
Title 知識情報処理言語PROROG(その2)

Author(s) 馬野, 元秀; 溝口, 理一郎

Citation 大阪大学大型計算機センターニュース. 1986, 60, p.
185-194

Version Type VoR

URL https://hdl.handle.net/11094/65685

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



資料

矢n麟情幸反夕生王里！言言言吾PROLOG(その2)

大阪大学•大型計算機センター 、居る里予 ラ亡ヲ吾

大阪大学産業科学研究所 精昏 CJ 王m——良E

1. はじめに

前回（第54号、 Vol.14、No.2、pp.37-44、1984年8月号）は、 Prologの入門として、事実、ルー

ル、バターン・マッチング、バックトラック、リストなどについて一通り説明し、 最後に齢mber

と appendのプログラムを示した。そして、今回は Prologによる自然言語の構文解析に話を進め

る予定であったが、再帰的定義になじみのない読者も多いと思われるので、もう少し回り道をして

今回は階乗を求めるプログラムと appendのプログラムを少し詳しく調ぺてみよう。今回もプログ

ラムはセンターで使用できる ShapeUpという Prologで記述する。なお、 ShapeUpの具体的な使

い方については次号で説明する予定であるが、現在のところは文献[l]を参照されたい。

2. 階乗を求めるプログラム

負でない整数 nの階乗は、よく知られているように、

n! = 1• 2• ••• • (n-1)• n 

で定義され、例えば、 Fortran 77では繰り返しを用いて、

INTEGER FUNCTION FACT(N) 

INTEGER N, J 
FACT= 1 

DOlOJ=l,N 
FACT= JネFACT

10 CONTINUE 
END 

で計算することができる（ただし、 n<Oのときのことは考えていない）。

Prologでも、これと同じような形で計算することもできるが、普通は、 n!が

大阪大学大型計切．機センクーニュース -185- Vol. 15 No. 4 1986-2 



o! a { : ・(o-1)1

と定義できることを利用して、

factorial(l, 0). 

n=Oのとき

n>lのとき

factorial(ネnf,ネn): --(中m,ネn,1), 

factorial(*mf, ネ111)'
*(:l:nf, :l:n, ネmf).

(2. l) 

(2.2) 

のように書くのが普通である（見易さのために、アルファベットは主に小文字を用いる）。ここで、

-(枷，中n,1)と :I:(中nf,ネn,知f)は組み込み述語で、前者は「細は約から 1を引いたもので

ある」ことを表わし、 後者は「ネnfしま *nと和fをかけたものである」ことを表わす。 そして、

節(2.1)は「O!が 1である」ことを意味しており、 節(2.2)は「ネnの階乗 *nfを求めるには、

tn-1である知の階乗知fを求めて、ネnと和fの積を求めればよい」ことを意味している。節

(2.2)は factorialを定義するのに factorialを使用しているので、このような定義を再帰的守

義という。これに対して、

?-factorial(ネa,3). (2.3) 

という問いかけをすると、

*a= 6 

となって成功する。

この実行過程を追跡してみよう。まず、 (2.3)を入力すると、節(2.1)とのバターン・マッチング

には失敗するが、節(2.2)とは、

{*nf = *a, ネn= 3} 

という代入が行なわれて成功する。 したがって、次に実行すべきゴール列は節(2.2)の右辺にこの

代入を行なった

・(:f:111,3, 1), factorial(:f:mf, :f:m), :f:(中a,3, キ111f).

大阪大学大型.H~機センクーニュース -186- Vol. 15 No. 4 1986-2 



となる。まず、ー（和， 3,1)はすぐに計算できて、和=2となる。したがって、新しいゴール列は、

factorial(:f:mf, 2), 中(*a,3, *mf). (2.4) 

となり、次に factorial(和f,2)を実行することになる。これは、 (2.3)の場合と同様にして

｛キnf=細f,*n = 2} (2.5) 

という代入が行なわれて、節(2.2)が成功する。そして、節(2.2)の右辺にこの代入を行なったもの、

-(細， 2,1), factorial(*mf, *m), *(枷f,2, 枷f).

