
Title 知識情報処理言語PROROG(その4)

Author(s) 馬野, 元秀

Citation 大阪大学大型計算機センターニュース. 1987, 65, p.
65-72

Version Type VoR

URL https://hdl.handle.net/11094/65736

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

資料

矢n謳↑青幸反夕生楚里百言言吾PROLOG(その11)

大阪大学大型計算機センター 、居呂里予 ラ亡ヲき

1. はじめに

「その1(大阪大学大型計算機センターニュース、 Vol.14、No.2(1984年 8月号、第 54号）、

pp.37-44)」では、 Prologの入門として、基本的な事項について説明し、「その2 (同、 Vol.15、No.

4 (1986年 2月号、第 60号）、 pp.185-194)」では、階乗を求めるプログラムと appendのプログ

ラムについて述べた。そして、「その3(同、 Vol.16、No.2(1986年 8月号、第 62号）、 pp.185-

194)」では、センターで使用できる ShapeUpという Prologの具体的な使い方について述べた。

今回は、 Prologの応用として、問単な自然言語の処理について述べよう。

2. Pro logによる自然言語の処理

自然言語（普通の日本語や英語のこと）を計算機で取り扱うのは、そう簡弟ではない。特に、自然

言語の意味を計算機で取り扱うのは非常に難しい。最近、各種の計葬機上で実現されている機械闘

訳システムは、意味処理の試みを行なっているが、まだまだ十分なものとは言えない。

本稿では、簡単な英語の構文解析について考える。構文解析では、単語の並び方がどのようにな

っているかだけを調べ、文全体で何を表しているかという意味については考えない（これを行なう

のが意味解析である）。 構文解析は、自然言語処理のための必須の技術であり、普通は、構文解析

を行なった後に、意味解析を行なう。

2. 1. 構文規則

構文の規則は、生成規則（まだしま害き換え規則）で記述される。これは、例えば、

(a)文→ 名詞句動詞句
(b)動詞句→ 自動詞
(c)動詞句→ 他動詞目的語
(d)目的語→ 名詞句
(e)名詞句→ 固有名詞

(f)名詞句→所有格代名詞普通名詞
(g)自動詞→ runs

(h)他動詞→ I ikes
(i)固有名詞→ John
(j)所有格代名詞→ 町
(k)普通名詞→ dog

大阪大学大型計算機センターニュース 65 - VOL.17 No.I 1987-5

のようなもの[1]で、例えば、 (a)で「文は、名詞句と動詞句を並べたものである」を表わし、 (b)と

(c)で「動詞句は、自動詞だけか他勁詞と目的語を並べたものである」を表わす。これをなぜ生成規

則や害き換え規則と呼ぶかというと、これらの規則を使って、次々と書き換えていくことにより文

を生成することができるからである。

書き換えは、

文

から始める。「文」を害き換えることができるのは、→ の左側が「文」である規則(a)である。したが

って、「文」は

名詞句動詞句

に書き換えられる。これを

文ー(a)→ 名詞句勁詞句 (I)

と書くことにする。次に、名詞句と勁詞句を書き換えることができる規則を探すと、名詞句に対し

ては規則(e)と(f)がみつかり、動詞句に対しては(b)と(c)がみつかる。名詞句と動詞句のどちらを

先に書き換えるか、また、それぞれに対して、 2つのうちのいずれの規則を用いるかという問題が

あるが、今は、いずれも前の方を用いよう。 (1)の名詞句に規則(e)を適用すると、

名詞句動詞句ー(e)→ 固有名詞動詞句

となる。これに対して、さらに規則を適用していくと、

固有名詞動詞句ー(i)→ John動詞句
John動詞句ー(b)→ John自動詞
John自動詞ー(g)→ John runs

(2)

ヽ
ノ
ヽ
J

ノヽ

3

4

5

（
（
（

となり、これ以上害き換えることができなくなる。 最後を見ると、 "John runs"という文が生成

されている。

習き換えのときに、 2つ以上の規則から 1つを選択する場合が何度かあった。今は、すべて 1番

目の規則を選んだが、それぞれの場合に、別の規則を選ぶことにより異なる文を生成することがで

きる。例えば、 (4)で(b)の代わりに(c)を選ぶと、

John動詞句ー(c)→ John他動詞目的語

John他動詞目的語一(h)→ John I ikes目的語
John I ikes目的語一(d)→ John 1 ikes名詞句
John I ikes名詞句ー(e)→ John 1 ikes固有名詞
John I ikes固有名詞ー(i)→ John 1 ikes John

