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Weakly Compact Linear Operators on Function Spaces

By Junzo Wapa

R. G. Bartle [3], Grothendieck [14] and Bartle, Dunford and J.
Schwartz [4] have considered various problems on weakly compact (or
compact) linear operators on function spaces (especially, Banach spaces
of continuous functions). Our main purpose is to establish some ex-
tensions of these results. After some preliminaries in §1 we give in
§§ 2 and 3 representations of weakly compact (or compact) linear opera-
tors on the locally convex topological spaces of all continuous functions
on general topological spaces, obtaining as results some extensions of
theorems of Grothendieck (cf. Theorems 2 and 4). As an application
of Theorem 1 in §2 we consider in §4 the simultaneous extension of
continuous functions. Michael [17] has proved namely the following
theorem : if X is a metric space and if F is a closed subset in X, then
there is a simultaneous extension of Ce(F) into Cz(X) (cf. §4). We
show here that this theorem remains true if X and F are taken to be
more general topological spaces and if Cg(F) is replaced by a relative
compact subset (cf. Theorem 5). Finally, we deal in §5 with the spaces
of summable functions, giving representations of weakly compact linear
operators of the space of summable functions on a Kakutani space (cf.
§1) into a Banach space (cf. Theorem 6).

§1. Preliminaries

Let E, F be locally convex topological linear spaces. A continuous
linear operator T of E into F is said to be weakly compact (or compact)
if 7 maps a neighborhood of 0 in E into a relative weakly compact (or
relative compact) subset in F. A locally convex topological linear space
E is said to be barrelled if any closed, symmetric” convex and absorbing
subset in E is a neighborhood of O in E. Let E be a locally convex
topological linear space and let & be an equicontinuous symmetric convex
w*-compact subset in the dual space E’ of E. Then E! denotes a Banach
space whose unit sphere is &, Let X be a topological space and let & be

1) Let E be a locally convex topological space. Then a subset A in E is said to be sym-
metric if Ax € A for any x € A and for any real number A with [A[<1.
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a set of compact sets in X. “\/&=X" denotes that the sum of all sets
in € is X. By Cs(X) we denote the locally convex topological linear
space of all real-valued continuous functions on X with the topology of
uniform convergence of sets in &. Also, by C,X) we denote the
Banach space of all bounded real-valued continuous functions on X with
the norm || F ||=leél£)| f(x)]. A subset A in Ce(X) is said to be equicon-

tinuous if for any € >0 and for any point x, in X there is a neighbor-
hood U(x,) such that |f(x)— f(x,)|< & for any x € U(x,) and for any f¢€ A.
Let E be a locally convex topological space and let 7 be a linear
operator (not necessarily continuous) of E into Ce(X). Then T is said
to be equicontinuous if there is a neighborhood V of 0 in E such that
T(V) is contained in an equicontinuous,set in Ce(X).

Let X be a topological space. Then X is said to be a k-space if when-
ever UNK is an open set in K for a subset U in X and for any compact
subset K in X, U is an open subset in X (cf. Kelley [167]). Also X is
said to be a k-space if whenever UN K is a neighborhood of x, in K for a
subset U(>x,) and for any compact subset K(>x,), U is a neighborhood
of ¥, in X. A neighborhood need not be here an open set (cf. [19]).
A k,-space is a k-space and any completely regular space satisfying the
I1st axiom of countability or any locally compact Hausdorff space is
always a k,-space (and therefore a k-space). Let X be a topological
space. Then we consider a topological space X satisfying the following
condition : if a real-valued function f on X is continuous on any compact
subspace K in X, then f is continuous on X. Let & be the set of all
compact subsets in X. Then Warner [20] has proved that Cs(X) is
complete if and only if X satisfies the above condition. Therefore if X
is a k,-space (or a k-space) and if & is the set of all compact subsets
in X, then Ceg(X) is complete.

We first prove the following generalized Ascoli’s theorem.

Lemma 1. Let X be a k,—space and let & be the set of all compact
subsets in X. Then a set A in Ce(X) is relative compact if and only if
A is an equicontinuous set in Ce(X) and A(x)={f(x)|fe A} is bounded
for any x € X.

