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0. Introduction

We denote byA ∗ (resp., ) the free monoid (resp., the free group), with the
empty word as unit, generated by an alphabetA := {1 2 . . . } consisting of let-
ters. We consider an endomorphismσ on , i.e., a group homomorphism from
to itself. An endomorphismσ will be referred to as asubstitution if we can take a
nonempty wordσ( ) ∈ A ∗ for all ∈ A , cf. the first paragraph of Section 1. When
is a substitutionσ invertible as an endomorphism on ? An answer to this ques-
tion is known when = 2, cf. Proposition 1. Our objective is to generalize Propo-
sition 1 for arbitrary ≥ 2. We introduce a geometrical method in [2]; and we use
a general method given in [6], where the so calledhigher dimensional substitutions

(σ) (0 ≤ ≤ ) are established for a given substitutionσ on .
Throughout the paper, we denote byZ (resp.,N, R) the set of integers (resp., pos-

itive integers, real numbers), and by End( ) (resp., Sub( ), Aut( ), IS( )) the set
of endomorphisms (resp., substitutions, automorphisms, invertible substitutions) on .

Let ≥ 2 be an integer. We mean by (x 1 ∧ · · · ∧ ) the positively oriented unit
cube of dimension translated byx in the Euclidean spaceR :

(x 1 ∧ · · · ∧ ) := {x + 1e 1 + · · · + e | 0 ≤ ≤ 1 1≤ ≤ }
x ∈ Z 0 ≤ ≤ 1 ≤ 1 < · · · < ≤

where{e } =1 ... is the canonical basis ofR . In particular, for = 0, the dimen-
sional unit cube (x 1∧ · · · ∧ ), which will be denoted by (x •), is considered to turn
out a pointx. In general, for{ 1 2 . . . } with 1 ≤ ≤ , 1≤ ≤ , we define

(x 1 ∧ · · · ∧ ) :=0 if = for some 6=
(x 1 ∧ · · · ∧ ) :=ǫ(τ )(x τ(1) ∧ · · · ∧ τ( )) (1 ≤ τ(1) < · · · < τ( ) ≤ ) otherwise

where τ is a permutation on{1 . . . }, and ǫ(τ ) is the signature ofτ , which desig-
nates the orientation. We put

0 := Z × {•}
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Fig. 1. elements
∑

λ∈ λλ ∈ G = 1 2 3

:= Z × { 1 ∧ 2 ∧ · · · ∧ | 1 ≤ 1 < · · · < ≤ } (1 ≤ ≤ )

We denote byG the freeZ-module generated by the elements of :

G :=

{∑

λ∈

λλ

∣∣∣∣ λ ∈ Z ♯{λ ∈ | λ 6= 0} <∞
}

(0 ≤ ≤ )

We can identify the element
∑

λ∈ λλ ∈ G with the union of oriented dimen-
sional unit cubes with their multiplicity, cf. Fig. 1.

For a word ∈ A ∗, | | denotes the length of the word . Forσ ∈ Sub( ),
∈ A and 0≤ ≤ := |σ( )|, we define a word ( ) ∈ A ∗ to be a prefix

( ) := ( )
1 · · · ( )

−1

of σ( ) = ( )
1 · · · ( ) · · · ( ) ( ( ) ∈ A (1 ≤ ≤ )). A higher dimensional sub-

stitution (σ) : G → G is a Z-linear map (an endomorphism on a freeZ-module)
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defined by

(σ)(x 1∧ · · · ∧ ) :=

|σ(1)|∑

1=1

· · ·
|σ( )|∑

=1

(
σ(x) + f( (1)

1
) + · · · + f( ( )) (1)

1
∧ · · · ∧ ( ))

where σ is the linear representation (or the so called characteristic matrix; see the
beginning of Section 1.) ofσ, so that it is of size × with integer entries; and
where f( ) := ( 1 . . . ) ∈ Z , = ( ) is the number of the occurrence of a
letter appearing in a word ∈ A ∗. Now, we can state a result:

Proposition 1 ([2]). Let σ ∈ Sub( 2) be a substitution with2 letters. Thenσ is
invertible iff there existsx = xσ ∈ Z2 such that

2(σ)(o 1∧ 2) = det( σ)(x 1∧ 2)

Related to generators of the group Aut( ), the following result is well known.

Proposition 2 ([3]). σ ∈ Aut( ) iff σ is decomposed into the following three
kinds of automorphisms:

α :





→
→
→

for all 6=

( 6= ) β :





→
→

for all 6=
( 6= ) γ :





→ −1

→
for all 6=

α , β , γ are calledNielsen’s generators. We shall use Proposition 2 for the
proof of our main results (the following theorems). Noting that γ is not a substitution,
we define (σ) (0 ≤ ≤ ) not only for substitutionsσ but also for endomorphisms
σ. The map (σ) (σ ∈ End( )) plays an important role in this paper.

In Section 1, we define (σ) (0 ≤ ≤ ) for σ ∈ End( ); and we prove

Theorem 1. Let σ ∈ End( ). If σ is invertible, then there existsx = xσ ∈ Z
such that

(σ)(o 1∧ 2∧ · · · ∧ ) = det( σ)(x 1∧ 2∧ · · · ∧ )

Roughly speaking, Theorem 1 says that the unit cube (o 1∧ · · ·∧ ) of dimension
is mapped to a unit cube of dimension by (σ) if σ ∈ Aut( ).