‘，ノヽ
鳳ノ

9

9

9

9

9

0
6
⑭
勺
⑱

大阪大学大型計算機センターニュース 66 - VOL.17 油I 1987-5

となる。また、 (7')で、 (e)の代わりに(f)を選択すると、

John 1 i kes名詞句ー(f)→ John I ikes所有格代名詞普通名詞 (7")

John 1 ikes所有格代名詞普通名詞ー(j)→ John Ii kes my普通名詞 (8")

John 1 ikes my普通名詞ー(k)→ ,lohn 1 ikes my dog (9")

が生成される。

さらに、 (2)で規則(f)を使うと、 "my dog runs"と "mydog I i kes John"と "mydog I i kes

my dog"が得られる（実際の生成は読者自身で試みていただきたい）。

2.2. Prologによる構文解析

生成規則による文の生成の様子をみていると、 Prologの動作とよく似ているのに気が付く。 も

ともと Prologは、フランス語を効率よく処理するために考えだされた[2]という歴史があり、自然

言語の構文解析は Prologの最も得意とするものの1つである。上の生成規則を Prologに直すと、

sentence([tnp, 象vp]):-noun_phrase(*np), verb_phrase(名vp). /ネ sentence:文ネ／

verb_phrase(*vi) :-intransitive_verb(tvi). /ネ verb-phrase: 動詞句切

verb_phrase([ネvt,象obj]):-transitive_verb(ネvt),ohject(tobj).

object(:f:np) :-noun_phrase(ネnp). /象 object:目的語切

noun_phrase(*pn) :-proper_noun(ネpn). I* noun-phrase: 名詞句 ti

noun_rhrase([ネpp,ネn]):-possessive_pronoun(:l:pp), noun(ポn).

intransi tive_verb(runs). /象 intransitive-verb: 自動詞苓／

transitive_verb(I ikes). /ネ transil.ive-verb: 他勁詞ネ／

proper _noun(John). /ネ proper-noun: 所有格代名詞ネ／

possessive_pronoun(my). /:!: possessive-pronoun: 普通名詞ネ／

noun(dog). /t noun : 文 *I

となる。ここでは、文をリストにより表わしている。このプログラムをみると、生成規則とほとん

ど同じであることが分かる。これを実行させると、

＞芦en.ti切.ce叫
捻=[John.runs]

？逗
ネs= [John,[! ikes,John]J
？逗
:l:s = [John,[! ikes,[my,dog]]]
？逗
ネs= [[my,dog],runs]
？逗
ネs= [[my,dog],[I ikes,John]J
？逗
ネs= [[my,dog],[I ikes,[my,dog]JJ
？逗
NO!

＞

大阪大学大型計算機センターニュース -67 - VOL.17 Nnl 1987-5

となる（下線を引いた部分はユーザの人力を表わす。なお、 ShapeUp を起動し、プログラムを入力•

修正していく方法については、「その3」を参照されたい）。 このとき、構造を反映した形で文が生

成されていることに注意しよう。しかし、このままでは、語薬があまりにも貧弱なので、単語を適

当に追加して、いろいろと試みられたい。

さて、上のプログラムは、文を生成するだけではなく、与えられた文を解析して、文法にあって

いるかどうかを判定するのにも使うことができる。

>?-sentence(「,lohn,runsl).

>?-sentence江血加心alksl).
NO!

＞た挺：血[JC~(「 ,lohn,l ik~s,mv,rlo只l).
NO!

＞

／ネ何も出力されないのは、 yesti

これを見ると、 [John,1ikes,my,dog]が noになってしまっている。これは yesにしたい。その

ためには、プログラムの各節で、右辺の結果を左辺でリストとしてまとめているのを、 appendを

使ってまとめてから左辺に渡せばよい。すなわち、

sentence(ポs):-noun_phrase(ネnp),verb_phrase(象vp),append(象np,:j:vp,ネs).

verb_phrase(ネvi):-intransitive_verb(:j:vi).

verb_phrase(ネvp):-transitive_verb(名vt),object(念obj),append(:t.vt, 象obj・ネvp).

object(ネnp):-noun_:phrase(象np).
noun_phrase(ネpn):-proper_noun(各pn).

noun_phrase(:f:np) :-possessive_pronoun(:t.pp), noun(:f:n), append(:~pp淫n,:t.np).
intransitive_verb([runs]).

transitive_verb([I ikes]).

proper_noun([John]).

possessive_pronoun([my]).
noun([dog]).