Proof. If A is an equicontinuous set in Ce(X) and A(x) is bounded
for any x€ X, then A is relative compact (cf. [6] §4). Therefore we
have only to prove that if A is compact, then it is equicontinuous. By
Bourbaki (cf. [6] §4) we have only to prove that for any f€ A and for
any x in X, (f, x)— f(x) is continuous. Since X is a k,-space, Ce(X) is com-
plete. By Bourbaki ([7] §4.1.) the closed convex envelope I'(4A) of A is
compact, so we can assume that A is convex. B=A—A={f—g|f, g€ A}
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is convex and compact. For any %, in X and any € >0 we put U=
{x:lf(x)<2/3¢if fe BAnW(x,,1/38E)}®. Then U contains x,. We here
assert that U is a neighborhood of x, in X. Suppose that U is not a
neighborhood of x, in X. Then there is a compact subset K > x, such
that UnK is not a neighborhood of x, in K, since X is a k,~space.
Therefore there is a directed set {x;} in K such that x; converges to x,
and x; £ U. By the definition of U, there is a directed set f; in B such
that |f;(x;)|=2/3¢& and |f;(x,)|=<1/3¢&. Since B is compact, the directed
set {f;} has a cluster point f, in B. For any 5 >0, there is a j, such
that |fy(x;)—fu(x,)|<7/2 for any j=j,. Since f, is a cluster point of
i}, [(fi,—F)E)I<n/2 for a j,=j,. Therefore |fy(x,)—fi(x;)I<7.
Since 7 is arbitrarily small and |f;(x;)|>>2/3 ¢ for any j, |f,(x,)|>>2/3¢&.
This is a contradiction since |f,(x,)|< 1/3&. Therefore U is a neighbor-
hood of x, in X. By the definition of U, we easily see that BN W(x,, 1/3 &)
CW(U, 2/3¢&). We shall here prove that (f, x)— f(x) is continuous on
AxX. If A>f, f, and f—f,€ W(x,,1/3¢), then f—f, € BnW(x,,1/3¢)
CW(U,2/36), so |F@)—fix)|<|fE)—fl®)|+ | ful®)—fulr)|<E if
x€ V(xg)NU (V(x)={x: | fo(x)—fo(x,)|< 1/3 E). Thus the lemma is proved.

Let E be an arbitrary set and let » be a positive measure on a o-
algebra on E such that E is measurable (but E has not necessarily a
finite measure). Let L'(E, ») be the space of all v»-summable functions
on E. Then there are a compact space X such that L”(E, ») is equivalent
to C(X) as Banach algebra. Moreover, there is a positive measure x on
a dense open set X in X such that L'(E, ») is isometric to L'(X, ) and
L~(X. ) is identical with C(X) (cf. [10], [11]). Thus the space X is a
Kakutani space according to Dieudonné (cf. [10]). X is the Cech com-
pactification B8X of X and is a stonian space (cf. [11]). A completely
regular Hausdorff space is said to be extremally disconnected (cf. [15])
if the closure U of any open set U is also open. An extremally dis-
connected compact Hausdorff space is stonian.

Let J be a set of indices. Then we denote by m(J) the space of
all bounded real-valued functions on J with {|x||=sgplx( NI, and denote

by ¢(J) the subspace of those x in m(J) for which the set of j with
|2(j)| >>¢€ is finite for each & >0; that is, ¢,(J) is the set of functions
vanishing at infinity on the discrete space J.

§2. The spaces of continuous functions®,

We here deal with weakly compact (or compact) linear operators

2) By W(K, &) we denote the set of functions f in Cg(X) with [f(K)|<e.
3) The most part of §§2 and 3 was announced in [19].
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on the spaces of all continuous functions on general topological spaces.
Theorem 2 below is an extension of a result of Grothendieck [14].
Bartle [3] gave general forms of weakly compact (or compact) linear
operators of a Banach space into a Banach space C,(X). We first
extend this theorem to the case of locally convex topological linear
spaces.

Theorem 1. (i) Let E be a barrelled locally convex linear space.
Let 'Y be a completely regular Hausdorff space and let © be a set of
compact sets in Y with \/S=Y. Then a linear operator T of E into
Ce(Y) is continuous if and only if there is a continuous mapping v of Y
into E' with respect to the topology o(E’, E) such that (Te)y=<ty, e> for
any e€ E and for any y€Y.

(ii) Let E be a locally convex topological linear space. Let Y be a
completely regular Hausdorff space and let & be a set of compact subsets
in Y with \/S=Y. Then a continuous linear operator T of E into Ce(Y)
is weakly compact if and only if there is a continuous mapping v of Y
into E; (Cf. §1) with respect to the topology o(El, E{) for a symmetric
convex w¥-closed equicontinuous set & in E' and (Te)y=<_ry, e> for ecE
and y€eY. ‘ _ » ' ‘

(iti) Let E be a locally convex topological linear space. Let Y be a
k,-space which is completely regular, Hausdor/f »ahd let © be the set of all
compact subsets in Y. Then a continuous linear operator T of E into
Ce(Y) is compact if and only if there is a continuous mapping v of Y
into E, for a symmetric convex w*-closed equicontinuous set € in E’', and
(Te)y={<ry, e> for ec E and y€Y.