でゴール列(2.4)の factorial(2,和f)を置き換えたものになり、新しいゴール列は

-(*111, 2, 1), factorial(*mf, *m), 中(*mf,2, *mf), ネ（ネa,3, ネmf).

となる。 しかし、これを見ているとおかしなことに気がつく。それは3番目の述語＊の変数枷f

である。 この述語には、変数枷fが2つあるが、後の枷fは1つ前の述語 factorialから得ら

れた結果を利用するものであるが、前の知f(ま代入により伝わって来たもので、もとは (2.4)の

細fであった。このように異なる意味をもつ変数が同じ細fで表わされている。

Pro logでは変数の有効範囲は 1つの節の中だけであった。今のようにバターン・マッチングが同

じ節と2回以上成功したときでも、 1回目と2回目は異なる変数となる。 これを同じ変数であると考

えたために、おかしなことが起こってしまった訳である。計算機の中ではバターン・マッチングの

たびごとに変数は異なるものとし処理をしてくれるが、我々がプログラムを追跡するときには注意

しなければならない。普通は、同じ節が2回目以降に使われたときには、変数に’を付けて区別す

る。すると、節(2.2)は、

factorial(*nf', *n') :--(*m', 中n''1),

となり、 (2.5)の代入は

{*nf'= *111f, *n'= 2} 

factorial(拉f''*面），
*(*nf', 中n''ネmf').

となり、節(2.2)の右辺にこの代人を行なったものは、

・(*111', 2, !), factorial (:l:mf', :l:m'), 中(*mf,2, ネmf').

大阪大学大型計n機センクーニュース -187-

(2.6) 

(2.7) 

Vol. 15 No.~1986-2 



となり、新しいゴール列は

-(ネ111',2, I〉,factorial(:i:111f', ネ111'),*<中mf,2, 中mf'),*(*a, 3, :i:111f). 

となる。これを見ると、先ほどの問題点が解消しているのが分かる。

以下同様に、処理を続けると、

-(和',2, 1), factorial(和f''細,),:j:(証f,2, 加f'),吝(*a,3, 加f).

（組み込み述語とマッチ、代入：｛細'=1}) 

→ factorial(知f',1), ネ（紐f,2, 証f'),ネ（ネa,3, 細f)

（節(2.2)とマッチ、代入：｛ネnf''=紐f',*n" = 1}) 

→ -(細",1, 1), factorial(細f'',緬'),ネ（細f',1, 紐f''),

＊（中mf,2, :f:mf'), ネ（ネa,3, :j:mf). 

（紺み込み述語とマッチ、代入：｛拉,,= 0}) 

→ factorial(紐f",0), :j:(知f''1,細f"),:j:(証f,2, 細f'),ネ(*a,3, 細f).

（節(2.1)とマッチ、代入：｛細f''=l})

→ *<紐f',1, 1), ネ（緬f,2, 誼f'),ネ(:l:a,3, 証f).

（紺み込み述語とマッチ、代入：｛細f'=1}) 

→ *(知f,2, 1), 本（ネa,3, 緬f).

（組み込み述語とマッチ、代入：｛細f= 2}) 

→ ネ（ネa,3, 2). 

（紺み込み述語とマッチ、代入：｛ネa=6}) 

となり、成功して、変数 *aに 6を得る。

以上、階乗を計算するプログラムを例として、再帰的に定義されたプログラムの実行過程につい

て述べた。このようなことは異なる節で同じ変数名を使っている場合の追跡においてもあてはまる

（普通は、そのような形のプログラムになってしまう）。

本節では階乗のプログラムを Prologで記述したが、実はこれはあまり Prologのプログラムら

しくない。 再帰的定義による階乗のプログラムならば Pascalや Cで書いた方が、分かり易く、

すっきりと書けると思われる。そこで、より Prologのプログラムらしい appendのプログラムに

話を移そう。

大阪大学大型;itr.r機センクーニュース 188- Vol.15 No.1 1986-2 



3. appendプログラム

appendは2つのリストを連結して 1つのリストにするもので、例えば、

?-append([a, b], [c, d, e], *a). (3.1) 