In Section 2, we consider the dual map∗(σ) of (σ). ∗(σ) acts on a union of
oriented ( − ) dimensional unit cubes with their multiplicity; and by themap ϕ −

(0 ≤ ≤ ), we can considerϕ − ◦ ∗
− (σ) ◦ ϕ−1

− as a map onG . We apply
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∗(σ) to getting the following theorem, which describes the relation between (σ−1)
and the dual map ∗

− (σ), where is the mirror image of a word andσ( ) :=
σ( ) ∈ A .

Theorem 2. Let σ be an automorphism on the free group . Then there exists
x ∈ Z such that

ϕ − ◦ ∗
− (σ) ◦ ϕ−1

− = det( σ) ◦ (x) ◦ (σ−1) (0 ≤ ≤ )

where the map (x) is a translation byx.

In the case of = 1, Theorem 2 says that we can constructσ−1 by the figure of
∗
−1(σ).

When we study invertible substitutionsσ ∈ Sub( ) with ≥ 3, we encounter
phenomena which do not occur in the case of = 2. Accordingly, some results for

= 2 can not be extended for the case of≥ 3. In Section 3, we see the gap between
the cases of = 2 and of ≥ 3 through some examples.

1. Map Ek( ) for an endomorphism on Fd

We put Â := {1±1 2±1 . . . ±1}, which is an alphabet consisting of 2 letters.
We say that a word ∈ Â∗ is a reduced wordif is the empty word, or =

1 · · · ( ∈ Â ) such that we can not find a number 1≤ ≤ − 1 satisfying
= ρ, +1 = −ρ, ∈ A and ρ ∈ {−1 1}. We write = ′ for two words ,

′ ∈ Â∗ satisfying

= ′; = and ′ = ρ −ρ ; or = ρ −ρ and ′ =

with ∈ A , ρ ∈ {−1 1}. Two words , ∈ Â∗ are referred to be equivalent, and
written as ≈ , if there exist words 1 . . . ∈ Â∗ such that = 1, =

+1 (1 ≤ ≤ − 1), = . The relation≈ is an equivalence one, and =̂A∗/ ≈
holds by the definition of free groups. For a given word ∈ Â∗, [ ] denotes the
element of determined by [ ]∋ . Note thatσ ∈ End( ) is a substitution iff
there exists a nonempty word ( )∈ A ∗ such that ( )∈ [σ( )] for each 1≤ ≤ .
In what follows, a word ∈ Â∗ will be identified with the element [ ], cf. the
definition of substitutions given in Section 0.

For σ ∈ End( ), we can set

σ( ) = ( )
1 · · · ( ) · · · ( ) ∈ Â∗ ( ( ) ∈ Â )

such that the word on the right-hand side is reduced one inÂ∗ for each ∈ A . We
define ( ), ( ) ∈ Â∗ by

( ) = ( )
1 · · · ( )

−1
( ) = ( )

+1 · · · ( )
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( ) (resp., ( )) will be referred to as the -prefix (resp., the -suffix) of σ( ). Note
that ( )

1 is the empty word for any ∈ A . A canonical homomorphismf : → Z
is defined byf( ±1) = ±e ( ∈ A ). Then there exists a unique linear representation

σ on Z associated withσ such that the following diagram becomes commutative:

σ //

f
��

f
��

Z
σ

// Z

We introducê (0 ≤ ≤ ) formally defined by:

̂ 0 := 0 = Z × {•}
̂ := Z × { 1 ∧ 2 ∧ · · · ∧ | ∈ Â } (1 ≤ ≤ )

We denote byĜ the freeZ-module generated by the elements of̂ :

Ĝ :=




∑

λ′∈b λ′λ′
∣∣∣∣ λ′ ∈ Z ♯{λ′ ∈ ̂ | λ′ 6= 0} <∞



 (0 ≤ ≤ )

DEFINITION 1. We denote byι : Ĝ → G the Z-homomorphism (theZ-linear map)
defined by

ι(x 1 ∧ · · · ∧ ) :=





0 if ‖ ‖ = ‖ ‖ for some 6=
sgn(1) · · · sgn( )ǫ(τ )(x +

∑
=1 χ( ) ‖ τ(1)‖ ∧ · · · ∧ ‖ τ( )‖)

(1 ≤ ‖ τ(1)‖ < · · · < ‖ τ( )‖ ≤ ) otherwise

where τ is a permutation on{1 . . . }, ǫ(τ ) is the signature ofτ , sgn( ) and‖ ‖
means sgn( ) := ,‖ ‖ := , and

χ( ) :=

{
o if = 1
f( ) if = −1

( ∈ {−1 1} ∈ A )

For two elements 1, 2 ∈ Ĝ , we write 1 ∼ 2 if ι( 1) = ι( 2). It is easy to see
that ∼ is an equivalence relation. For example,

(o 2−1 ∧ 1) ∼ sgn(2−1) sgn(1)(χ(2−1) + χ(1) 2∧ 1) ∼ −(−e2 2∧ 1) ∼ (−e2 1∧ 2)