Proof. (i) If T is a continuous linear operator of E into Cs(Y),
its transposition 77 is a continuous linear operators of Cs(Y) (with the
topology o(Ce(Y), Ce(Y))) into E’ (with the topology o(E’, E)). Since
Y may be regarded as a subspace in Ceg(Y) (with the topology
o(Ce(YY, Ce(Y))), if we put 7y=T",®, then = is a continuous mapping
of Y into E’ (with the topology o(E’, E)) and (Te¢)y=<ry, ¢» for ec E and
ye Y. Conversely, let  be a continuous mapping of Y into E’ (with the
topology o(E’, E)) and let (Te)y=<7y, e> for e€E and y€Y. Let K be
a compact subset in Y. Then 7(K) is o(E’, E)-compact. Since E is
barrelled, there is a neighborhood U of 0 in E such that «(K)C U°® (cf.
[71]). For any e€ U and for any y€ K, |(Te)y| = |<{ty, e>|<1. Therefore
T(U)c W(K, 1), so T is continuous.

4) p, denotes the Dirac measure, i.e. u,(f)=f(x) for auy continuous function f.
5) Let A be a subset in a locally convex topological space E. A° denotes the set of
elements f in E’ with |f(A)|<1.
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(ii) We first assume that E is a normead linear space. Lst T be a
weakly compact linear operator of E into Ce(Y). Then by Grothendieck
([14]. Lemma 1), T" is a continuous linear opgrator of Ce(Y) (with the
topology o(Ce(Y), Ce(Y))) into E’ (with the topology o(E’, E”)). If we.
put 7y=T’p,, 7 is the required mapping. We prove the converse: if we
put (Te)y=<ry, ¢>, we have only to prove that 7" is a continuous linear
operator of Ce(Y) (with topology o(Cs(Y), Cs(Y))) into E’ (with the
topology o(E’, E")) (cf. [14]). For any p€Cs(Y), there are a K€ and
a real number 6 >0 such that € W(K, 8)°. We dsfine ux(g) as follows :
pi()=p(g) if g|K*=g for g€Ce(Y) and g€ C(K). We ses that ux(g)
can be defined as a Borel measure on K. We first prove that T'u=

Sq-,((y)dp,,((y), where T, denotes the restriction of ¢ on K. For any

¢’€E” we have {({7(y),¢">, #>=S<Tx(y), ¢’>dpk(y). Now, E’ (with

the topology o(E’, E”)) satisfiss the condition (EZ)”. For, by Krein’s
theorem the closed convex envelope of a o(E’, E’)-compact subset in E’ is

also o(E’, E"”")-compact. Therefore the vector valued integral S‘TK( N dupg(y)

exists and belongs to E’. For any e€ E
e, T'wy =<Te, py =<7(y), &, p>
= [<ra(o), e>dux(y) = <o, [re(dux(>,

s0 Ty = STK( y)dug(y). For any ¢’ € E”
T, ¢ = <[ (D dpx(), ¢

= [ <), > dpn(s) = L), €, >

We see here that a(y)=<{v(»), ¢’> is a continuous function on Y.
If a directed set w; converges to O with respect to the topology
o(C(YY, C(Y)), then <<7(y), ¢">, p;>, =0, s0 {T'w;, ¢’>—0. Therefore, if
E is a normed linear space, (ii) is proved.

Let E be any locally convex topological linear space and let T be a.
weakly compact linear operator of E into Ce(Y). Then there is a convex,
symmetric and closed neighborhood V of 0 in E such that 7T(V) is con-
tained in a weakly compact subset in Ce(Y). Therefore T=S;j and j is

6) f|K denotes the restriction of f on K.
7) A locally convex topological space E is said to satisfy the condition (EC) if the convex
closed envelop of any compact subset in E is also compact (cf. [8] §4).
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the canonical linear operator of E onto E,* and S is a weakly compact
linear operator of E, into Ce(Y). Since E, is a normed linear space, there
is a continuous mapping 7, of Y into E, with respect to the topology
o(E,, E,)') such that (Sé)y=<r,y,¢> for any y€Y and for any é€E,.
If we put é=V°, E/=E/, then there is a continuous mapping = of Y into
E{ with respect to the topology o(Ef, E.) such that (Te)y=<ry, ¢> for
any y€ Y and for any e€ E. The converse may be proved similarly.
(iii). We can easily prove the following lemma.