を実行させると、

ネx= [a, b, c, d, e] 

となる。 念のために、復習しておくと、 [a,b]や [c,d, e]や [a,b, c, d, e]はリストで、

任意個の要素を並べたものであった。そして、要素がまたリストであってもよく、要素が 0個のリ

ストは空リストと呼ばれ、 ［］と書かれる。リストの最初の要素（ヘッド）と残りのリスト（テー

ル）に分けるには、バターンとして、 [*h I *x]と書けばよかった。 また、バターン [*hI *x] 

は要素約をリスト *xの先頭に結合したリストをも意味する。

さて、 appendのプログラムは、前回の最後にも出したように、非常に簡単で、

append([], 中x,ネx).
append([中hIネx],おY,[計hIネz]):-append(:f:x, 約y,中z).

(3.2) 
(3.3) 

となる。節(3.2)は「空リストにどんなリスト数を連結しても、そのリスト中xである」という

ことを表わし、節(3.3)は「1番目のリストから先頭の要素を取り除いたリスト :l:xと 2番目のリス

卜約とを連結したリストが粒であるので、これと 1番目のリストの最初の要素約を結合した

リストが結果のリストとなる」ということを表わしている。これはまた「リスト :l:xと約の連結

したものがリストネzであるならば、 *xしこネhを付け加えたリストと約というリストとの連結

はネzしこ中hを付け加えたものに等しい」と考えてもよい。

さて、 (3.1)の実行を追跡してみよう。

?-append([a, b], [c, d, e], ネa).

（節(3.3)とマッチ、代入： {*h = a, ネX= [b], ネy= [c, d, e], [a I中z]=*a}) 

→ append([b], [c, d, e], *z). 

（節(3.3)とマッチ、代入：｛ネh'=b, ネx'=[], 拿y'=[c, d, e], [b Iネz'J= tz}) 

→ append([], [c, d, e], tz'). 

（節(3.2)とマッチ、代入： ｛中x''=[c, d, e], ネx''=ネz'})

となって成功する。このとき、リスト [b]とバターン［ネhIネx]とのマッチングは成功し、変数

ネhが bしこ、 変数ネxが空リスト［］になることは注意を要する（上の場合には、変数に＇が付

大阪大学大型，iり1機センクーニュース 189- Vol.15 No.1 1986-2 



いていたが）。

この場合、成功したことは節(3.2)の右辺がないことから分かるが、問い合わせ中の変数ネaの

値はどうなるのだろうか。それを知るためには、代入を逆にたどっていけばよい。まず、最後の代

入 {*x''=[c, d, e], *x''= *z'}から、 *z'= *x''= [c, d, e]が分かり、その 1つ前の代

入から *z= [b Iネz']が分かり、ネz= [b I [c, d, e]] = [b, c, d, e]となる。そして、これ

を1つ上の中a=[a I *z]に代入して、 ネa=[a I [b, c, d, e]] = [a, b, c, d, e]となる。

これで，変数キaの値が得られた。 これは、確かにリスト [a,b]と [c,d, e]とを連結したも

のになっている。 [a I :i:z] = *aのような代入が可能であるというのも、 Prologの特徴の1つで

ある。

appendは、 もちろん、 2つのリストを連結するのに使用するが、リストを分割するのに使うこ

ともできる。例えば、

?-append([a, b, c], *a, [a, b, c, d, e]). (3.4) 

を実行させると、

ネa=[d, e] 

となって成功するし、

?・ap匹nd(稔,[d, e], [a, b, c, d, e]). (3.5) 

を実行させると、

捻=[a, b, c] 

となって成功する。 (3.4)と(3.5)に対する実行過程を付録に示しておくので、参照されたい。もち

ろん、

?-append([a, x], 捻， [a,b, c, d, e]). 
?-append([a, c, b], *a, [a, b, c, d, e]). 
?-append(*a, [x], [a, b, c, d, e]). 
?-append(枠,[e, d], [a, b, c, d, e]). 

