|

) <

The University of Osaka
Institutional Knowledge Archive

Title On a construction of null electromagnetic fields

Author(s) |Nagatomo, Kiyokazu

Osaka Journal of Mathematics. 1983, 20(2), p.

Citation 285-301

Version Type|VoR

URL https://doi.org/10.18910/6556

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Nagatomo, K.
Osaka J. Math.
20 (1983), 285-301

ON A CONSTRUCTION OF NULL
ELECTROMAGNETIC FIELDS

Kivokazu NAGATOMO

(Received August 14, 1981)

Introduction. In this paper we consider Maxwell’s equations with a
certain nonlinear condition and give an elementary method of constructing the
solutions of these.

After the work of Penrose [5], complex manifold techniques have been used
for representing the solutions of Maxwell’s equations. It is now known that the
solutions are represented in terms of cohomology classes on an open complex
manifold with coeflicients in a certain holomorphic vector bundles (cf. Penrose
[5], Wells [7]). But it is not always easy to have the solutions in the explicit
form using this representation. The purpose of this paper is to give a direct
method of constructing the solutions. QOur approach is based on the work of
Robinson [6]. In [6] he studied a particular class of the solutions, so-called
null electromagnetic fields and found the connection between these fields and
the special families of null lines.

We give a brief summary of the results of [6]. The sclutions of Maxwell’s
equations, namely, electromagnetic fields are represented by means of the dif-
ferential 2-forms on Minkowski space. The differential 2-forms induce the
linear mappings from the tangent space to the contangent space by contraction.
The intersection N of the kernels of the transformations induced by F and *F
plays an essential role, where F is a differential 2-form and *F is the Hodge
dual of F. If F is a null electromagnetic field, N has dimension 1 and is null.
Therefore we have a family of null lines (null rays associated with a null elec-
tromagnetic field). This family satisfies some nonlinear equations which are
called shear-free equations. We say that a family of null lines is a shear-free
null congruence if it satisfies shear-free equations. Null electromagnetic fields
are constructed from shear-free null congruences.

In the process of carrying out Robinson’s method of constructing null
electromagnetic fields we must solve an overdetermined system of differential
equations (3.11) which has coefficients related to a shear-free null congruence.
In the present paper we solve Egs. (3.11) exactly and construct null electro-
magnetic fields. At this stage the theorem of Kerr which asserts that every
analytic shear-free null congruence is obtained from a complex analytic homo-
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geneous function with four variables has important place. We find that the shear-
free nature is the integrability condition of Egs. (3.11). 'This condition is equiv-
alent to the existence of the analytic function associated with a shear-free null
congruence. This fact allows us to construct the solutions of Egs. (3.11) using
the shear-free null congruence and the associated analytic function.

The contents of the paper are as follows. In the first section Maxwell’s
equations are presented in a form which is invariant with respect to Lorentz
transformations and the definition of null electromagnetic fields is given. In §2
using the spinor components of the differential 2-forms, we rewrite Maxwell’s
euqations in SL(2,C) invariant form. In §3 we review the relation between
null electromagnetic fields and shear-free null congruences given in [6]. We
remark that the spinor language adopted here simplifies the proof of [6]. The
main results are in §4 and §5: we prove in §4 the existence of the solutions of
Eqgs. (3.11) by showing its compatibility and in §5 give a method of constructing
all of its solutions using the Kerr theorem.

The author would like to express his hearty thanks to Professor S. Tanaka
for suggesting this investigation and for his attention to this work. The author
would also like to thank Dr. T. Tsujishita for his useful comments on the pre-
paration of the manuscript.

1. Maxwell’s equations

Maxwell’s equations, which describe the time evolution of electric fields
E=(E,,E, E;) and magnetic fields B=(B,, B,, B;) in affine 3-space R’= {(,7,2);
x,7,2E R}, classically take the form
d—‘iE—rotho, divE=0,

1.1

(1.1) a
dt

We want to rewrite Egs. (1.1) in a form which is invariant with respect
to Lorentz transformations. Let (M, g) be the Minkowksi space, namely, M is
affine 4-space R* with Cartesian coordinates (x°, &', 8%, &%) ; 2'=t, ' =ux, ¥’=y, ¥’ =2
and g is the metric form on M defined by g=(dx°)’*—(dx")’*—(dx?)?*—(dx*)2.. We
define a 2-form F as follows:

B4rot E=0, divB=0.