とすればよい。このとき、単語もリストにしておく必要があることに注意しよう。さらに、リスト

の appendを追加しておく必要もある（プログラムは「その2」を参照のこと。ただし、英小文字を

使うために shplで起動しているときは、大文字と小文字は異なるものとみなすので、注意する必

要がある）。

しかし、 appendするなら、差リストを使えば、高速に処理できる。差リストの appendしま、

append([ネ1,:t.2], [ネ2,*3], [ネ1,ネ3]).

であった（［その2]の差リストの appendの変数名をかえてある）。これは [*1,*2]と［ネ2,ネ3]か

ら［刹,:t.3]を作るだけであるから、 appendとしてわざわざ定義しなくても、例えば、

大阪大学大型計窮機センターニュース 68 - VOL.17 No.I 1987-5

sentence([ネ1,柔3]):-noun_phrase([ネ1,ネ2]),verb_phrase([ネ2,*3]).

とすればよい。さらに、すべての述語に［］が付いているので、これを省略して、

sentence(ネ1,ネ3):-noun_phrase(ネL*2),verb_phrase(ネ2,ネ3).

とすることができる。これ•しま、各変数がリストの次のような場所を指しているポインタと考えれば

理解しやすい。

文

ネ1

↓

稔

↓
 [John, likes, my, dog]

↑ ↑ ↑

:J:1 ネ2 訳3

Lr-1
名詞句 動詞句

すなわち、 *1から中3までが文(sentence)であるためには、 *2を考えて、 *lから :(:2までが名

詞句(noun_phrase)であり、 *2から *3までが動詞句(verb_phrase)であればよい、という訳であ

る。これによるプログラムは、

sentence(ネ1,ネ3):-noun_phrase(*l.*2), verb_phrase(*2,*3).
verb_phrase(ネI.*2):-intransitive_ verb(*l池2).
verb_phrase(ネI.ネ3):-transitive_verb(北I,*2), object(*2, ネ3).
object(;J:lぷ2):-noun_phrase(*l.*2).
noun_phrase(*l, 求2):-proper_noun(*l, ネ2).
noun_phrase(*l, ネ3):-possessive_pronoun(*l.*2), noun(*2,*3).
intransitive_verb([runsl*l]ぷ!).
transitive_verb([I ikeslネ1],*l)・
proper_noun([Johnlネ1],*1).
possessive_pronoun((myl*l],:J:l).
noun([dogl*l], ネ1).

となる。このとき、用語も差リストのような形にしておく必要がある。これを実行させると、

>?-sentence(ネs,[]).
ネs= [John,runs]
？逗
，ネs= [John,likes,John]
？逗
ネs= [John,likes,my,dog]
？逗

大阪大学大型計算機センターニュース - 69 - VOL.17 No.I 1987-5

:l:s.= [my,dog,runs]

？逗
:l:s = [my,dog,likes,John]

？ふ乱
ネs= [my,dog.l ikes,my,dog]

翌
＞

となる。問い合わせも、差リストのような形にする必要がある。また、与えられた文の解析は、

>?-i-.ent.eoce(「,lohn令1ikP,R,mV費rlogl,「l).

>?・sentence(「,Iohn, I oves JnY.,,!Jog l , 「l),
NO!

＞

とすればよい。さらに、名詞句や動詞句を生成させることもできる。

>?-noun-pb.rase.(*np. 「l).
ネnp= [John]

？逗
ネnp= [my,dog]

？逗
NO!

>?-verti-phr硲r(*vp.「l).
細=[runs]

？湿
ネvp= [1 ikes,.lohn]

？逗
ネvp= [1 ikes,my,dog]

？湿
NO!

＞

これは、プログラムのデパッグに便利な機能である。

さて、上のプログラムを見ていると、生成規則からプログラムを機械的に作成できそうである。

実際、生成規則に近い形のものを入力し、それを自動的に Prologのプログラムに変換する機能を

持っているシステムもある。これは、確定節文法 OCG(defini Le clause grammar)と呼ばれ、

sentence--> noun_phrase, verh_phrase.

verb_phrase --> intransitive_verb.

verb_phrase --> transitive_verb, object.

object --> noun_phrase.

大阪大学大型計算機センターニュース - 70 - VOL.17 No.I 1987-5

noun_phrase --> proper _noun.

noun_phrase --> possessive_pronoun, noun.

intransitive_verb --> [runs].

transitive_verb --> [I ikes].

proper_noun --> [John].

possesstve_pronoun --> [my].

noun--> [dog].

