

Title	The extension of groups and the imbedding of fields				
Author(s)	Akagawa, Yasumasa				
Citation	Osaka Mathematical Journal. 1960, 12(1), p. 195- 215				
Version Type	VoR				
URL	https://doi.org/10.18910/6577				
rights					
Note					

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

The Extension of Groups and the Imbedding of Fields

By Yasumasa Akagawa

In this paper is solved the problem of imbedding a normal field of algebraic numbers in a larger field having local fields given in advance in case the order of a relative galois group is a prime. For this purpose, a theory of the extension of groups is discussed in the first half where a generalization of the usual will be found. If we can find the possibility to continue the process stated in this paper, we shall be able to construct a normal field with an arbitrarily given solvable galois group and local fields given in advance. We shall discuss this in a forthcoming paper.

The author is deeply indebted to Professor H. Nagao and Dr. N. Nobusawa for valuable discussion.

§ 1. The Extension of Groups

When there are given a group X with a set of operators Σ and its Σ -invariant subgroup Y, we shall use, in the following, the same notation Σ for the restriction of Σ into Y, and when specially Y is normal in X, we shall use the same Σ for the operator set of X/Y induced naturally by Σ .

We shall use the common symbol ι for the canonical or the identical mapping among several groups, if there is no confusion.

Let G_0 be any group and A any abelian group, all having a set of operators Σ in common, and suppose that A has G_0 as an operator group besides Σ , and that the following relations are satisfied:

$$(1) (a^{g_0})^{\sigma} = (a^{\sigma})^{g_0^{\sigma}} \text{for} a \in A, \ g_0 \in G_0, \ \sigma \in \Sigma.$$

We shall call a subset I of Σ a set of inner operators, if it has the following properties.

- 1) There is a one-to-one correspondence between I and a subset of G_0 . The element of I which corresponds to g_0 in G_0 will be denoted by $\langle g_0 \rangle$.
- 2) $h_0^{\langle g_0 \rangle} = g_0^{-1} h_0 g_0$ for $h_0 \in G_0$.
- 3) $a^{\langle g_0 \rangle} = a^{g_0}$.

Let G be another Σ -group, and suppose there are a Σ -isomorphism

 φ from A into G and a Σ -homomorphism ψ from G onto G_0 with the kernel $\varphi(A)$, and they satisfy the following conditions:

1) If $\psi(g) = g_0$, then

$$a^{g_0} = \varphi^{-1}(g^{-1}\varphi(a)g)$$
.

2) If $\langle g_0 \rangle \in I$, then there is an element $g \in G$ such that $\psi(g) = g_0$ and

$$g'^{\langle g_0 \rangle} = g^{-1}g'g$$
 for $g' \in G$.

In this case, $(G, \Sigma, \varphi, \psi)$ is called a Σ -extension of A by G_0

We shall introduce an equivalence relation to the set of such $(G, \Sigma, \varphi, \psi)$. Let $(G', \Sigma, \varphi', \psi')$ be another Σ -extension of A by G_0 . $(G', \Sigma, \varphi', \psi')$ is said to be *equivalent* to $(G, \Sigma, \varphi, \psi)$ if and only if there is a Σ -isomorphism μ from G onto G' such that

(1.2)
$$\mu(\sigma) = \sigma \quad (\sigma \in \Sigma), \quad \mu \varphi = \varphi', \quad \psi' \mu = \psi.$$

Classifying all $(G, \Sigma, \varphi, \psi)$ by this equivalence relation, the class containing $(G, \Sigma, \varphi, \psi)$ will be denoted by $[G, \Sigma, \varphi, \psi]$ or again by $(G, \Sigma, \varphi, \psi)$ if there is no confusion. Σ in $(G, \Sigma, \varphi, \psi)$ will be omitted when they are evident.

The addition of two classes

$$(G, \varphi, \psi) + (G', \varphi', \psi')$$

will be defined as follows. In the group $G \times G'$ with the operator domain $\Sigma \times \Sigma$,

$$\widetilde{G} = \{(g, g') | \psi(g) = \psi'(g')\}$$

is a subgroup with the operator domain

$$\tilde{\Sigma} = \{(\sigma, \sigma) | \sigma \in \Sigma\}$$
.

 $\tilde{\Sigma}$ can be identified to Σ by the correspondence $(\sigma, \sigma) \leftrightarrow \sigma$. \tilde{G} contains a Σ -invariant normal subgroup

$$N = \{(\varphi(a), \varphi'(a^{-1})) | a \in A\}$$
.

Then there are a Σ -isomorphism $\tilde{\varphi}$ from A into \tilde{G}/N and a Σ -homomorphism $\tilde{\psi}$ from \tilde{G}/N onto G_0 which are defined respectively by

$$(1.3) \tilde{\varphi}(a) = (\varphi(a), e')N = (e, \varphi'(a))N$$

and

(1.4)
$$\tilde{\psi}((g, g')) = \psi(g) = \psi'(g')$$
.