Then,G can be identified with a complete set of representatives ofĜ / ∼.
The geometrical meaning of the elements ofG (0 ≤ ≤ ), we have already

mentioned, leads us the following definition of a mapδ : G → G −1, which is con-
sidered to be a boundary map.
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DEFINITION 2. Boundary mapsδ : Ĝ → Ĝ −1 (1≤ ≤ ) are Z-homomorphisms
defined by

δ (x 1 ∧ · · · ∧ )

:=
∑

=1

(−1) {(x 1 ∧ · · · ∧ ̂ ∧ · · · ∧ ) − (x + f( ) 1 ∧ · · · ∧ ̂ ∧ · · · ∧ )}

We note thatδ −1 ◦ δ = 0 (1≤ ≤ ) holds.

REMARK 1. The value of the mapδ is independent of the choice of a represen-
tative, i.e., 1 ∼ 2 ( 1 2 ∈ Ĝ ) implies δ ( 1) ∼ δ ( 2).

Let and ′ be Z-modules. We mean by HomZ( ′) (resp., EndZ( )) the set
of Z-linear maps from to ′ (resp., from to itself). Now, we can define a map

(σ) ∈ EndZ(G ) for an endomorphismσ on .

DEFINITION 3. Let σ ∈ End( ). (σ) : G → G (0 ≤ ≤ ) are Z-linear maps
defined by

0(σ)(x •) := ( σ(x) •)

(σ)(x 1 ∧ · · · ∧ ) :=

|σ( 1)|∑

1=1

· · ·
|σ( )|∑

=1

( σ(x) + f( ( 1)
1

) + · · · + f( ( )) ( 1)
1
∧ · · · ∧ ( )) (1 ≤ ≤ )

We call (σ) a substitution of dimension with respect toσ ∈ End( ). We
remark that in a certain sense, our definition is compatible with the boundary mapδ :

Proposition 3. For σ ∈ End( ) and for each1 ≤ ≤ , the following diagram
is commutative:

G (σ) //

δ

��

G
δ

��
G −1

−1(σ)// G −1

See Theorem 2.1 in [6], where the commutative diagram withσ ∈ Sub( ) is
given. The following theorem is one of our main results.
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Theorem 1. Let σ ∈ End( ). If σ is invertible, then there existsx = xσ ∈ Z
such that

(σ)(o 1∧ 2∧ · · · ∧ ) = det( σ)(x 1∧ 2∧ · · · ∧ )

We need a lemma for the proof of Theorem 1.

Lemma 1. Let an automorphismσ be decomposed asσ = σ′ ◦ σ′′. Put

σ( ) = ( ) ( ) ( )

σ′( ) = ′( ) ′ ( ) ′( )
σ′′( ) = ′′( ) ′′( ) ′′( )

Then the following statements are valid:
(i) σ = σ′ σ′′ .
(ii) For any pair ( ) ( ∈ A 1 ≤ ≤ |σ( )|), there exists a unique pair( ) such
that

( ) = σ′( ′′( )) ′(
′′( )) 0 ≤ ≤ |σ′′( )| 0 ≤ ≤ |σ′( ′′( ))|

(iii) ( σ) = (σ′) ◦ (σ′′) (0 ≤ ≤ )

Proof. The assertions (i), (ii) can be easily seen. We show the equality

(σ)(x 1 ∧ · · · ∧ ) = (σ′) ◦ (σ′′)(x 1 ∧ · · · ∧ )

For simplicity, we put

∑
:=

|σ′′( 1)|∑

1=1

· · ·
|σ′′( )|∑

=1

|σ′( ′′( 1)

1
)|∑

1=1

· · ·
|σ′( ′′( )

)|∑

=1

Using (i), (ii) in this lemma, we get

(σ)(x 1 ∧ · · · ∧ )

=
|σ( 1)|∑

1=1

· · ·
|σ( )|∑

=1

(
σ(x) + f( ( 1)

1
) + · · · + f( ( )) ( 1)

1
∧ · · · ∧ ( )

)

=
∑(

σ′ σ′′ (x) + f
(
σ′( ′′( 1)

1
) ′(

′′( 1)

1
)

1

)
+ · · · + f

(
σ′( ′′( )) ′(

′′( )
))

′(
′′( 1)

1
)

1 ∧ · · · ∧ ′(
′′ ( )

)
)

=
∑(

σ′

(
σ′′ (x) + f

(
′′( 1)

1

)
+ · · · + f

(
′′( ))) + f

(
′(

′′ ( 1)

1
)

1

)
+ · · · + f

(
′(

′′( )
))

′(
′′( 1)

1
)

1 ∧ · · · ∧ ′(
′′ ( )

)
)
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= (σ′)





|σ′′( 1)|∑

1=1

· · ·
|σ′′( )|∑

=1

(
σ′′ (x) + f

(
′′( 1)

1

)
+ · · · + f

(
′′( )) ′′( 1)

1
∧ · · · ∧ ′′( )

)




= (σ′) ◦ (σ′′)(x 1 ∧ · · · ∧ )

Proof of Theorem 1. It suffices to show Theorem 1 only whenσ = α , β , γ .
By easy calculation, we have

(α )(o 1∧ · · · ∧ · · · ∧ · · · ∧ ) = (o 1∧ · · · ∧ · · · ∧ · · · ∧ )

= −(o 1∧ 2∧ · · · ∧ )

(β )(o 1∧ · · · ∧ ∧ · · · ∧ ) = (e 1∧ · · · ∧ ∧ · · · ∧ )

(γ )(o 1∧ · · · ∧ ∧ · · · ∧ ) = (o 1∧ · · · ∧ −1 ∧ · · · ∧ )

= −(−e 1∧ · · · ∧ ∧ · · · ∧ )

In view of the assertion (iii) in Lemma 1, we get Theorem 1, cf.Remark 6 in Sec-
tion 2.