のように書かれるのが普通である。洋語は他のものと区別するために［］でくくられる。 DCGか

ら Prologへの変換を行なうプログラムは、 Prologでも書くことができる[3]。 ただし、 ShapeUp

には演算子を定義する機能がないので、このままの形の DCGを ShapeUpに変換するプログラムを

ShapeUpで作成するのは、少し面倒である。

さて、いままで、入力にはリストを用いてきたが、できれば

John likes my dog.

”のような自然な形で入力したい。そのためには、 1文字ずつ読み込み、リストにまとめあげればよ

•い。これについては、ここでは省略するが、英文はスペースにより単語に分けられているので、そ

れほど難しくはない（日本語に比べて）。

また、このままでは、主部の名詞句と述部の動詞句は独立に調べているので、 3単現の S のチ

ェックもできない。 これは、名詞句の解析結果を動詞句に渡すための変敬稔iを追加して、例え

ば、

sentence(*l ,:I:3) :・-noun_phrase(:1:1 ,*2,*a i), verb_phrase(*2,*3,:I:a i).

とすればよい。 3単現の実際の情報は、単語のところに書かれることになる。

さらに、今のプログラムでは、文法にあった文を生成したり、与えられた文が文法にあっている

かのチェックを行なうことはできるが、意味解析のための情報はまった＜得られていない。しかし、

このためには、どのような情報を収集すればよいか、それをどのような形で表現すればよいか等の

問題がある。 DCGでは、｛｝でくくって、 Prologの文を害くことができ、各種の追加的な処理を

直接記述できるようになっている。

自然言語処理のぅち、生成規則としてきちんと書ける部分は、 Prologを用いると、容易に処理で

きそうである。実際、かなりの部分が処理可能であるが、構文のあいまいさ (1つの文が数通りに

構文解析できてしまう）があったり、省略や特殊な使い方などがあったりして、そう筒単には処理

できない部分も多い。また、意昧解析については、自然言語の意味をどのように表現すればよいか

について、まだ十分に分かっていないということもあり、まだまだ研究すべきことは多い（もちろ

ん、いろいろな試みがなされている）。

大阪大学大型計算機センターニュース 71 - VOL.17 No.I 1987-5

3. おわりに

以上、 Prologによる筒単な自然言語の構文解析について述べた。 Prologの強力な機能の一端が

伺えたのではないかと思われる。

今回で、この Prologの解説を終わることにする。知識情報処理の匂いを少しでも臭ぎ取って頂

ければ幸いである。もっと早いベースで掲載するつもりであったが、回敬の割には長期に渡ってし

まった。この間に、多くの解説書も出版された（「その2」の参考文献にそのうちのいくつかをのせ

た）ので、 Prologしこ興味を持たれた方はそれらを参照されたい。

最後に、 Prologの多面性を表わす園[1]を示して、本稿を終わりたい。

・［参考文献］

関係データ
ペース

従来のプログラミング言語
0特にLISP,関数型言語との関係
が良く訊論されている。

0歴史的にはKowalskiの手絞き

的解釈によってPROLOGが

プログラミング甘語

として認められた。

0データペースは代数 デ

的にも論理的にも扱える。 l

論理的な扱いはPROLOGI!'.
との親和性が良い。 1
O知識ペースの諜論は従 ス

来の人工知能に不足し

ていた「ii1:」の問題に
挑戦している。

OPROLOGの処理系は定理

の自動証明システムと見なすこ

とができる。

O論理とプログラムとの関係は

プログラム理論として研究

されている。

園.Prologの多而性[l]

DCGによる
文法規則の記述
0自然言語処理は「知

識情報処理」の代表格

である。

0元来PROLOGはフ

ランス語の処理のた

めColmerauerらに

よって開発さ

れた。

L後藤(1984): PROLOG入門 知識情報処理の序曲、 186ページ、ソフトウェアライプラリ 1、

サイエンス社。

2. A. Colmerauer, H. Kanoui, R. Pasero and P. Roussel (1973) : "Un System de

Com叩 nicationHomme-Machine en F'rancais, Rapport de Recherche, Groupe d'lntell igence

Art if iciel le, UER de Lumi ny, Universi te d'Aix-Marsei I le.

3. 溝口監修 (1985): Pro I ogとその応用2、318ページ、総研出版。

大阪大学大型計鉢機センターニュース - 72 - VOL.17 No.I 1987-5

