

Title	Nice functions on symmetric spaces
Author(s)	Takeuchi, Masaru
Citation	Osaka Journal of Mathematics. 1969, 6(2), p. 283–289
Version Type	VoR
URL	https://doi.org/10.18910/6564
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Takeuchi, M. Osaka J. Math. 6 (1969), 283-289

NICE FUNCTIONS ON SYMMETRIC SPACES

Dedicated to Professor Atuo Komatu for his 60th birthday

MASARU TAKEUCHI

(Received February 3, 1969)

Introduction

A smooth function f on a compact smooth manifold M is called a *Morse* function on M if the critical points of f are all non-degenerate. A Morse function f on M is called a *nice function* on M if

Index of f at
$$p = f(p)$$
 for any cirtical point p of f.

The existence of a nice function was proved by S. Smale and successfully used by him in solving the Poincaré conjecture (Smale [4]). For any Morse function f on M, the Morse inequality:

Number of critical points of
$$f \ge \dim H_*(M, \mathbf{K})$$

holds for any coefficient field K. A Morse function f is called *economical* for K if the equality holds in the above Morse inequality for K.

The purpose of the present note is to show that for a symmetric *R*-space M (For the definition of an *R*-space, see Section 1.) we have a nice function on M, which is also economical for Z_2 , by choosing a suitable spherical function on M.

Recently A. Hattori constructed as follows a nice function on the Grassmann manifold of *m*-subspaces of (m+n)-space F^{m+n} over F=R, C or the algebra H of real quaternions: Let

$$x_{j} = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{m+nj} \end{pmatrix} \in F^{m+n} \quad (1 \leq j \leq m)$$

be an orthonormal basis of an *m*-subspace x of F^{m+n} with respect to the standard metric $\sum \alpha_i \overline{\alpha}_i$ of F^{m+n} , where $\alpha \mapsto \overline{\alpha}$ is the canonical involution of F. We put

$$l_i = \sum_{j=1}^m x_{ij} \bar{x}_{ij} \qquad (1 \leq i \leq m+n) \,.$$

Then Hattori's nice function f is given by

M. TAKEUCHI

$$f(x) = d\left\{\sum_{i=1}^{m+n} i l_i - \frac{m(m+1)}{2}\right\}, \quad d = \dim_R F.$$

The class of symmetric R-spaces includes the Grassmann manifolds and we can confirm that our spherical functions for them are nothing but Hattori's nice functions.

In addition we shall show that for an *R*-space *M* we have another economical Morse function on *M* for Z_2 by choosing a suitable length function on *M* defined by means of an imbedding of *M* into a Euclidean space, which generalizes length functions on classical groups constructed by S. Ramanujam [3] and is essentially the same as our spherical function.

1. Spherical functions on R-spaces

We recall here the notion of *R*-spaces and some properties of them. Let *G* be a connected semi-simple Lie group with finite center and g the Lie algebra of *G*. An element *Z* of g is called *real semi-simgle* if adZ is a semi-simple endomorphism of g whose eigenvalues are all real. For a real semi-simple element *Z* of g, the sum $\mathfrak{n}^+(Z)$ of positive eigenspaces of adZ is a nilpotent subalgebra of g. A subgroup *U* of *G* is called *parabolic* if there exists a real semi-simple element *Z* of g such that *U* is the normalizer in *G* of $\mathfrak{n}^+(Z)$. The quotient space M=G/U of a connected semi-simple Lie group *G* with finite center modulo a parabolic subgroup *U* of *G* is called an *R-space*.

Let M=G/U be an R-space and Z a real semi-simple element of the Lie algebra g of G such that U is the normalizer in G of $\mathfrak{n}^+(Z)$. Let \mathfrak{k} be a maximal compact subalgebra of g, which is perpendicular to Z with respect to the Killing form (,) of g and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition of g with respect to \mathfrak{k} . Then the maximal compact subgroup K of G generated by \mathfrak{k} is transitive on M=G/U (Takeuchi [5]). It follows that if we put $K^*=K\cap U$, we have $M=K/K^*$. Moreover we have (Takeuchi [5])

(*)
$$K^* = \{x \in K ; AdxZ = Z\}$$
.