F=F, ,-dx‘ Adx’
where

(1.2) [Fi] =
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REMARK. We suppress the summation sign every time that the summation
has to be done on an index which appears twice in the term.

We denote by A*T*M the space of all differential 2-forms on M. The
metric g induces a Hodge *-operator on A2T*M:

*: N2T*M — N2T*M .
We recall that if

F = F,-l,-zdxil/\dxiz >
then
(+F);j, = (sgn o)F'r'z
where
( 0 1 2 3 )
g =1. . . .
L L N J2
Firle — gilkl gizkszl ks
and

(¢") = diag(1, —1, —1, —1).
Then Egs. (1.1) are equivalent to
(L.3) dF =0, d+F=0.

Hodge #-operator is linear and satisfies ¥*=—1. Therefore * has eigenvalues
+i, —i. Let A’T*MQ®C be the complexification of A?T*M, then we have
N T*MQRC= A%D AZ where A% and AZ denote the +i, —i eigenspaces. So
F has the decomposition F=F,+F_,F _ & A%, F_& A% and Maxwell’s equations
for real forms become

dF, =0
or equivalently
dF_=0.

We next give the definition of null electromagnetic fields which are the
main objects of our study. The tangent space at any point of M is equipped
with the inner product g. This induces naturally an inner product on A*T*M,
which we also denote by g.

DerFiNiTION. We say that a differential 2-form F is null if g(F,F)=0 and
g(F,*F)=0. In particular null solutions of Maxwell’s equations are called null
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electromagnetic fields.

2. The spinor form of Maxwell’s equations

In the previous section Maxwell’s equations are given in a Lorentz in-
variant form. We rewrite these in SL(2,C) invariant form. The formalism is
based on the isomorphism between the group SL(2,C) and the universal cover-
ing of the connected component of the Lorentz group. We need the following

notations;
0 1
(6a5) = (67%) = .

1 0
o [0 1
(Ewp) = (47) = |:_1 Oj| ,
(@)= (e | OJ
Lo 1,
@y =aye| b0
. 0 —1],
@ y=appe| 0!
| 1 0f,
@)=y 0
L—? 0 ’

(g:)) = (g”) = diag(1, —1, —1, —1).
To raise or lower indices, we use the formulas
Ep = E%,p and 4 = E4PE,.
Then we have the identities
(2.1) 8ij = 0’1‘1112'0/"2'51111512’12’
for z,7=0, 1, 2, 3.
For a differential 2-form F=F,dx' Adx’ we define F, 5 for A, B=0, 1
and 4', B'=0",1' by
FAA’BB’ = Fijo'iAA’GJBB’
where
olaa = gikGACEAfc/akCC’ and ¢/pp = gﬂSBD&B/D/a‘IDD, .

We call F,,/pp the spinor components of F. It follows from (2.1) that
(2.2) F;F7 = F g5y FA455
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Here we give properties of the spinor components of F. The details are referred
to Penrose [3].

(i) Let ¢pap=(1/2)Fama™ and vy 5r=(1/2)Fyaz,. Then we have

(2'3) FAA’BB’ = ¢AB<9A'B"|‘\P‘A’B’8AB
and
(2-4‘) ¢AB = ¢BA ’ ‘P‘A'B’ = ‘I’B’A' .

(ii) Let Fapppr=hasar5r+Vap€ap. Then F is a real form if and only if
bap="Vap

(iii) The spinor components of F_ and F, are ¢,p€xp and Yy p&4p
respectively and we have

(2.5) *F ggrpp = —1pap€arpr+ 1 arpEap -

We next rewrite Maxwell’s equations using the spinor components of F.
Introducing new variables x,, for A=0,1 and 4'=0", 1’ by x4, =0c"44-%;, Wwe

define differential operators 44" by v44' =

, for example V*'=—(1/2)2
X447
(6—67{— za—?g) Next proposition gives the spinor form of Maxwell’s equations.
x
Its proof is also referred to Penrose [3].

Proposition 2.1.  If F 1y pp=cpasEx s+ rarp€ap 15 the spinor components of
a differential 2-form F, then Maxwell’s equations for F take the form

(3.6) VA% b5 =0 and ¢u5= bpa-

Hereafter we investigate Maxwell’s equations in this spinor form.