REMARK 2. It is not clear whether what the unit cube (o 1∧· · ·∧ ) of dimension
is mapped to one unit cube of dimension by (σ) implies thatσ is an automor-

phism.

EXAMPLE 1. Let σ be the so calledRauzy substitution:

σ :





1 → 12
2 → 13
3 → 1


 σ =




1 1 1
1 0 0
0 1 0






Then

3(σ )(o 1∧ 2∧ 3) = (2e1 1∧ 2∧ 3)

By Remark 2, this doesn’t imply thatσ is invertible. But for the substitutionσ , we
have the inverse

σ−1 :





1 → 3
2 → 3−11
3 → 3−12

We define another substitutionσ given by

σ :





1 → 123
2 → 112
3 → 2333


 σ =




1 2 0
1 1 1
1 0 3





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Then

3(σ )(o 1∧ 2∧ 3) = −(e1 + e2 + e3 1∧ 2∧ 3) − (e1 + e2 + 2e3 1∧ 2∧ 3)

+ (2e1 + e2 1∧ 2∧ 3)

This together with Theorem 1 implies thatσ is not invertible.

We consider all of substitutions satisfyingσ = σ , whose cardinal number is
72. Then, we see that there does not exist a substitutionσ satisfying σ = σ such
that

3(σ)(o 1∧ 2∧ 3) = −(x 1∧ 2∧ 3)

for somex ∈ Z3. By Theorem 1, it means there does not exist an invertible substitu-
tion satisfying σ = σ , cf. Section 3.1. The matrix σ = σ can be found in [5]
as an example which does not give an invertible substitution.

2. Dual map E∗
k ( ) for an endomorphism on Fd

We can define in the obvious manner a dual space. Since we are inan infinite
dimensionalZ-module, this defines a complicated space; and restrict ourself to the set
of dual maps with finite support. We denote this set byG∗. It has a natural basis, and
we write (x ∗

1 ∧ · · · ∧ ∗) for the dual vector of (x 1 ∧ · · · ∧ ).
In fact, we introduce ∗ (0 ≤ ≤ ) formally defined by

∗
0 := Z × {•∗}
∗ := Z × { ∗

1 ∧ ∗
2 ∧ · · · ∧ ∗ | 1 ≤ 1 < · · · < ≤ } (1 ≤ ≤ )

We denote byG∗ the freeZ-module generated by the elements of∗ as follows:

G∗ :=




∑

λ∗∈ ∗

λ∗λ∗
∣∣∣∣ λ∗ ∈ Z ♯{λ∗ ∈ ∗ | λ∗ 6= 0} <∞





REMARK 3. Following convention, we define a pairing by

〈(y 1 ∧ · · · ∧ ) (x ∗
1 ∧ · · · ∧ ∗)〉

:=

{
1 if x = y and = for all 1≤ ≤
0 otherwise

(x ∗
1 ∧ · · · ∧ ∗) ∈ G∗, (y 1 ∧ · · · ∧ ) ∈ G .
ThusG∗ can be considered as the set of dual maps with finite support.
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2 in the case of = 3

We can define theZ-linear isomorphismϕ : G∗ → G − (0 ≤ ≤ ) by

ϕ0(x •∗) := (x 1∧ · · · ∧ )

ϕ (x ∗
1 ∧ · · · ∧ ∗) := (−1) 1+···+ (x + e 1 + · · · + e 1 ∧ · · · ∧ − ) (1 ≤ ≤ )

where{ 1 2 . . . − } = A \ { 1 2 . . . } with 1 < · · · < and 1 < · · · < − .
By virtue of the isomorphismϕ , we can imagine an element (x ∗

1 ∧ · · ·∧ ∗) ∈ G∗ as
the elementϕ (x ∗

1 ∧ · · · ∧ ∗) ∈ G − with geometrical meaning for each 0≤ ≤ ,
see Fig. 2.

REMARK 4. In general, for ∈ HomZ(G G ) (0 ≤ ≤ ), the dual map ∗

of is an element of HomZ(G∗ G∗) determined by〈 ∗( ∗)〉 = 〈 ( ) ∗〉 ( ∈
G ∗ ∈ G∗).