Lemma 2. A continuous linear operator T of E into Ce(Y) is equi-
continuous if and only there are a mapping v of Y into E' and a symme-
tric convex w*-closed equicontinuous set & in E' such that for any A_>0
and for any y,in Y v(y)—7(y,) €XE for any y in some neighborhood U(y,)
of ¥y, and (Te)y=<ty,e> for ec E and y<cY.

Now let T be a compact linear operator of E into Ce(Y). Then
there is a symmetric convex neighborhood V of 0 in E such that T(V)
is contained in a compact subset A in Ce(Y). If we put 7(y)=7T'g,,
[<7(9), 20| =<T" sy, x>| = |<pzy, Tx>l§§gglg(y)l for any xe V. By

Lemma 1, [{7(y), x> | < sup|g(y)|<+ < for any x€ V. Therefore v(y) €
&c4d

SUBI g(y)| - V°=sup|g(y)|€ (€ is an equicontinuous set in E’). By Lemma 2

g€ &cAd

T is a continuous mapping of Y into E.. The converse is clear by
Lemmas 1 and 2.
From Theorem 1 we have the following

Theorem 2. Let X be a stonian space (cf. §1). Let Y be a completely
regular Hausdorff space satisfying the Ist axiom of countability and let
S be a set of compact set in Y with \/S=Y. Then any continuous linear
operator of C(X) into Ce(T) is weakly compact.

Proof. Let T be a continuous linear operator of C(X) into Cs(Y).
By Theorem 1, (i) there is a continuous mapping of Y into C(X) with
respect to the topology o(C(X)Y, C(X)) and (Tf)y=<{ry, f>. If a sequence
{y,} converges to y,in Y, then 7(y,) converges to 7(y,) on the topology
o(C(XY, C(X)). By Grothendieck [14], 7(»,) converges to 7(y,) on the
topology o(C(X), C(X)’), so T is weakly compact (Theorem 1, (ii)).

The following corollary is proved by Grothendieck [14].

Corollary 1. Let X be a stonian space and let E be a separable® com-

8) We put N= ﬁ n~1V. Then E, denotes the quotient space E/N with the norm induced
n=1
by the semi-norm |/ x||y= inf |A| on E.
XEAV

9) A topological space is said to be separable if it has a countable dense subset.
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plete Hausdorff locally convex linear space. Then any continuous linear
operator of C(X) into E is weakly compact.

Proof. Any element ¢ in E may be regarded as a continuous func-
tions f, on E’ with respect to the topolgy o(E’, E), ie. f.(¢)=<e, &>
for any ¢ € E’. If © is the set of all w*-compact equicontinuous subset
in E’, then E can be embedded in Ce(E’). Since E is separable, E’ (with
the topology o(E’, E)) is metrizable, so by Theorem 2 the Corollary is
proved.

Corollary 2. Let X be an extremally disconnected space (cf. §1) and
let © be a non-empty set of non-void compact subsets in X. Let Y be a
compact Hausdorff space satisfying the 1st axiom of countability. Then
any continuous linear operator of Ce(X) into C(Y) is weakly compact.

Proof. Let T be a continuous linear operator of Ce(X) into C(Y).
Then there are a K€ & and a positive number & such that T(W(K, &))
C U, where U denotes the unit sphere in C(Y). Therefore T=Sj and j
is the canonical linear operator of Ce(X) onto C(K), i.e. for any fe€ Ce(X)
jf is the restriction of f on K, and S is a continuous linear operator of
C(K) into C(Y). By the similar proof as Hewitt ([15]. p. 66), we can
prove that if X is extremally discounnected, then the Cech compactifica-
tion BX is stonian. Therefore K is a compact subset in 8X. If j, is
the canonical linear operator of C(BX) onto C(K), i.e. for any fe C(BX)
J,f is the restriction of ¥ on K, then Sj, is a continuous linear operator
of C(BX) into C(Y). Therefore Sj, is weakly compact (Theorem 2).
This shows that S is weakly compact and so does T.

Remark. (i) If a completely regular space X satisfies the 1st axiom
of countability, then Ce(X) is not, in general separable. There is a
compact Hansdorff space which satisfies the 1st axiom of countability
but is not metrizable (cf. [1]).

(ii)) In Corollary 2 of Theorem 2, the compactness of Y is necess-
ary : let X be the discrete space of all integers and let & be the set of
all compact subsets in X (that is, the set of all finite subsets). Then
the identical mapping of Ce(X) onto Ce(X) is not weakly compact. But
X is extremally disconnected and satisfies the 1st axiom of countability.