The smooth function f_X on $M = K/K^*$ for $X \in \mathfrak{p}$ defined by

$$f_X(xo) = (AdxZ, X)$$
 for $x \in K$

where o is the origin of M, is a spherical function on $M = K/K^*$ associated with the representation (Ad, \mathfrak{p}) of K.

Now we take a maximal abelian subalgebra \mathfrak{h}^- of \mathfrak{p} containing Z and extend it to a Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Let \mathfrak{g}_c be the complexification of \mathfrak{g} and σ the complex conjugation of \mathfrak{g}_c with respect to the real form \mathfrak{g} of \mathfrak{g}_c . The real part \mathfrak{h}_0 of the complexification \mathfrak{h}_c of \mathfrak{h} is equal to $\sqrt{-1}\mathfrak{h}^+ + \mathfrak{h}^-$, where $\mathfrak{h}^+ = \mathfrak{h} \cap \mathfrak{k}$. The root system $\tilde{\mathfrak{r}}$ of \mathfrak{g}_c with respect to \mathfrak{h}_c is identified with a subset

284

of \mathfrak{h}_0 by means of the duality defined by the Killing form (,) of \mathfrak{g}_c . We introduce a linear order > on \mathfrak{h}_0 in such a way that for any $\alpha \in \tilde{\mathfrak{r}}$ we have

$$\sigma \alpha \neq -\alpha \text{ and } \alpha > 0 \Rightarrow \sigma \alpha > 0,$$

$$\alpha > 0 \Rightarrow (\alpha, Z) \ge 0.$$

The Weyl group \tilde{W} of \mathfrak{g}_c on \mathfrak{h}_c is a subgroup of the orthogonal group on \mathfrak{h}_0 with respect to the Killing form of \mathfrak{g}_c . For an element s of \tilde{W} we put

$$\Phi_s = \{ \alpha \in \tilde{\mathfrak{r}}; \alpha > 0, s^{-1}\alpha < 0 \}$$

We denote the cardinality $\#\Phi_{s^{-1}}$ of $\Phi_{s^{-1}}$ by n(s) and call it the *index* of s. We put $\tilde{r}_1 = \{\alpha \in \tilde{r}; (\alpha, Z) = 0\}$ and define

$$W^1 = \{s \in W; s\sigma = \sigma s, \Phi_s \cap \tilde{\mathfrak{r}}_1 = \phi\}$$

Then for any element s of W^1 we can find an element a(s) of the normalizer in K of \mathfrak{h}_0 such that $Ad \ a(s)=s$ on \mathfrak{h}_0 . The element $a(s)^{-1}o$ of M does not depend on the choice of a(s) so that we shall denote the element $a(s)^{-1}o$ by $s^{-1}o$.

Now we take an element H of \mathfrak{h}^- such that $(\alpha, H) \neq 0$ for any root α with $\sigma \alpha \neq -\alpha$. Then (Takeuchi-Kobayashi [6], Takeuchi [5]) $s \mapsto s^{-1}o$ gives a bijective correspondence of W^1 to the set of critical points of f_H . Moreover (Takeuchi [5]) $s^{-1}o$ is the "origin" of the n(s)-dimensional cell V_s of the standard cellular decomposition $M = \bigcup_{s \in W^1} V_s$ of M, which is economical for \mathbb{Z}_2 in the sense that $\{V_s; s \in W^1\}$ gives a basis of $H_*(M, \mathbb{Z}_2)$.

Theorem 1. Let H_0 be an element of the negative Weyl chamber of \mathfrak{h}^- , that is,

 $(\alpha, H_0) < 0$ for any positive root α with $\sigma \alpha \neq -\alpha$.

Then the spherical function f_{H_0} on M is a Morse function and for any element s of W^1 we have

Index of
$$f_{H_0}$$
 at $s^{-1}o = Index n(s)$ of s.

Corollary. f_{H_0} is an economical Morse function on M for Z_2 .