 $(\tilde{G}/N, \tilde{\varphi}, \tilde{\psi})$ is a Σ -extension of A by G_0 , and the class $[G/N, \varphi, \psi]$ does not depend on the choice of representatives (G, φ, ψ) and (G', φ', ψ') of $[G, \varphi, \psi]$ and $[G', \varphi', \psi']$ respectively. Thus we can define the *addition* by setting

$$\lceil G, \varphi, \psi \rceil + \lceil G', \varphi', \psi' \rceil = \lceil \widetilde{G}/N, \widetilde{\varphi}, \widetilde{\psi} \rceil.$$

The following propositions are evident from the definition.

PROPOSITION 1. The set of $[G, \varphi, \psi]$ becomes an additive group. $(G, \varphi, \psi) = 0$ if and only if there is a Σ -invariant subgroup G'_0 of G such that $G = G'_0 \cdot \varphi(A)$ and $G'_0 \cap \varphi(A) = e$. $-(G, \varphi, \psi) = (G, \varphi', \psi)$ where $\varphi'(a) = \varphi(a^{-1})$.

This group composed of $[G, \varphi, \psi]$ is called a *cohomology group of dimension* 2 and denoted by $H^2(G_0, \Sigma, A)$.

1. The Restriction Mapping

Let $\Sigma'\subset\Sigma$, (G,φ,ψ) be a Σ -extension of A by G_0 , and let H_0 be a Σ' -invariant subgroup of G_0 . Put $I'=\{\langle h_0\rangle\in I\cap\Sigma'|h_0\in H_0\}$ and denote $\psi^{-1}(H_0)$ by H. Then (H,Σ',φ,ψ) is a Σ' -extension of A by H_0 defining I' as the inner operator set. $[H,\Sigma',\varphi,\psi]$ is uniquely determined by $[G,\Sigma,\varphi,\psi]$. Thus we have a homomorphism $[G,\Sigma,\varphi,\psi]\to [H,\Sigma',\varphi,\psi]$ from $H^2(G_0,\Sigma,A)$ to $H^2(H_0,\Sigma',A)$. This is called the *restriction mapping* from (G_0,Σ) to (H_0,Σ') and denoted by $r_{(G_0,\Sigma)\to(H_0,\Sigma')}$ or $r_{G_0\to H_0}$ if $\Sigma=\Sigma'$.

2. The Induced Mapping

Let B be another abelian group with operator domains Σ and G_0 , satisfying the condition (1.1), and those of inner operator set I. Suppose there is a Σ -homomorphism $f: A \to B$ such that $f(a^{\sigma}) = (f(a))^{\sigma}$ and $f(a^{g_0}) = (f(a))^{g_0}$. To a Σ -extension (G, φ, ψ) of A by G_0 , we can correspond a Σ -extension (G^*, φ^*, ψ^*) of B by G_0 as follows.

Let (G', φ', ψ') be a splitting Σ -extension of B by G_0 , namely $[G', \varphi', \psi'] = 0$, and therefore we can suppose $G' = G_0 \cdot B$, $\varphi' = \iota$, and $\psi' = \iota$ by Proposition 1. In the group $G \times G'$ with the operator domain $\Sigma \times \Sigma$,

$$\widetilde{G} = \{(g, g_0b)|\psi(g) = g_0\}$$

is a subgroup with the operator domain $\tilde{\Sigma} = \{(\sigma, \sigma) | \sigma \in \Sigma\}$ which is identified with Σ by $(\sigma, \sigma) \leftrightarrow \sigma$. G contains a Σ invariant normal subgroup

$$N = \{ (\varphi(a), f(a^{-1})) | a \in A \},$$

and there are a Σ -isomorphism φ^* from B into $G^* = \tilde{G}/N$ and a Σ -homomorphism ψ^* from \tilde{G}/N onto G_0 which are defined respectively by

$$\varphi^*(b) = (e, b)N$$

and

$$\psi^*((g, g_0 b)) = g_0.$$

Thus we have a Σ -extension (G^*, φ^*, ψ^*) of B by G_0 and $[G^*, \varphi^*, \psi^*]$ is uniquely determined by $[G, \varphi, \psi]$. Moreover $f^*: [G, \varphi, \psi] \rightarrow [G^*, \varphi^*, \psi^*]$ is a homomorphism from $H^2(G_0, \Sigma, A)$ into $H^2(G_0, \Sigma, B)$. This mapping f^* is said to be *induced* by f.