3. Null electromagnetic fields and shear-free null congruences

The relation between null electromagnetic fields and shear-free null con-
gruences is discussed. We first characterize spinor fields which represent null
differential 2-forms.

Proposition 3.1. Let F,upp=d €+ VraEas be the spinor components
of a differential 2-form F. Then F is null if and only if ¢app*®=0 and prppp®’®
=0 hold.

Proof. Assume that F=F,dx’ Adx’ is null: F;;F"’=0 and F,;*F"7=0.
Then we have by (2.2)
FAA/BE/FAA’BB, = FUFij = O .

Therefore,
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¢’AB¢ABSA’B'8A,B’+‘P‘A’B"II‘A T

+¢ABEAB1//'A,B,5A’B’ +‘P‘A'B’5A/B'¢ABEAB =0.

Symmetric nature of ¢,z and ./ implies

Has€2 =0 and Y&t =0.
Hence it follows that
(3.1 Papd* P+ Pras Pt = 0.
We recall that

/’ 7/ 4
Fyppp*F4488 = F,xF" =0,

xraa’BB’ _ _i¢AB£A’B’+i\IFA'B'£AB

Similarly as above, we have

(3'2) ¢AB¢AB"“P‘4’B"PA/B/ =0.
By (3.1) and (3.2), we find that
(3.3) Pasdp?® =0 and Yyt =0.

Conversely we can verify that (3.3) imply that F is null.

Q.E.D.

Consider a spinor field ¢ 45 which represents a null differential 2-form. From
Proposition 3.1 it follows that ¢ ,z¢#%=0. But direct calculation shows ¢ 3p*®
=2det[p5]. Therefore ¢ 45, identified with an element of M(2,C), has an eigen-
value 0. Hence we can choose a non-zero spinor field #4 such that ¢ ,zn°=0.

Proposition 3.2. If a non-zero symmetric spinor field ¢ 45 satisfies VA4 ¢ 15—

0, then nyn; v’/ nf=0.
Proof. From the definition #, is a spinor field such that
(3.4) pasn® =0.
Here (3.4) implies that ¢5; and n; are linearly dependent, whence
(3.5) brsnc—dppcny; = 0.
Differentiating (3.4) and (3.5), we find that
(3.6) (n'V11pap)n®+dasn’ Vv ym® =0
and

(VHI¢JB)”0+¢JBV”,”C“(V”/¢BC)”J—¢BCV”,”J =0.
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By our assumption on ¢,; it follows that
(3.7) nVirdsc = ¢'sVme—dacVim .
Multiply (3.7) by #® and use ¢;z#*=0. Then we have
"0/ pdsc = 0.
Hence from (3.6) we find that
Pas’Vyym® = 0.

Therefore n/v;;m® are 0 eigenvectors and that they are parallel to #®. This
implies
anJV”/nB =0.
Q.E.D.

DeriNITION. We say that a spinor field 7, is a shear-free null congruence
if n, satisfies

ngn; v 'n? =0 for J'=0",1".

It is now known from Proposition 3.2 that a spinor field #4 such that ¢ ,zn®
=0 is a shear-free null congruence if ¢,z is a null electromagnetic field. Con-
versely we can construct null electromagnetic fields from shear-free null con-
gruences as explained in the following.

Proposition 3.3. Let n, be a shear-free null congruence. If a symmetric
spinor field ¢ 45 satisfies ¢ 4sn®=0, then (VA4 ¢ 45)n"=0.

Proof. The assumption ¢z:#®=0 implies

(3.8) (14V44 b s )P+ ppenVA4nE = 0 .

Since ¢ 45n°=0, we have

(3.9) Pastic—poctia = 0.

Differentiating (3.9) and using ¢ ,57°=0, we find that
nP(VA4 G ag)ne = (VA4 dpac)nan® .

It follows from (3.8) that

(3.10) n3(VA P ap)c = —bpcn VA4 n? .

Shear-free nature of 7z, implies the existence of the spinor field 4" so that
n V4 nP=4n®.  Therefore (3.10) become

nB(VAA,quB)nC = _¢BC”B§A/ =0.
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Hence we have

(VAA'¢AB)nB =0.
Q.E.D.