Proof. For $X \in \mathfrak{k}$ and $s \in W^1$ we have

$$\begin{aligned} (Xf_{H_0})(s^{-1}o) &= \frac{d}{dt} (Ad(\exp tXa(s)^{-1})Z, H_0)|_{t=0} \\ &= \left(\frac{d}{dt} (Ad\exp tX)(s^{-1}Z)|_{t=0}, H_0\right) = ([X, s^{-1}Z], H_0) \\ &= -(s^{-1}Z, [X, H_0]) \,. \end{aligned}$$

It follows that the Hessian \mathcal{H} of f_{H_0} at $s^{-1}o$ is given by

M. TAKEUCHI

$$\mathcal{H}(Xs^{-1}o, Ys^{-1}o) = (s^{-1}Z, [X, [Y, H_0]]) \quad for \quad X, Y \in \mathfrak{k}.$$

Now we want to find a basis of the tangent space $M_{s^{-1}o}$ of M at $s^{-1}o$, convenient for the computation of the quantity $(s^{-1}Z, [X, [Y, H_0]])$.

Let τ be the anti-linear automorphism of \mathfrak{g}_{C} such that $\tau | \mathfrak{k} = 1$ and $\tau | \mathfrak{p} = -1$. Then there exist root vectors $\{X_{a}\}$ of \mathfrak{g}_{C} with respect to \mathfrak{h}_{C} with $[X_{a}, X_{-a}] = -(2/(\alpha, \alpha))\alpha$ and $\tau X_{a} = X_{-a}$. For a positive root α with $\sigma \alpha \neq -\alpha$ we define $S_{a} \in \mathfrak{k}$ and $T_{a} \in \mathfrak{p}$ as follows. If $\sigma \alpha = \alpha$, $S_{a} = (1+\tau)X$, $T_{a} = (1-\tau)X$. If $\sigma \alpha < \alpha$ and $\alpha + \sigma \alpha$ is not a root, $S_{a} = (1+\tau)(1+\sigma)X_{a}$, $S_{\sigma a} = (1+\tau)\sqrt{-1}(1-\sigma)X_{a}$, $T_{a} = (1-\tau)(1+\sigma)X_{a}$, $T_{\sigma a} = (1-\tau)\sqrt{-1}(1-\sigma)X_{a}$. If $\sigma \alpha < \alpha$ and $\alpha + \sigma \alpha$ is a root, $S_{a} = \sqrt{2}(1+\tau)(1+\sigma)X_{a}$, $S_{\sigma a} = \sqrt{2}(1+\tau)\sqrt{-1}(1-\sigma)X_{a}$, $T_{a} = \sqrt{2}(1-\tau)(1+\sigma)X_{a}$, $S_{\sigma a} = \sqrt{2}(1+\tau)\sqrt{-1}(1-\sigma)X_{a}$. Let $\overline{\lambda}$ denote the orthogonal projection to \mathfrak{h}^{-} of an element λ of \mathfrak{h}_{0} . Then we have (Takeuchi [5])

- 1) $[H, S_{\alpha}] = (\alpha, H)T_{\alpha}, [H, T_{\alpha}] = (\alpha, H)S_{\alpha} \text{ for } H \in \mathfrak{h}^{-},$
- 2) $[S_{\alpha}, T_{\alpha}] = (4/(\overline{\alpha}, \overline{\alpha}))\overline{\alpha},$
- 3) $\alpha \neq \beta \Rightarrow ([S_{\alpha}, T_{\beta}], \mathfrak{h}) = \{0\}.$