§3. Kernel functions.

Bartle, Dunford and J. Schwartz [4] gave the representations of
weakly compact (or compact) linear operators of the space of continuous
functions on a compact space X into the space of continuous functions
on another compact space Y. They are represented by kernels. We
here deal with the case that X, Y are general topological spaces.
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Theorem 4 below is an extension of a result of Grothendieck.
We first extend a theorem of Bartle, Dounford and J. Schwartz to
the case of locally convex topological linear spaces.

Theorem 3. (a) Let X, Y be completely regular Hausdor fff spaces and
let Y be a o-compact k-space. Let & be the set of all compact subsets in
X and let I be the set of all compact subsets in Y. Then a continuous
linear operator T of Ce(X) into Cx(Y) is weakly compact if and only if
there are a kernel function k(x,y) on KXY (for some K€ &) and a non-
negative Borel measure v on K such that

() (Tf)y = S(fIK)(x)k(x, y)»(dx)

and k satisfies the conditions :

(i) for any yeY, k(x, y)e L'(K, v),

(ii) for any Borel set E in K, S‘Ek(x, y)v(dx) is continuous function
on 'Y,

(iii) for any HET, sup S(k(x, P)|o(dx) < + oo .

(b) Let X, Y be completely regular Hausdoff spaces and let Y be a o—
compact k,-space. Let & be the set of all compact subsets in X and let
2 be the set of all compact subset in Y. Then a continuous linear opera-
tor T of Ce(X) into Cx(Y) is compact if and only if there is a kernel
Sunction k(x,y) on KXY (for some Ke &) and a non-negative Borel
measure v on K such that the equation (x) is satisfied and k satifies the
condition (i) and

(iv) if ya—yin Y, then

lim {1z, )= k(x, 30)|dx) = 0.

Proof. a) Let 7 be a weakly compact linear operator of Ce(X)
into Cz(Y). Then there is a K€ & such that T(W(K, 1))C some weakly
compact subset B in C(Y). Since B is wcakly compact, it is pointwise
bounded, ie. {g(»)|g€ B} is bounded for any y in Y. If we put

A=Qn‘1W(K, D={f: f(K)=0}, then T(A)Ci\ln‘lB:{O}. Therefore

T=Sj, and j is the canonical linear mapping of Ce(X) onto C(K) (i.e.
for fe Ce(X) Jf is the restriction of fon K) and S is a weakly compact
linear operator of C(K) into Cz(Y). By Theorem 1, there is a continuous
mapping T of Y into C(K) with the topology o(C(K), C(K)”) such that
(Sg)y=<ry, g> for any g€ C(K) and for any y€ Y. For any fe€Cs(X),
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(TF)y=(Sif)y=<ry, ]'f>=g (fIK)Ty(dx), since Ty is a Borel measure on

K. Since Y is a o-compact space, Y can be represented as a sum of a
sequence {Y,} of compact subsets. Since 7Y, is o(C(KY, C(K)’)-compact,
by Bartle, Dunford and J. Schwartz ([4] Theorem 1.4), there is a positive
Borel measure v, on K such that v,(E)=0 implies |ry|(E)=0 for any

yeY,. If we put uzﬁ 1/2" v,/||v.ll, then we have that »(E)=0 implies

|7y|(E)=0 for any y€ Y. By Radon-Nikodym theorem, Ty=Fk(x, y)» and

k(x, y)€ L'(K, ») for any ye Y, so (Tf)y= S(f | K)ry(dx) = S(f | K)k(x, y)»(dx).
Let E be a Borel set in K. Then we can regard the characteristic

function @z of E as an element in C”(K). Since for a directed set
{f;} CC(K) f; converges to @y with the topology o(C”(K), C'(K)), we

have (S"pg)y— SE k(x, y)(dx). For, (Sf,)y= S Fix)k(x, y)»(dx) converges
to SE k(x, y)v(dx) and (Sf;)y=<Sf;, py> =<f;, S'1ty> =< Pe,S 1> =<{S" Pg, p,>
—(S" PRy, 50 (S"Pr)y= SE k(x, y)(dx). Since S"@, € Cx(Y), SE k(x, y)v(dx)

is a continuous function on Y for any Borel set E. Next, we put
M= {fv|fe L(K, v)}, then C'(K)>DM. Any feL”(K, ») may be regarded
as a continuous linear functional on M, i.e. for any p=gv € M, we define