Let ¢45 be the same as above and 75, be the spinor field such that ¢,z=
nanp. Symmetric nature of ¢, implies %,m4=0. So there exists the scalar
function & so that n,=xn,. We have then ¢,z=xn,mz. Since (V"A’¢ 5)n5=0,
there exists the spinor field g4 so that v44 b4 »=E4n,. Then £ can be repre-
sented by means of ¢4 introduced in the proof of Proposition 3.3, « and 7, as
follows.

Differentiating ¢,5=1#mn4mp, we find that

VA P ap = (VY K)npt k(1 V44 np 1744 n )
= {naV* e+ (VA nu -5 )i}y
By the definition of £4" we have
= g e (T e
If the function « satisfies
V4 k- (VA4 £ e =0,

then we have £4'=0, namely, VAA/cp 15=0. Hence ¢ p=rn,my is a null electro-
magnetic field. Summarizing these, we have the next theorem.

Theorem 3.4. Let n, be a shear-free null congruence and t* be the spinor
field defined by n,V*4ny=¢"ns. If a function r satisfies

(3.11) 1A VA4 (VA 0,54V = 0,
then ¢ p=run ng is a null electromagnetic field.

Eqgs. (3.11) is an overdetermined system and so the existence of the solu-
tions is not always obvious. In the next section the existence of the solutions
will be proved in analytic case.

4. Existence theorem

We will dsicuss in complex analytic category.
Eqgs. (3.11) are equivalent to homogeneous equations (cf. Courant and
Hilbert [1], 31-32)

(4.1) 1m0 f— (V440 1 4-£%) % f=o.

We define vector fields X4" on C° by
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X = (V) D for AT= 0,1
K

We need the next definition before we explain a property of X4,

DrriniTION.  Let X;(1=1,2, ---,m) be vector fields on C” where m<<n. We
say that the set of vector fields {X;};Z; is a complete system if there eixst func-
tions \;;, for 4,5,k=1,2,---,m so that

[Xi X;] = 202 nin X
where
[Xh X;] - X,'Xj—XjX,' .

For any set of vector fields {X;};Z; we define a system of differential equa-
tions as follows:

X.f=0 for i=1,2, - m

where f is an unknown function. The following theorem for the complete
systems is well known (cf. Eisenhart [2]).

Theorem 4.1. Let X; for i=1,2,---,m be independent vector fields on C"
where m<n. If {X;}:Z, is a complete system, then the system of equations

X f=0 for i=1,2,-,m
has n—m independent sclutions.

The system of vector fields {X4} =y, 1s the complete system.

Theorem 4.2. Let n, be a shear-free null congruence and t* be the spinor
field such that n,V**ny=t"ns. Then the system of vector fields { X2} grey 1v de-
fined by

X4 = nAVAA/_(VAA/”A‘I"gA,) _8_
o«
is the complete system.

Proof. By direct calculation we have

(42)  [X, X'] = —nLa VA — (VT amp - n VAL ) a% -
We recall that
naVA4n, = .

Differentiating we find that
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AV VA Nyt VA L g = LAV am—(Voams) (VA4ns) .
We can easily verify
(V2ams) (VA4n5) = 0
and we have
(#3) 4V a VA iyt VG = £y
Substituting (4.3) into (4.2), we find that
[XY, XV] = —Ep X" — L XY

Hence {X*} -~y is the complete system.
Q.E.D.

5. Kerr theorem and its application to the construction of null
electromagnetic fields

Further we study Egs. (3.11). Let n, be a shear-free null congruence.
Then Kerr theorem asserts that shear-free nature of #,, which is the integrability
condition of Egs. (3.11), is equivalent to the existence of a certain complex
analytic homogeneous function related to #,. In §5 we consider local solutions.

Theorem 5.1 (Kerr). An analytic spinor n, is shear-free if and only if there
exists a homogeneous function f(Z°,Z', Z%, Z®) which defines a surface in P¥C) and
satisfies

f(nA, _‘inAxAA/) == 0 .
ReMARK. The term ‘homogeneous’ means that
JONZO, N2 NZ2 NZP) = \" (2", 20, 2%, Z°)

holds for any A&C, where m is a fixed integer. In this case f is called m-
homogeneous.

Its proof is found in Penrose [4]. Here we give a simple example.
ExampLE 5.1. Put f=Z°—Z'4-iZ*4-iZ% 'Then
ny = —1—%Xp—xp, and n; = 1—x,0—x;y
satisfy
f(nt, —inx ) = 0.
Hence 7, is a shear-free null congruence.