On the other hand, \mathfrak{k} is spanned over \mathbf{R} by the centralizer \mathfrak{k}_0 in \mathfrak{k} of \mathfrak{h}^- and $\{S_{\alpha}\}$. But $\mathfrak{k}_0 s^{-1} o = Ad a(s)^{-1} \mathfrak{k}_0 o = \{o\}$ since $Ad a(s)^{-1} \mathfrak{k}_0 = \mathfrak{k}_0$ because of $s \mathfrak{h}^- = \mathfrak{h}^-$ and since \mathfrak{k}_0 is contained in the Lie algebra of K^* . It follows that the tangent space $M_{s^{-1}o}$ of M at $s^{-1}o$ is spanned over \mathbf{R} by $\{S_{\alpha}s^{-1}o\}$. We have from 1), 2), and 3)

$$\mathcal{H}(S_{lpha}s^{-1}o, S_{eta}s^{-1}o) = (s^{-1}Z, [S_{lpha}, [S_{eta}, H_0]]) = -(eta, H_0)(s^{-1}Z, [S_{lpha}, T_{eta}]) = \begin{cases} 0 & if \quad lpha \pm eta \\ rac{-4(lpha, H_0)}{(ar lpha, ar lpha)}(s^{-1}Z, lpha) & if \quad lpha = eta \end{cases}$$

We note here that $-4(\alpha, H_0)/(\overline{\alpha}, \overline{\alpha}) > 0$. Now we need the following lemma giving the signature of $(s^{-1}Z, \alpha)$.

Lemma 1. For a positive root α we have

1) $\sigma \alpha = -\alpha$ and $(s^{-1}Z, \alpha) < 0$ $\Leftrightarrow (s^{-1}Z, \alpha) < 0$ $\Leftrightarrow \alpha \in \Phi_{s^{-1}}$ 2) $\sigma \alpha = -\alpha$ and $(s^{-1}Z, \alpha) > 0$ $\Leftrightarrow (s^{-1}Z, \alpha) > 0$

Proof of Lemma 1. Assume that $\sigma \alpha = -\alpha$. Then $(s^{-1}Z, \alpha) = (Z, s\alpha) = (\sigma Z, \sigma s\alpha) = (Z, s\sigma \alpha) = -(Z, s\alpha) = -(s^{-1}Z, \alpha)$ so that $(s^{-1}Z, \alpha) = 0$. Therefore it suffices to show that

286

$$(s^{-1}Z, \alpha) < 0 \Leftrightarrow s\alpha < 0$$
.

If $(s^{-1}Z, \alpha) < 0$, then $(Z, s\alpha) < 0$. It follows from the choice of our linear order on \mathfrak{h}_0 that $s\alpha < 0$. Conversely if $s\alpha < 0$, then $-s\alpha > 0$ and $s^{-1}(-s\alpha) = -\alpha < 0$ so that $-s\alpha \in \Phi_{s^{-1}}$. But since $\Phi_s \cap \tilde{\mathfrak{r}}_1 = \phi$ because s is an element of W^1 , we have $(s^{-1}Z, \alpha) = (s\alpha, Z) \neq 0$. On the other hand we have $(s\alpha, Z) \leq 0$ from the choice of the order again. Thus we have $(s^{-1}Z, \alpha) < 0$.

From the above lemma we see that the negative space $M^{-}_{s^{-1}o}$ of \mathcal{H} is spanned by $\{S_{\alpha}s^{-1}o; \alpha \in \Phi_{s^{-1}}\}$ and the positive space $M^{+}_{s^{-1}o}$ of \mathcal{H} is spanned by $\{S_{\alpha}s^{-1}o; \alpha > 0, (s^{-1}Z, \alpha) > 0\}$. But dim $M = \#\{\alpha \in \tilde{\mathfrak{r}}; (\alpha, Z) < 0\} = \#\{\alpha \in \tilde{\mathfrak{r}}; (s^{-1}Z, \alpha) < 0\}$ since the Lie algebra of U is the sum of non-negative eigenspaces of adZ on g (Takeuchi [5]). It follows from Lemma 1 that dim $M = \#\{\alpha > 0; (s^{-1}Z, \alpha) < 0\}$ $+ \#\{\alpha < 0; (s^{-1}Z, \alpha) < 0\} = \#\Phi_{s^{-1}} + \#\{\alpha > 0; (s^{-1}Z, \alpha) > 0\}$. Therefore the Hessian \mathcal{H} is non-degenerate and the index of f_{H_0} at $s^{-1}o = \dim M^{-}_{s^{-1}o} = \#\Phi_{s^{-1}}$ = the index n(s) of s. q.e.d.