<f, ;b>=\ f(x)g(x)dv(x). Therefore f may be regarded as an element in
C’(K). Forany yeY, (S8"f)y=<S"f, u,> =<1, S mp=Lf, ry>=L1, k(x, y)»>
:Sf(x)k(x, yrldx). Now we put f(x)=sgnk(x,y). Then (S"f)y= SIk(x, y)lv(dx).
Since S”feCz(Y), we have that syupSIk(x, »|v(dx)< +o for any
HeZ Conversely, if k satisfies the (E:gnditions (i), (i) and (iii), and
(Tf)y:S (FIK)k(x, y)v(dx), then T=Sj and j is the canonical linear

mapping of Ce(X) onto C(K) and S is a continuous linear operator of
C(K) into Ce(Y). Let B(K) be the space of bounded Baire functions
of the 1st class, i.e. bounded functions which are limits of sequences of

continuous functions. Then for any g€ B(K), (S5”g) y:S g(x)k(x, y)v(dx).

For, for any & >0 there is a finite set of Borel sets {E;} in K such
that ||g—> a;Pgll. =& For any ye€ H,

(et kx, (@)~ (S apa)@kx, v (dn)

=llg—2> a,-(PE,-HW-SHI k(x, y)|v(dx) =€ SHI k(x, ¥)|v(dx) .
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Therefore ZaiS k(x, y)v(dx) converges to gg(x)k(x, y)v(dx) uni-
E; J
formly in H, so Sg(x)k(x, y)v(dx) is continuous on H. Since Y is a

k-space, Sg(x)k(x, y)v(dx) is also continuous on Y (cf. §1). Therefore
for any £€C(K)’ S"£e€Cx(Y) since Cz(Y) is complete (cf. [14] §3).
This shows that S is weakly compact (cf. [14] Lemma 1).

(b) We have

Tyx =730l =[1k(+, 32) = k(-5 30)ll
— [ 1k, 20—k, 3012d) .

By the proof of Theorem 3 (a) and Theorem 1, (b) is then obvious.
From this theorem we obtain the following

Theorem 4. Let E be a separable metrizable locally convex linear
space and let J be a set of indices. Then any weakly compact linear
operator of c(J) (¢f. §1) into E is compact.

Proof. If X is infinite we put X=Ju(p,), where p, is an abstract
point. Let X be the compact space whose all points is isolated except
2., i.e. a neighborhood of p, in X is a subset of the form X—(a,, -,
a,), where {a,, ---, @,} is a finite set in J. Then we may consider C(X)
insted of ¢,(J). Next, yince E is a separable metrizable locally convex
linear space, its completion £ can be imbedded into Cx(Y) for a o-
compact metrizable space Y (¥ is the set of all compact subsets in Y'®).
Now, let T be a weakly compact linear operator of ¢, (J) into E, then
we can assume that T is a weakly compact linear operator of C(X) into
Cz(Y). By Theorem 3 (a), we can find a kernel k(x, y) and a positive
measure » on X. By a sequence {x,} in X we denote elements with
v((x)):+:0. We put N={x,}. For any subset B={x;,} CN, we set

12(B) = 23 [k(xjn, ) — k(% ju, 3)12(%;4)  (for any 7).

By Theorem 3 (a), (ii), if a sequence {y;} converges to y, in Y, ui(B)
converges to 0, and by (a) (iii), the norms of u; are bounded as linear
functionals on C”(N). Therefore, by Phillips ([19]. Lemma) lim 3| z,(x;)]

=0. This shows that Theorem 3. (b), (iv) is satisfied, so T is compact.
The following corollary is proved by Grothendieck [14].

Corollary. Awny weakly compact linear operator of c, into a locally

10) Since £ is a Fréchet space, it is barrelled (cf. [7]).
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convex Hausdorff topological linear space is compact.

Proof. Let E be a locally convex Hausdorff topological linear space
and let V be a closed symmetric convex neighborhood of O in E. Let
E’v be the completion of E,. Then ZA«?V is a Banach space. We put
T,=j,T, where j, is the canonical linear mapping of E into Ev. Since
¢, is separable, if F, is the closure of T,(c,) in E,, then F, is a separable
Banach space. Therefore, by Theorem 4, T, is a compact linear operator
of ¢, into F,. If U is the unit sphere of ¢,, then T.,(U) is contained
in a compact subset K, in F,. Since E contained in the topological
product space IIF, of F,, we see that T(U)(I;IKV. Since T(U) is

contained in a weakly compact subset in E, 7T is compact.

REMARK. From the above Corollary we have: let £ be a Banach
space whose dual E’ is separable. Then any continuous linear operator
of the space m into E’ is compact.