We want to represent the solutions of Egs. (3.11) using #n, and f. For this
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purpose we need some lemmas.
Consider a shear-free null congruence 7, and a homogeneous function f(Z°,
Z, 7%, Z3) such that f(n4, —in®x,,)=0. Put Z2°=o’, Z'=0', Z=ny, Z*=m,.

Lemma 5.2. There exists the scalar function « such that

x(a—f—ixAA/ of ) —n, for A=0,1.

awA aﬂ'AI

Proof. From Euler identity we have

Hence we can find the function « such that

x(if;——ix,i,y 6f) =1y,.

aw 671',;/
Q.E.D.
Lemma 5.3. The function « of Lemma 5.2 satisfies
8f n® = n,v2%n4
g’
Proof. Differentiating f(n4, —in4x,,/)=0, we find that
(éf_—zxAA, of )VBB ni—g a_an: 0.
5:%
Using Lemma 5.2, we have
nAVBB’nA—ix—ainB =0.
T g’
Q.E.D.

We can easily verify the following.
Lemma 5.4. For any spinor n,
N VAP — VP A — nBvAAy
hold for A'=0',1" and B=0, 1.

Now we can prove the next theorem which is one of the main results in
this paper.

Theorem 5.5. Let f be an m-homogeneous function which defines a surface
in PYC) and n, be the shear-free null congruence such that f(n*, —inx,,)=0.
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Then the function « defined by

K a—f—zxM/ of ) =mn, for A=0,1

aa) 872"4/
satisfies
(5.1 (n VA k) ng+(m—4)en 744 -+ k744 (nmz) = 0 .
Proof. Differentiating Ic(a—f—ix BB of ):nB, we find that
aCOB 6773/
n,V*4'ny
5.2 i r(Of . 8 f . of
(5-2) = (n,v* ")(5;,_”433 ”B/)‘I"m VAA —1Xpp’ 67[,3/) .
Here
of f
VAA 3 B_leB,an.B,)
azf o*f > aa’,c_ 2 82f A__; af
= —1Xce n—i—J _nt 184,
900  rdat) Y I WL
. of . ) aa’yc__ f 4
“ps <8a)067[31 Hec aﬂ'c/ 3:% V " ¥ 7[A/87Z'B/n

and that we have

"AVAA ﬂ—msa’ of
87[3/

0*f —_ 0*f ) a4’y 2 of
(amca et 9ab) Y T
—1 o’f — o’ f > A4’ C

“on <amca7r3, R A

We recall that

, . 0
n,VEnA = lIC—‘—f—nB

T g’
and there exists the spinor field {4’ so that
nAVAA'nC — nch’ .

It follows that

Km, VA4 ( of —iXpp of )

f Cyra’ a’,A
ntt —n, v n
aa)caa) 67[0/ CO
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2 2 ,
—inBB/(a 0 f ——ixccz 9 f )nch .

wcaﬂ'B/ ﬁnczan,;/

Using Euler identity, we have

Py ( of "x”’a )
7T g’

. 0 ’
= (m— l)x(a—a{—;—zxm, 67:{) e —n, vt nh
= (m— D),V ny—n,v54nt .
Substituting these into (5.2) and using Lemma 5.4, we find that

(n AVAAIIC)ﬂ s+ (m—4)xn VA g MVAA'(n ang) = 0.

Q.E.D.
Corollary 5.6. If m=4, « is a solution of Egs. (3.11).
Proof. Since
(naV A ieyns+ VA (ngn5) = 0,
we have
{naV A k- (VA ny 52 )Yy = 0
where ¢4’ is the spinor such that 7,v44n,=t4n,,.
Hence we have
na V4 (V4,4 = 0.
Q.E.D.

It is shown that « is a solution of Egs. (3.11) if it is obtained from 4-ho-
mogeneous analytic function. For an arbitrary m we can construct the solutions
of Egs. (3.11) from « as follows.

Lemma 5.7. Let n, be a shear-free null congruence and g(Z°, Z*, 2%, Z°%) be
an arbitrary m-homogeneous analytic function. Then N=g(n*, —in’x,,) satisfies

(nyv?7 /7\)”,4 = m("JV”,"A)x .
Proof. By direct calculation we have
{7 g(ny, —inx,u)}n®

(6—g—zx“/ aag ) (njvll'nA)nB

6(0,1 TT 4/
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= mg(n?, —in'x )57 n®
= mg(n, —inx ,)n, v’ n® .