Proposition 4 ([6]). (i) The dual boundary mapδ∗ : G∗
−1 → G∗ (1 ≤ ≤ ) is

given by

δ∗1 (x •∗) =
∑

=1

{(x − e ∗) − (x ∗)}

δ∗(x ∗
1 ∧ · · · ∧ ∗

−1)

=
− +1∑

=1

(−1) − +1{(x ∗
1 ∧ · · · ∧ ∗

− ∧ ∗ ∧ ∗
− +1 ∧ · · · ∧ ∗

−1)

− (x − e ∗
1 ∧ · · · ∧ ∗

− ∧ ∗ ∧ ∗
− +1 ∧ · · · ∧ ∗

−1)}

where { 1 2 . . . − +1} = A \ { 1 2 . . . −1} with 1 < · · · < −1 1 < · · · <
− +1 and − < < − +1 (2 ≤ ≤ ).

(ii) The following diagram commutes for each1 ≤ ≤ :

G∗
−1

ϕ −1 //

δ∗

��

G − +1

δ − +1

��
G∗

ϕ
// G −



SOME PROPERTIES OFINVERTIBLE SUBSTITUTIONS 553

From the commutativity (ii) given above, we can see thatδ∗ is a boundary map
with a geometrical sense.

By Remark 4, we can determine the dual map∗(σ) (on G∗) of (σ) (on G )
for σ ∈ End( ) under a minor condition on det(σ):

Proposition 5. (i) Let σ be an endomorphism on the free group satisfying
det( σ) = ±1. Then dual maps ∗(σ) : G∗ → G∗ (0 ≤ ≤ ) satisfies

∗
0 (σ)(x •∗) = ( −1

σ x •∗)
∗(σ)(x ∗

1 ∧ · · · ∧ ∗)

=
∑

τ∈

∑

‖
( 1)

1
‖= τ(1)

· · ·
∑

‖
( )

‖= τ( )

sgn( ( 1)
1

) · · · sgn( ( ))ǫ(τ )

(
−1
σ

(
x −

∑

=1

{f( ( )) + χ( ( ))}
)

∗
1 ∧ · · · ∧ ∗

)
(1 ≤ 1 < · · · < ≤ )

where is the symmetric group of rank k.
(ii) The following diagram is commutative for each1 ≤ ≤ :

G∗
−1

∗
−1(σ)

//

δ∗

��

G∗
−1

δ∗

��
G∗

∗(σ)
// G∗

We remark thatσ ∈ Aut( ) implies det( σ) = ±1.

Proof. We can prove the proposition in a similar fashion as that given in [6]. The
dual map ∗(σ) ∈ EndZ(G∗) of (σ) is given by the identity

〈 ∗(σ)( ∗)〉 = 〈 (σ)( ) ∗〉

for ∈ G , ∗ ∈ G∗ by Remark 4. Therefore, we get

〈(y 1 ∧ · · · ∧ ) ∗(σ)(x ∗
1 ∧ · · · ∧ ∗)〉

= 〈 (σ)(y 1 ∧ · · · ∧ ) (x ∗
1 ∧ · · · ∧ ∗)〉

=
|σ( 1)|∑

1=1

· · ·
|σ( )|∑

=1

sgn
(

( 1)
1

)
· · · sgn

(
( )
)

〈(
σ(y) +

∑

=1

{f( ( )) + χ( ( ))} ‖ ( 1)
1
‖ ∧ · · · ∧ ‖ ( )‖

)
(x ∗

1 ∧ · · · ∧ ∗)

〉
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. . .
.

.
.

o
o

2∗ ∧ 3∗ 1∗ ∧ 3∗ 1∗ ∧ 2∗

Fig. 3. the map ∗
2 (σ )

The pairing appearing in the summation is equal to

sgn( ( 1)
1

) · · · sgn( ( ))ǫ(τ )

if σ(y) +
∑

=1{f( ( )) + χ( ( ))} = x , and‖ ( )‖ = τ( ) (1 ≤ ≤ ) , τ ∈ ;
it is equal to 0, otherwise. Hence we get (i). The commutativediagram (ii) comes
from Proposition 3.

We write (x ∗
1 ∧ · · · ∧ ∗) ≃ (y 1 ∧ · · · ∧ − ) iff ϕ (x ∗

1 ∧ · · · ∧ ∗) =
(y 1 ∧ · · · ∧ − ).

EXAMPLE 2. Let σ be the Rauzy substitution given in Example 1. Then

∗
2 (σ ) : − (−e2 − e3 2∗ ∧ 3∗) 7→ −(−e1 − e2 1∗ ∧ 2∗)

≃ (o 1) ≃ (o 3)

(−e1 − e3 1∗ ∧ 3∗) 7→ −(−e2 − e3 2∗ ∧ 3∗) + (−e2 − e3 1∗ ∧ 2∗)

≃ (o 2) ≃ (o 1)− (e1 − e3 3)

−(−e1 − e2 1∗ ∧ 2∗) 7→ (−e1 − e3 1∗ ∧ 3∗) + (−e1 − e3 1∗ ∧ 2∗)

≃ (o 3) ≃ (o 2)− (e2 − e3 3)

See Fig. 3.

∗
1 (σ ) : − (−e3 3∗) 7→ −(−e2 2∗)

≃ (o 1∧ 2) ≃ −(o 1∧ 3)

(−e2 2∗) 7→ (−e1 1∗)

≃ (o 1∧ 3) ≃ −(o 2∧ 3)

−(−e1 1∗) 7→ −(−e3 1∗) − (−e3 2∗) − (−e3 3∗)

≃ (o 2∧ 3) ≃ (e1 − e3 2∧ 3)− (e2 − e3 1∧ 3) + (o 1∧ 2)

See Fig. 4.
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. . . . .