REMARK. If X is a regular element of \mathfrak{P} , that is, there exists an element k of K such that $H_0 = AdkX$ is an element of the negative Weyl chamber of \mathfrak{h}^- . then f_X is always an economical Morse function on M for \mathbb{Z}_2 , since then $f_X(xo) = f_{H_0}(kxo)$ for $x \in K$. If M is the Grassmann manifold over C or H, the dimensional consideration of cells yields that f_X for regular X is an economical Morse function on M for any coefficient field.

2. Nice functions on symmetric *R*-spaces

Throughout this section we assume that the eigenvalues of adZ are 0, 1 and -1. Then the inner automorphism $\exp ad \pi \sqrt{-1}Z$ of \mathfrak{g}_C is involutive, leaves \mathfrak{k} invariant and is extended to the automorphism θ of K. Let $K_{\theta} = \{k \in K; \theta k = k\}$. Then K^* lies between K_{θ} and the connected component of K_{θ} . It follows that $M = K/K^*$ is symmetric. Conversely, if M = G/U is an R-space such that $M = K/K^*$ is symmetric, then U is determined by an element Z of \mathfrak{g} such that eigenvalues of adZ are 0, 1 and -1 (Nagano [2]).

Lemma 2. (Takeuchi [5]) Let $\{\alpha_1, \dots, \alpha_l\}$ be the fundamental root system with respect to the linear order on \mathfrak{h}_0 we have chosen in Section 1. Then for any element s of W^1 there exist fundamental roots $\alpha_{i_1}, \dots, \alpha_{i_{n(s)}}$ such that

$$Z - s^{-1}Z = \sum_{k=1}^{n(s)} p_{i_k} \alpha_{i_k}, \quad p_{i_k} = \frac{2(Z, s\alpha_{i_k})}{(\alpha_{i_k}, \alpha_{i_k})} = \frac{2}{(\alpha_{i_k}, \alpha_{i_k})}$$

Let $\delta = \frac{1}{2} \sum_{\alpha > 0} \alpha$ and $\delta_0 = \overline{\delta}$. It is known that $2(\delta, \alpha_i)/(\alpha_i, \alpha_i) = 1$ for any *i*, thus we have $(\delta, \alpha) > 0$ for any positive root α . It follows that for any positive root α with $\sigma \alpha \neq -\alpha$ we have $(-\delta_0, \alpha) = -\left(\frac{1}{2}(\delta + \sigma \delta), \alpha\right) = -\frac{1}{2}((\delta, \alpha)$ M. TAKEUCHI

 $+(\delta, \sigma \alpha)) < 0$ since $\sigma \alpha > 0$. Therefore $-\delta_0$ is an element of the negative Weyl chamber of \mathfrak{h}^- .

Theorem 2. Let $M=G/U=K/K^*$ be a symmetric R-space. Then

$$f = f_{-\delta_0} + \frac{1}{2} \dim M$$

is a nice function on M.

Proof. Recalling that dim $M = \#\{\alpha \in \tilde{\mathfrak{r}}; (\alpha, Z) < 0\} = \#\{\alpha \in \tilde{\mathfrak{r}}; (\alpha, Z) > 0\}$ and considering that $(\alpha, Z) = 0$ or 1 for any positive root α , we have $(Z, \delta_0) = (Z, \delta) = \frac{1}{2} \sum_{\alpha > 0} (Z, \alpha) = \frac{1}{2} \dim M$. For an element *s* of W^1 we take an expression of $Z - s^{-1}Z$ as in Lemma 2. Then we have

$$f(s^{-1}o) = (s^{-1}Z, -\delta_0) + \frac{1}{2} \dim M$$

= $-(s^{-1}Z, \delta_0) + (Z, \delta_0) = (Z - s^{-1}Z, \delta_0)$
= $(Z - s^{-1}Z, \delta)$
= $\sum_{k=1}^{n(s)} \frac{2(\alpha_{i_k}, \delta)}{(\alpha_{i_k}, \alpha_{i_k})} = n(s)$.

It follows from Theorem 1 that $f(s^{-1}o)$ equals the index of f at $s^{-1}o$. q.e.d.