Q.E.D.

Theorem 5.8. Let f be an m-homogeneous function which defines a surface in
P¥C) and n, be the shear-free null congruence such that f(n*, —in“x,,)=0. Con-
sider the scalar function r defined by

and the function A=g(n", —inx,,/) where g is an arbitrary (m—4)-homogeneous
analytic function. Then x=xr is a solution of Egs. (3.11). Conversely every
analytic solution of Egs. (3.11) is obtained locally in this way.

Using Theorem 3.4 and Theorem 5.8, we have the following.

Corollary 5.9. Put ¢p,z=inmg. Then ¢,y is a null electromagnetic field.

Proof of Theorem 5.8. The first statement follows at once from Theorem
5.5 and Lemma 5.7. In the following we prove the second statement.
Consider a system of equations for an unknown X:

(5.3) nVA4AX = 0 for A'=0",1".

Lemma 5.10. If «, and «, be the solutions of Egs. (3.11), then there exists a
solution X of Egs. (5.3) so that k,=Xk«,.

Proof. The assumption on &, and «, implies

(”AVAA/M)”B‘I‘VM’(”A”B)’H =0
and

(nAVAA’KZ)nB+ VAA,(”A’”B)"z =0.
Setting X=1x,/x,, we have
nAVAA,X == 0 .
Q.E.D.

By virtue of Lemma 5.10 if we have all solutions of Egs. (5.3), then we
can obtain all solutions of Egs. (3.11).
Set X=n,/n,. Then Egs. (5.3) are equivalent to

(5.4) VAL XA =0  for A'=0,1".

Here we note that shear-free nature of n, is conformally invariant and therefore
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(1,X) is also shear-free. Hence we have

5.5) 0, X+X0;X =10,
¢ 0:X+X0,X=0
where

u ¢
w=[p ]
0 0

and 6u=a‘ , 07 = 6_? etc.

Using the same notations as above, Egs. (5.4) become
0, X+X0;X =0,

(5.6) %
0:X+X0,X=0.

Egs. (5.6) are solved easily. In fact two independent solutions are obtained.

Lemma 5.11. We have two independent solutions X,=v—t X and X,=&—uX
of Egs. (5.6).

Proof. By (5.5) we find that
0,X,+X0:X, = —£(9,X+X0;X) =0
and
0X,+X08,X, = —£(0:X+X0,X)=0.
Also we have

0,%,+X0;X, =0,
08X, +-X0,X, = 0.
Q.E.D.

Therefore every solution of Egs. (5.6) is given by
X = h(—uX, v—tX)

where £ is an arbitrary complex analytic function. Now we return to spinor
representation. We define a 0-homogeneous complex analytic function A(Z?, Z?,
Z°) by

A . ZZ . Z3

Wz, 22, 79) = h(zi, zi)

Then we have
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I%(n‘, —intx, ) = h(-lYn“‘xA A,>
n
= h(l—uX,v—{X).

Hence every solution of Egs. (3.11) is represented in the form which is given in
the first statement.

Q.E.D.

ExamprE 5.1°. In the case of Example 5.1, we find «=—1. Put g=-—1/
(2")%. Then we have A==—1/(14x,+xy)°. Hence we have a null electro-
magnetic field ¢ 45:

doo = 1/(1 4200 +2%01)
P = (% 21— 1)[(1+-20y+2x01)?
Pu = (®a0 %0 — 1?1200 +201)° -

ExampLE 5.2. Put f=Z°—iZ'. Then (n,)=(—1,7) is a shear-free null con-

gruence such that f(n4, —in“x,,-)=0. In this case we have k=—1. Therefore

we have
—1 )
(’mA”B) = .
) 1

Put g:——% sin {iZz_Zs} { 1 } Then we have

(2)1/2 70 ( Z0)3
% sin (20— % sin (x°—x?)
(Pas) = .
> sin (x"—x?) ——% sin (x°—x?)

In tensor form we have

(Ey, E,, E;) = (sin(2—1), 0, 0),,
(By, By, B;) = (0, sin (2—1), 0) .

This electromagnetic field represents light wave in charge free vacuum space.
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