.
o

o

3∗ 2∗ 1∗

Fig. 4. the map ∗
1 (σ )

For = 1 2 · · · ∈ Â∗, denotes the mirror image of , i.e.,

:= −1 · · · 1

For σ ∈ End( ), the endomorphismσ is given byσ( ) = σ( ) ( ∈ A ). Now, we can
state a result.

Theorem 2. Let σ be an automorphism on the free group . Then there exists
x ∈ Z such that

ϕ − ◦ ∗
− (σ) ◦ ϕ−1

− = det( σ) ◦ (x) ◦ (σ−1) (0 ≤ ≤ )

where the map (x) : G → G with x ∈ Z is given by

(x)

(
∑

=1

(
y ( )

1 ∧ · · · ∧ ( ))
)

=
∑

=1

(
x + y ( )

1 ∧ · · · ∧ ( ))

We remark that sinceG is a freeZ-module, an integer is an operator onG ,
i.e., (

∑
λ∈ λλ) =

∑
λ∈ ( · λ)λ . For the proof of Theorem 2, we need some

lemmas.

Lemma 2. σ′ ◦ σ = σ′ ◦ σ (σ σ′ ∈ End( ))

Proof. Settingσ( ) = ( )
1 · · · ( ), we have

σ′ ◦ σ( ) = σ′( ( )
1 · · · ( )) = σ′( ( )

1 ) · · · σ′( ( )) = σ′( ( )) · · · σ′( ( )
1 )

= σ′( ( ) · · · ( )
1 ) = σ′ ◦ σ( )

so thatσ′ ◦ σ = σ′ ◦ σ

By (σ1 ◦ σ2) = (σ1) ◦ (σ2) and the duality ( 1 ◦ 2)∗ = ∗
2 ◦ ∗

1, we have

Lemma 3. ∗(σ1 ◦ σ2) = ∗(σ2) ◦ ∗(σ1) (σ1 σ2 ∈ End( ))
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Lemma 4. Let σ be one of

N := {α β γ | 1 ≤ ≤ 6= }

Then

ϕ − ◦ ∗
− (σ) ◦ ϕ−1

− = det( σ) ◦ ( (σ)) ◦ (σ−1)

where : N → {o e1 . . . e } is the map given by (α ) := o, (β ) := o, (γ ) :=
e .

Proof. It suffices to show that

ϕ − ◦ ∗
− (σ) ◦ ϕ−1

− (o 1 ∧ · · · ∧ ) = det( σ) ◦ ( (σ)) ◦ (σ−1)(o 1 ∧ · · · ∧ )

Notice
σ−1 = −1

σ . We consider the case ofσ = β and = 1. Note that

−1
β =

( th

e1 . . . −e + e . . . e
)

β−1 :





→ −1

→
for all 6=

( 6= )

We easily have

ϕ −1 ◦ ∗
−1(β ) ◦ ϕ−1

−1(o ) = (o ) = 1(β−1)(o ) ( 6= )
On the other hand, we get the following equality. On the fourth line in the calculation

given below, we must be careful with the location of∗. If > , then ∗ locates at
th place, otherwise, at−1 th place. Using a permutation, we move∗ to the ordinal

place, and then we have the sixth line.

ϕ −1 ◦ ∗
−1(β ) ◦ ϕ−1

−1(o )

= ϕ −1 ◦ ∗
−1(β )(−1)1+···+ −

(
−
∑

=1

e + e 1∗ ∧ · · · ∧ ∗̂ ∧ · · · ∧ ∗

)

= ϕ −1

{
(−1)1+···+ −

(
−
∑

=1

e + e 1∗ ∧ · · · ∧ ∗̂ ∧ · · · ∧ ∗

)

+ (−1)1+···+ −

(
−
∑

=1

e + e 1∗ ∧ · · · ∧ ∗̂ · · · ∧ ∗ · · · ∧ ∗

)}

= ϕ −1

{
(−1)1+···+ −

(
−
∑

=1

e + e 1∗ ∧ · · · ∧ ∗̂ ∧ · · · ∧ ∗

)

+ (−1)1+···+ − +1

(
−
∑

=1

e + e 1∗ ∧ · · · ∧ ∗̂ ∧ · · · ∧ ∗

)}
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= (o )− (−e + e )

= 1(β
−1)(o )

Hence we get
ϕ −1 ◦ ∗

−1(σ) ◦ ϕ−1
−1 = det( σ) ◦ 1( (σ)) ◦ 1(σ−1)

for σ = β and = 1. For other cases, we can do the same, and the technical term
can be found in Proof of Proposition 1.1 in [6].

Lemma 5. For , ∈ Z, x, y, y ∈ Z , σ ∈ End( ) (1≤ ≤ ) and for
0 ≤ ≤ , we have the following formulas:
(i) (x) ◦ (y) = (x + y)
(ii) ◦ (x) = (x) ◦
(iii) ( ◦ (y ) ◦ (σ )) ◦ · · · ◦ ( 1 ◦ (y1) ◦ (σ1)) = 1 · · · ◦ (y + σ (y −1) +

σ σ −1(y −2) + · · · + σ ···σ2(y1)) ◦ (σ · · · σ1).