などは、失敗する。

さらに、

大阪大学大型計算機センクーニュース 190- Vol.15No.~1986-2 



?-append(中a,吝b,[a, b, c, d, e]). (3.6) 

のように、 2ヶ所に変数があるものも実行できる。これは、まず(3.2)とマッチし、

*a=[], ネb = [a, b, c, d, e] 

が得られる。さらに処理を続けさせる（その方法は処理系により異なる）と、節(3.3)とマッチし、

その右辺が節(3.2)とマッチして、

ネa=[a], 約=[b, c, d, e] 

が得られる。さらに、処理を続けていくと、順次、

*a = [a, b], 
*a = [a, b, c], 

約=[c, d, e] 
約=[d, e] 
約=[e] 
約＝［］

*a = [a, b, c, d], 
雑=[a, b, c, d, e], 

が得られる。

いままでは、普通のリストに対する連結のプログラムについて述べてきたが、データ構造を工夫

することによりさらに高速にリストの連結を行なうことができる。このためのデータ構造が、差且

ス (differenceI i st)と呼ばれるものである。 これは、言語の構文解析を行なう際にも重要な
慟きをする。

これは、名前の通り 2つのリストの差で 1つのリストを表わすものである。例えば、

[[a, b, c, d, e], [d, e]] 

で、 [a, b, c]というリストを表わすことになる。 さらに、後の部分は何でもよいので変数にし

て、

[[a, b, c I tx], tx] 

のようにしてもよい。

すると、後の部分が変数の差リストの連結プログラムは、

append([ネx,*Y], [*y, ネz],[*x, *z]). (3.7) 

のような 1行だけの簡単なものになる。

大阪大学大型,if~.機センクーニュース -191- Vol. 15 No.4 1986-2 



これの意味を調べる前に、簡単な例を実行してみよう。

?-append([[a, b, c Iキt],キt],[[d, e I *u], *u], [中a,*b]). 

を実行すると、代入

{*x = [a, b, c Iネt],*Y = *t, *Y = [d, e Iネu],:l:z =ネu,*x =稔， *z=*b} 

で成功する。変数がたくさんあるが、結果を求めるのに必要なものはネaと中bであるので、これ

に関する代入を調べると、

*a=ネx= [a, b, c Iれt]= [a, b, c I *Y] = [a, b, c I [d, e I加］］

= [a, b, c, d, e Iネu]

*b = *z =中u

となり、結局のところ、結果は

［ネa,:l:b] = [[a, b, c, d, e I ,u], :l:u] 

