= 1.0とした。

テストした係数行列は次の 2つの場合である。

(a) A= (a ..) , 
刃

a .. = n -I i-j I i; 

）
 
4
 

ヽ
、ヽ

1

称

‘
 

対

、

‘

ヽ
ヽ

、‘

ー
¥― 

、
‘
‘

、
、

、

、

、

ヽ

‘

4

1
、
、

-
‘
 

ヽ

1

1

 

4

―
-

0

 （
 

＝
 
A
 

向

-6 2 

収束判定は (r, r 
ん K

) ~(10) とした。

I. (a)の場合 Il (b)の場合

反 復 回 数

次Aの元＼数
CG法 Precond. CG法
(1 -14)の (2 - 4) の

アルゴリズム アルゴリズム

50 38 6 

100 68 8 

150 99 8 

200 125 8 

250 158 8 

反 復 回 数

次Aの元＼数

CG法 Precond. C燐
(1 -14)の (2 - 4) の

アルゴリズム アルゴリズム

50 34 20 

100 62 32 

150 90 45 

200 118 57 

250 146 68 

例(a)の場合には高橋• 野寺の Preconditioningはすばらしい効果を発揮する。 (b)の場合につい

ては、 CG法の約 1/2の回数であるが、今 1.0と固定したパラメ-タ (J) は o<wく2 の範囲動

かせるので、より少ない回数とすることは可能である。

〔8〕おわりに

以上が、連立一次方程式の反復解法（とくに共役勾配法）に対する Preconditioningと

削減の方法の概略である。大規模な構造解析等でみられる大次元疎行列を係数行列とする連立一次

方程式は、行列が疎であるということと、 Preconditioningによって、その収束を速めることが

できる。しかし、連立一次方程式の解法に対して行う Preconditioningというのは、注意深くほ

どこすと非常な優位性を発揮するものであるが、乱暴にとりあつかうと、かえって、問題の条件を

より悪くする可能性もあるということは、注意しておかなければならない。その収束が反復行列の
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固有値の分布に依存してくることは、収束率のところでみたとおりである。

ここでは係数行列Aは、正定値対称に限って述べてきた。行列のクラスをひろげた場合における

CG法， Preeonditioning の方法の種々等については、文献を参照されたい。
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