Proof. The statements (i), (ii) are trivial. For the proof ofthe third statement, it
is enough to show

( 2 ◦ (y2) ◦ (σ2)) ◦ ( 1 ◦ (y1) ◦ (σ1)) = 1 2 ◦ (y2 + σ2(y1)) ◦ (σ2σ1)

We can put

(σ1)(x 1 ∧ · · · ∧ ) =
∑

λ∈

λ(xλ
(λ)
1 ∧ · · · ∧ (λ))

Using (i), (ii) in the lemma, we have

( 2 ◦ (y2) ◦ (σ2)) ◦ ( 1 ◦ (y1) ◦ (σ1))(x 1 ∧ · · · ∧ )

= 2 ◦ (y2) ◦ (σ2)

{∑

λ∈

1 λ

(
xλ + y1

(λ)
1 ∧ · · · ∧ (λ))

}

= 2 ◦ (y2)

{∑

λ∈

1 λ (σ2)
(
xλ + y1

(λ)
1 ∧ · · · ∧ (λ))

}

= 2 ◦ (y2) ◦ 1 ◦ ( σ2(y1)) ◦ (σ2) ◦ (σ1)(x 1 ∧ · · · ∧ )

= 1 2 ◦ (y2 + σ2(y1)) ◦ (σ2σ1)(x 1 ∧ · · · ∧ )

Proof of Theorem 2. Letσ be an automorphism. Thenσ can be written asσ =
σ1 · · · σ with σ ∈ N (1 ≤ ≤ ). Using Lemma 2–5, we have

ϕ − ◦ ∗
− (σ) ◦ ϕ−1

−

= ϕ − ◦ ∗
− (σ ) ◦ · · · ◦ ∗

− (σ1) ◦ ϕ−1
−
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.
1 .3 . 2

.
1

3
-1 .3

2
3

-1

.o

o

2∗ ∧ 3∗ 1∗ ∧ 3∗ 1∗ ∧ 2∗

Fig. 5. the map ∗
2 (σ )

=
(
det( σ ) ◦ ( (σ )) ◦ (σ−1)

)
◦ · · · ◦

(
det( σ1) ◦ ( (σ1)) ◦ (σ−1

1 )
)

= det( σ1) · · · det( σ ) ◦
(

(σ ) +
σ−1 ( (σ −1)) + · · · +

σ−1···σ−1
2

( (σ1))
)

◦
(
σ−1 · · · σ−1

1

)

= det( σ1···σ ) ◦
(

(σ ) +
σ−1( (σ −1)) + · · · + (σ2···σ )−1( (σ1))

)
◦

(
(σ1 · · · σ )−1

)

= det( σ) ◦ (x) ◦
(
σ−1

)

wherex = (σ ) + −1
σ ( (σ −1)) + · · · + −1

σ2···σ ( (σ1)) .

REMARK 5. In the case of = 3, in particular, for a Pisot substitutionσ ∈
Sub( 3) (i.e., a substitution such that the characteristic polynomial of σ is equal
to the minimal polynomial of a Pisot number), we are interested in the region

∗
1 (σ) (

∑3
=1(o ∗)) ( ∈ N) in connection with stepped surfaces, cf. [1]. It fol-

lows from the assertion (ii) in Proposition 5 that the boundary of ∗
1 (σ) (

∑3
=1(o ∗))

coincides with ∗
2 (σ) (

∑3
=1 δ

∗
2 (o ∗)). On the other hand, Theorem 2 says that

∗
2 (σ) (

∑3
=1 δ

∗
2 (o ∗)) can be calculated by using the mapσ−1 .

REMARK 6. In this setting we can rephrase Theorem 1 as follows:
If σ ∈ Aut( ) is written asσ = σ1σ2 · · · σ with σ ∈ N , then xσ in Theorem 1 is
given by

xσ = ′(σ1) + σ1(
′(σ2)) + · · · + σ1···σ −1(

′(σ ))

where ′ : N → {o e1 . . . e } is the map given by ′(α ) := o ′(β ) :=
e ′(γ ) := −e .

EXAMPLE 2′. For the Rauzy substitutionσ given in Example 1, we can show

ϕ2 ◦ ∗
2 (σ ) ◦ ϕ−1

2 = 1(σ−1). In view of Fig. 5, we easily see thatσ−1 is given by

σ−1 :





1 → 3
2 → 3−11
3 → 3−12
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. 1 .
1

2
1

.2 .2
1

o o

2∗ 1∗

Fig. 6. the map ∗
1 (σ)

We give another example of ∗1 (σ) for an endomorphismσ ∈ End( 2) which is
not a substitution.