§4. Simultaneeous extension theorem'

Let X be a metric space and let F be a closed subspace in X. Then
there is a simultaneous extension T of Ce(F) into Cz(X) (&, ¥ denote
the set of all compact subsets in X, Y respectively), i.e. 7 is a non-
negative continuous linear operator of Ces(F) into Cg(X) and Tf is a
continuous extension of f for any fe Ce(F) (cf. Michael [17] p. 802).
On the other hand, Day [9] gave an example of a compact Hausdorff
space X and of a closed subspace F such that there is no linear mapp-
ing C/(F) into C,(X) which is a simultaneous extension of all elements
of C/F). His example is the following: Let X be the topological
product space of the closed unit interval I, (A€ A) and let the set A of
indices be uncountable. Let S be the unit sphere of /,(A) with the
topology o(/,(A), 1,(A)), where p_>1, ¢ >1 and p'+¢g'=1. Then we
may regard S as a closed subset in X and /,(A) as a linear subspace of
C(S). Day showed that there is no continuous linear operator 7T from
L=1,A) into C,(X) such that, for any f in L, Tf is an extension of f.
If we put x(§)=<x, 5>, £€S, then x(£) is a continuous function on S.
Let U be the unit sphere of /,(A) and let U= {x(£): x€ U}. Then U is
a weakly compact subset in C,(S). For, since U is a o(l,(A), {,(N))-
compact subset, any directed set in U has a cluster point in the topology
o(l,(N), 1,(A)), so U is compact in the simple topology on C.S) and for

11) -The simulteneous extension theorem was considered by Dugundji [12], Arens [2] and
Michael [17]] on the case of bounded coniinuous functions.
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any x € U, (28] =|<x, =<1 (£€S). Therefore, by Grothendieck [13],
U is a weakly compact subset.
We see that there is no simultaneous extension of U into C,(X).

But we have the following.

Theorem 5. Let X be a paracompact Hausdorff space and let F be a
k,-space which is closed in X. Let A be a relative compac tsubset in Ce(F'),
S denoting the set of all compact subset in F. Then there is a simultaneous
extension T of A into Cx(X), T denoting the set of all compact subsets
in X, i.e. if f, g and af+Bg (a, B real) are contained in A, then T (af+3g)
=aTf+BTg, and Tf is a continuous extension of f for any f¢€ A.
Moreover, T is a continuous operator of A (with the topology induced by
Ce(F)) into Cz(X).

Proof. Since F is a k,—space, Ce(F') is complete. Therefore the
symmetric convex closed envelope of A is compact, so we can assume
that A is symmetric, convex and compact. E=[Ce(F)],'* is a Banach
space. Let S be a canonical linear mapping of E into Ce(F'), i.e. Sf=f
for any f€E. Then S is a compact linear operator. By Theorem 1
there is a continuous mapping + of F' into E’ such that (Sf)y=<{ry, f> for
any f in E and for any y in F. We put g¢(x, y)=|[rx—7y||zr. This
pseudo-metric is extended on X (cf. Arens [2] p. 18), and we denote
the extension also by ¢g. We put Fy={x: g(x, F)=0}. Then 7 can be
extended to F, continuously. This mapping is denoted by =,. We divide
elements of X into equivalent classes, by making x equivalent to y if
g(x, y)=0. Let X* be the set of equivalent classes. If we defire
g*(x*, y¥)=¢(x, y) for any x € x* and y€y* then X* is a metric space
with the metric function ¢* (cf. Arens [2] p. 18). The canonical mapp-
ing j of X onto X* is continuous. Set jF,=F¥. Then F¥ is closed in
X*. For any a€F, we put 7¥(a*)=7,(a), then ¥ is continuous in F§.
¥ can be extended on X* continuously, and we denote the extension
also by 7¥. By Michael ([17] p. 803) we can assume that for any com-
pact C* in X* there is a compact subset C¥ in F¥ such that 7¥(C*)C
D(rF(C*)). We here put 7,(x)=7F(x*) for any x€ X. Then 7, is continuous
on X and is an extension of 7. We define (Tf)x=<{7x, f> for any f€ A
and x€X. Then Tf is a continuous extension of f, and if f, g and
af+Bge A, then T(af+Bg)=aTlf+BTg.

We finally prove that 7 is a continuous operator of A (with the
topology induced by Ce(F')) into Cz(X), i.e. for any compact C in X
there is a compact subset K in F such that T[W(K, 1/2)n A]c W(C, 1).