3. Length functions on *R*-spaces

Now we come back to a general R-space $M=G/U=K/K^*$. The group K acts on \mathfrak{p} under the adjoint action as isometries of Euclidean space \mathfrak{p} with respect to the Killing form (,) of g. Owing to the equality (*) in Section 1, we may identify $M=K/K^*$ with the K-orbit through Z in \mathfrak{p} . Then the spherical function f_X on M is nothing but the height function on M with respect to the direction $X \in \mathfrak{p}$, that is,

$$f_X(Y) = (Y, X)$$
 for $Y \in M \subset \mathfrak{p}$.

Now we consider the length function L_X on M from the point X of \mathfrak{p} defined by

$$L_X(Y) = (Y - X, Y - X)$$
 for $Y \in M \subset \mathfrak{p}$.

Then we have

$$L_{X}(Y) = -2(X, Y) + (Y, Y) + (X, X) = -2f_{X}(Y) + (Z, Z) + (X, X).$$

It follows from Section 1 that if H is an element of \mathfrak{h}^- such that $(\alpha, H) \neq 0$ for any root α with $\sigma \alpha \neq -\alpha$, then $s \mapsto s^{-1}Z$ gives a bijective correspondence of W^1 to the set of critical points of L_H .

288

Theorem 3. If X is a regular element of \mathfrak{P} , then the length function L_x on M is an economical Morse function for \mathbb{Z}_2 . In particular if H_0 is an element of the positive Weyl chamber of \mathfrak{H}^- , that is,

 $(\alpha, H_0) > 0$ for any positive root α with $\sigma \alpha \neq -\alpha$,

then for any element s of W^1 we have

Index of
$$L_{H_0}$$
 at $s^{-1}Z = Index n(s)$ of s.

Proof. It follows from Remark in Section 1 and the above equality that L_x is an economical Morse function for Z_2 . Moreover Theorem 1 implies the second statement since $-H_0$ is an element of the negative Weyl chamber of \mathfrak{h}^- .

The second statement may be derived as follows by means of the diagram of the symmetric pair (g, \sharp), which will give another proof of Theorem 1. The classical Morse theory for geodesics yields that if $s^{-1}Z$ is a non-degenerate critical point of L_{H_0}

Index of
$$L_{H_0}$$
 at $s^{-1}Z = \sum_{0 \le t \le 1} \delta(t)$

where $\delta(t)$ is the multiplicity of the point $tH_0+(1-t)s^{-1}Z$ if this is a focal point relative to M along the transversal geodesic segment $\{\tau H_0+(1-\tau)s^{-1}Z; 0 \le \tau \le 1\}$ to M and $\delta(t)=0$ otherwise. On the other hand it is known (Bott-Samelson [1]) that L_{H_0} is a Morse function on M and

$$\delta(t) = \#\{\alpha > 0; \, \sigma \alpha \neq -\alpha, \, (\alpha, \, tH_0 + (1-t)s^{-1}Z) = 0\}$$

But for a positive root α with $\sigma \alpha \neq -\alpha$, the equation $(\alpha, tH_0 + (1-t)s^{-1}Z) = 0$ has a solution t such that 0 < t < 1 if and only if $(\alpha, s^{-1}Z) < 0$. It follows from Lemma 1 that $\sum_{0 < t < 1} \delta(t)$ equals the cardinality of $\Phi_{s^{-1}}$, that is, the index n(s) of s. q.e.d.

OSAKA UNIVERSITY

References

- R. Bott and H. Samelson: Application of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029.
- [2] T. Nagano: Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965), 428-453.
- [3] S. Ramanujam: Topology of classical groups, Osaka J. Math. 6 (1969), 243-249.
- [4] S. Smale: Generalized Poincaré conjecture in dimensions greater than four, Ann. of Math. 74 (1961), 391–406.
- [5] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sec. I, 12 (1965), 81-192.
- [6] M. Takeuchi and S. Kobayashi: Minimal imbeddings of R-spaces, J. Differential Geometry 2 (1968), 203-215.