EXAMPLE 3. Let σ ∈ Aut( 2) be given by

σ :

{
1 → 2−11
2 → 1−122

Then
∗
1 (σ) : (−e2 2∗) 7→ −(o 1∗) + (e1 2∗) + (−e2 2∗)

≃ (o 1) ≃ (e1 2) + (e1 + e2 1) + (o 1)
−(−e1 1∗) 7→ −(−e1 1∗) + (o 2∗)

≃ (o 2) ≃ (o 2) + (e2 1)

We can showϕ1 ◦ ∗
1(σ) ◦ ϕ−1

1 = 1(σ−1). In view of Fig. 6, we easily seeσ−1 is
given by

σ−1 :

{
1 → 121
2 → 12

As we have already seen in the two examples above, we can construct σ−1, in
some cases, by the figure of∗−1(σ) for σ ∈ Aut( ). In general, we have certain
difficulty, cf. Section 3.3.

3. Examples and some comments

In the case of = 3, some difficulties which never occur in the case of = 2,
will take place as we shall see through some examples.

3.1. Substitutions given by a matrix. It is easy to see, as is well known, that
any unimodular matrix ∈ (2 N ∪ {0}) (i.e., det( ) =±1 ) can be decomposed
into two matrices

α12 =

(
0 1
1 0

)
β12 =

(
1 1
0 1

)

Therefore, for any matrix ∈ (2 N ∪ {0}), there exists at least one invertible
substitutionσ such that σ = . On the other hand, in Example 1 in Section 1,
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we have seen that any substitutionσ satisfying σ = σ is not invertible. We put
= ( )1≤ ≤ (1≤ ≤ 6= ) by

:=





1 if =
−1 if = =
0 otherwise

We say that a matrix ∈ ( N ∪ {0}) is non-comparableif both ,
have negative entries for all (1≤ ≤ 6= ). For instance, σ is a com-
parable matrix, while σ is a non-comparable one. It seems very likely that ifσ is
non-comparable, thenσ can not be an invertible substitution, i.e.,

σ 6∈ IS( )

as far as we know.

3.2. Generators of the invertible substitutions. An invertible substitutionσ is
called aprime substitutionif σ cannot be decomposed into 2 invertible substitutions
σ1 σ2 such that one ofσ1, and σ2 does not belong to the group generated byα
(1 ≤ ≤ 6= ). Related to generators of the invertible substitutionsσ (i.e.,
σ ∈ IS( )), some results are found in [4], [5]. In the case of = 2, generators of the
invertible substitutions are given by three prime substitutions:

α :

{
1 → 2
2 → 1

β :

{
1 → 12
2 → 1

δ :

{
1 → 21
2 → 1

so that the number of generators is finite, cf. [4]. But, the monoid IS( ) for ≥ 3
turns out to be quite different from that for = 2. For example,in the case of = 3,
we need infinitely many generators. In fact,σ ∈ IS( 3) defined by

σ(1) := 12 σ(2) := 132 σ(3) := 3 2 ( ≥ 2)

are prime substitutions, cf. [5].

3.3. Connectedness ofE∗
d−1( )(o 1∗ ∧ · · · ∧ ĵ∗ · · · ∧ d∗). In the case of = 2,

we have shown in [2] the following proposition related to thedual map ∗
1 (σ) .

Proposition 6 ([2]). A substitutionσ over 2 letters is invertible iff all the figures
coming from ∗

1 (σ)(−e1 1∗), ∗
1 (σ)(−e2 2∗), ∗

1 (σ)((−e1 1∗) + (−e2 2∗)) are con-
nected.

The figures coming from ∗
1 (σ)(−e ∗) ( = 1 2) are parts of the so called

stepped surface, cf. [1]. Since a stepped curve (a stepped surface of dimension 1)
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2∗ ∧ 3∗

1∗ ∧ 3∗

1∗ ∧ 2∗ . 3
ee

1 2
e 2- +3 5

.

3
ee

1 2
e 2- +3 5

.
3

ee
1 2

e 2- +3 5

.

.

.

o

Fig. 7. the map ∗
2 (σ)

univalently spreads along a line, any cancellation can not occur in ∗
1 (σ)(−e ∗)

( = 1 2). We can easily find the inverse of an invertible substitution σ ∈ IS( 2)
from the figures coming from ∗

1 (σ)(−e ∗) ( = 1 2), provided that ∗
1 (σ)(−e ∗)

( = 1 2) contain no cancellations.
On the other hand, in the case of = 3,∗2 (σ)(−e − e ∗ ∧ ∗) (σ ∈

IS( 3) ( ) ∈ { (1 2) (1 3) (2 3)}) is not always connective:

EXAMPLE 4. Let σ be an invertible substitution given by

σ :





1 → 1223
2 → 123
3 → 133


σ−1 :





1 → 21−123−121−12
2 → 2−112−132−113−121−12
3 → 2−112−13




Since ϕ2 ◦ ∗
2 (σ) ◦ ϕ−1

2 = − 1(3e1 − 5e2 + 2e3) ◦ 1(σ−1), the figure coming from
∗
2 (σ)(o 1∗ ∧ 3∗) is not connected, see Fig. 7.

3.4. Open problems. We give two problems for arbitrary ≥ 3:
(i) Does the converse of the statement of Theorem 1 hold?
(ii) Let σ ∈ Sub( ) be a substitution with a non-comparable matrixσ such that σ

does not belong to the group generated byα , β (1 ≤ ≤ 6= ). Then, is
σ always not invertible?
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