12) By E4 we denote the Banach space whose unit sphere is A.
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Supposing the contrary, let 8={K;} be the directed set'™ of all compact
subset in F. Then for any K, there is an f;€ W(K;,1/2)nA and
Tf; ¢ W(C, 1) (for some compact subset C in X), ie. there is a c;€C

such that
[Tfie)l=1 1
and jfj(Kj)’é 1/2. 2)
Since jC=C¥* is compact, there is a compact subset C¥ in F§ such
that
TH(C¥) CI(TH(CY)) (3)

By (3) we have that for any & >0 and for any c; there are finite
real numbers A/ with 3IAM[<1 and c¢}€F, (with (c))* € C¥) such that
et~ SN (Dl e, Since (T7)(e) =<k, 1,5,

((Tfj)(cj)—iZ M(Tf;) (D)
= Hf,-HE'HTi"CT—Z Mr(eDlle <€ |l fille = €.

Therefore there is a d; € {c/} such that
(Tfpd)l=1-¢. (4)

Since d¥ € C¥ and C¥ is compact in F¥, there is a cluster point d*
of {d¥}. deF,. Foranyj thereisa 7(>j) such that ||[7d;—7d|l<_¢,
SO

|(Tfj’)(dj’)-(Tfj’)(d)[ = |<'7'1dj’—"7'1d, firol
< lirdy—dlle < E.

Now, since de€F,, there is a d,€ F such that ||td—7d,ll~ &, ie.
sup| Tf(d)~f(dy)|< & For any j | Tf(d)—f(d.)|< &, so | fy(dy)| =1-3¢
(by (4)). Put €<71/6. Then for any j |f(d,)|>>1/2. By (2) d, ¢ K.
Since {K,} is a directed set, d,#F. This contradiction proves the
theorem.

5. The spaces of summable functions

J. Dieudonné [10] has proved the following theorem: let £ and E’
be dual linear spaces and let X be a Kakutani space (cf. §1). Then
any continuous linear operator of L'(X, 1) into E™ is of the form f—

g F(x)Txdu(x), where 7 is a weakly summable, weakly bounded mapping of

13) The ordering is defined by inclusion, i.e. j, > j, if K; DKj,.
14) E denotes the completion of E with the topology o(E, E”).
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X into E. By Theorem 1 we can prove the following

Theorem 6. Let E be a Banach space and let X be a Kakutani
space. Then any weakly compact linear operator of L' (X, p) (cf. §1) into

E is of the form f—~>g Fx)rxdp(x)>, where T is a weakly continuous
mapping'® of X into E and v(X) is contained in a weakly compact subset
in E.

Proof. Let T be a weakly compact linear operator of L'(X, ;) into E.
Then its transposition 7’ is a continuous linear operator of E’ into C(X)
(Cf. §1). By Theorem 1 there is a continuous mapping of X into E”’ (with
the topology o(E”, E’)) and (T"¢)x=<{7x, ¢ > for ¢ € E' and x€ X. Since T
is weakly compact and 7x=T"p,, Tx is contained in E (cf.[14] Lemma 1).
Therefore = is a continuous mapping of X into E (with the topology
o(E, E')). We have that for fe L\(X, ) and ¢ € E'<Tf, &>=<{f, T'¢>=

S Flx){rx, e >dp(x), so Tf= ( f(x)rxdu(x). Conversely, let = be a weakly

continuous mapping of X into F anvd 7(X) is contained in a weakly
compact subset in E. Since X is the Cech compactification of X (cf. §1),
T is extended to a weakly continuous mapping 7, of X into E. By

Bourbaki ([8] §4) for any &€ C(XY S 7,x5(dx) exists as an element in
E and for any ¢ € FE’

<5 rxE(dx), &> — S<¢1x, ¢>Edx). For any fe LXX, p)

and ¢ € E

T, > = <&, T = | fw)<ra, e>dpta),

so T'¢' =<{rxx, &> (for, {T,x, &> is the continuous extension of {7x,¢>).
For any £€ C(XY

T, &> = <& T = |, o> Haw)

= rattan, o,

15) Sf(x) ~xdp(x) is an element in E which <Sf(x) Txdp(x), e’>=Sf(x) {rx, e du(x) for

any ¢ € E’.
16) = is said to be a weakly continuous mapping of X into E if it is continuous mapping
of X into E with topology o(E, E”).
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so T”£‘=S’rlx/§(dx)eE. Then by [14] Lemma 1, T is weakly

compact.

ReEMARK. By a similar method as Dieudonné ([10], 32-35), we can

prove a theorem of Phillips ([18], Theorem 5.4.) from Theorem 6.
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