となる。 これは、意味的には、リスト [a,b, c, d, e]を表わしており、思い通りの結果になっ

ている。

何やら騒されたような感じを持つかもしれないが、 これは、リスト [a,b, c Iネt]の変数 *t

を [d,e Iネu]で置き換えると、 [a, b, c I [d, e I *u]] = [a, b, c, d, e I *u] となるこ

とが分かればすぐに理解できる。 (3.2)と(3.3)の普通のリストの appendは、後のリストに前か

ら1つずつ要素を結合して、リストとリストを連結したのに対して、差リストの場合は、前の差リ

ストの最後の要素が変数であることを利用して、その変数に後の差リストを代入して、直接連結し

てしまった訳である。 したがって、 (3.7)の差リストの appendを使うときには、 1番目の差リス

トの後の部分は変数でなければならない (2番目は定数でもよい）。

以上、 appendのプログラムについて述べた。普通のリストに対するものも、差リストに対する

ものも、 appendのプログラムは Prologの特徴をうまく利用した、非常に Prologらしいプログ

ラムである。

4. おわりに

今回は、階乗を求めるプログラムと appendのプログラムを詳しく調べた。 appendのプログラ

大阪大学大型計算機センターニュース -192- Vol.IS No.4 1986-2 



ムは、 Prologの特徴をうまく利用した、非常に Prologらしいプログラムである。 このようなプ

ログラムは「知識」情報処理という感じがあまりしないかもしれないが、再帰的定義とリスト処理

を理解することは知識情報処理においては必須である。次回はセンターで使用できる Prologであ

る ShapeUpの具体的な使い方について説明しよう。

なお、最近、日本語の Prolog関係の本がたくさん出版されるようになった。いくつかを参考文

献[2-11]にまとめておくので、参照されたい。

［参考文献］

1. 日本電気株式会社 (1984) : 「ShapeUp仕様書 (VI)」、 58p.。

2. ¥,/. F. Clocks in and c.s. Mel I ish (1981) : "Progra釦 ngin Prolog", Springer-Verlag. 
訳：中村 (1983) : 「Prologプログラミング」、マイクロソフトウェア。

3. 中島 (1983) : 「Prolog」、 165p.、コンピュータ・サイエンス・ライプラリー、産業図書。

4. 後藤 (1984) : 「PROLOG入門 一知識情報処理の序曲」、 186p.、ソフトウェア・ライプラ
リ1、サイエンス社。

5. 太細、鈴木、伊草、佐藤 (1984) : 「Prolog入門」、 228p.、啓学出版。

6. 中島 (1985): 「知識表現と Prolog/KR」、 179p.、コンピュータ・サイエンス・ライプラリー、

産業図書。

7. 安部 (1985) : 「Prologプログラミング入門」、 195p.、共立出版。

8. 溝口監修 (1985) : 「Prologとその応用2」、 318p.、総研出版。

9. D. Li (1984) : "A PROLOG Database Sysu渭",207p., Research Studies Press, Letc加orth,
UK. 

訳：安部 (1985) : 「Prologデータベース・システム」、 23lp,、近代科学社。

10. 黒川 (1985) : 「Prologのソフトウェア作法」、 256p.、岩波コンピュータ・サイエンス・シ

リーズ、岩波書店。

11. 中村 (1985) : 「Prologと論理プログラミング」、 144p.、オーム社。

［付録］．

く(3.4)の実行過程＞

?-append([a, b, c], *a, [a, b, c, d, e]). 
（節(3.3)とマッチ、代入： {*h = a, *x = [b, c], *Y =絃，ネz= [b, c, d, e]}) 

大阪大学大型計算機センクーニュース -193- Vol.JS No.4 1986-2 



→ append([b, c], ネa,[b, c, d, e]). 

（節(3.3)とマッチ、代入：｛中h'=b, :t:x'= [c], :t:y'= :i:a, キz'=[c, d, e]}) 

→ append([c], :t:a, [c, d, e]). 
（節(3.3)とマッチ、代人： {:t:h''= c, :t:x''= [], 中y',=ネa,*z''= [d, e]}) 

→ append([], :t:a, [d, e]) 
（節(3.2)とマッチ、代入： {:t:x'" = :t:a, :t:x"'= [d, e]}) 

枠＝中x'"= [d, e] 

く(3.5)の実行過程＞

?-append(:t:a, [d, e], [a, b, c, d, e]). 

（節(3.3)とマッチ、
代入： {[:t:h I :t:x] =絃，キy= [d, e], ネh= a, *z = [b, c, d, e]} 

= {[a Iネx]=ネa,*Y = [d, e], *h = a, *z = [b, c, d, e]}) 

→ append(*x, [d, e], [b, c, d, e]). 

（節(3.3)とマッチ、
代入： {[b I *x'] =中x,ネy'=[d, e], *h'= b, 中z'=[c, d, e]}) 

→ append(*x', [d, e], [c, d, e]). 
（節(3.3)とマッチ、
代入： {[c I拿x'']=拿x',ネy"= [d, e], :t:h" = c, *z" = [d, e]}) 

→ append(*x'', [d, e], [d, e]). 
（節(3.2)とマッチ、代入： {[] = :t:x", b'" = [d, e]}) 

*a= [a I *x] 
= [a I [b I拿x']]
= [a I [b I [c I中x"]]] 
= [a I [b I [c I []]]] 
= [a I [b I [c]]] 
= [a I [b, c]] 
= [a, b, c] 

大阪大学大型計算機センクーニュース -194- Vol.15 No.4 1986-2 