3. The Lift Mapping

Here, we shall suppose all elements of Σ are automorphisms of G_0 and A. Let H_0 be a Σ -invarient normal subgroup of G_0 , and $A_0 = A^{H_0}$ the subgroup of A composed of all elements fixed by H_0 . Then A_0 is Σ -invariant by the relation (1.1). Let (\bar{G}, φ, ψ) be a Σ -extension of A_0 by G_0/H_0 . In the group $G_0 \times \bar{G}$ with the operator domain $\Sigma \times \Sigma$,

$$F = \{(g_0, \bar{g}) | g_0 H_0 = \psi(\bar{g})\}$$

forms a subgroup with the operator domain $\hat{\Sigma} = \{(\sigma, \sigma) | \sigma \in \Sigma\}$ which is identified with Σ by $(\sigma, \sigma) \leftrightarrow \sigma$. Let φ_F be a Σ -isomorphism from A_0 into F and ψ_F a Σ -homomorphism from F onto G_0 defined respectively by

$$(1.7) \varphi_{E}(a_{0}) = (e_{0}, \varphi(a_{0}))$$

and

$$\psi_F((g_0, \bar{g})) = g_0.$$

It is evident that the class of (F, φ_F, ψ_F) is uniquely determined by the class of (\bar{G}, φ, ψ) . Denote by j the injection mapping $A_0 \to A$. Then the lift mapping from G_0/H_0 to G_0 is a homomorphism from $H^2(G_0/H_0, \Sigma, A_0)$ into $H^2(G_0, \Sigma, A)$ defined by

$$[\bar{G}, \varphi, \psi] \rightarrow j^*[F, \varphi_F, \psi_F]$$
.

This will be deented by $\lambda_{G_0/H_0\to G_0}$ or briefly by λ_{G_0} . We can prove easily the following

Theorem 1. Let f be a Σ -homomorphism from (A, Σ) into (B, Σ) and H_0 a Σ -invariant subgroup of G_0 . Then

$$f^*r_{G_0 \to H_0}[G, \varphi, \psi] = r_{G_0 \to H_0} f^*[G, \varphi, \psi].$$

Theorem 2. If H_0 is a Σ -invariant normal subgroup of G_0 , then

$$r_{G_0 o H_0} \cdot \lambda_{G_0/H_0 o G_0} = 0$$
.

Proof. By the definition of λ and r and by Theorem 1,

$$r\lambda(\bar{G}, \varphi, \psi)$$

is the image of $(H_0 \times A_0, \iota, \iota)$ by j^* . By Proposition 1

$$[H_0 \times A_0, \iota, \iota] = 0.$$

Therefore $r\lambda(\bar{G}, \varphi, \psi) = j^*(0) = 0$.

Theorem 3. Let H_0 be a Σ -invariant normal subgroup of G_0 , $\{\gamma_i\}$ a set of representative system of G_0 mod H_0 , and all $\langle \gamma_i \rangle$ contained in I. Then, from

$$r_{G_0\to H_0}[G,\varphi,\psi]=0,$$

it follows that there is a $[\bar{G}, \bar{\varphi}, \bar{\psi}]$ in $H^2(G_0/H_0, \Sigma, A_0)$ such that

$$[G, \varphi, \psi] = \lambda_{G_0/H_0 \to G_0}(\overline{G}, \overline{\varphi}, \overline{\psi}).$$

Proof. By the assumption $r(G, \varphi, \psi) = 0$ and Proposition 1, the group $\psi^{-1}(H_0)$ is $H'_0 \cdot \varphi(A)$ where $H'_0 \cong H_0$, and H'_0 as well as $\varphi(A)$ is Σ -invariant. Let g_i be elements in G such that $\psi(g_i) = \gamma_i$ and $g^{<\gamma_i>} = g_i^{-1} g g_i$ for $g \in G$. Put

$$g_i g_j = g_k h_{i,j} \varphi(a_{i,j})$$

where $h_{i,j} \in H'_0$ and $a_{i,j} \in A$. Now, the commutator of $\varphi(a_{i,j})$ and any element h_0 of H'_0 is the unit, because

$$h_0^{-1}\varphi(a_{i,j})^{-1}h_0\varphi(a_{i,j}) = h_0^{-1}g_j^{-1}g_i^{-1}g_kh_{i,j}h_0h_{i,j}^{-1}g_k^{-1}g_ig_j$$

= $h_0^{-1}(g_k^{-1}g_ig_j)^{-1}(h_{i,j}h_0h_{i,j}^{-1})(g_k^{-1}g_ig_j)$.

Therefore it is in H' and, on the other hand, it is evidently in $\varphi(A)$. Put similarly

$$g_i^{\sigma} = g_j h_{i,\sigma} \varphi(a_{i,\sigma}) \qquad \sigma \in \Sigma, h_{i,\sigma} \in H'_0.$$

The commutator of $\varphi(a_{i,\sigma})$ and any element h_0 of H_0' is again the unit, because

$$egin{aligned} h_0^{-1} arphi(a_{i,\sigma})^{-1} h_0 arphi(a_{i,\sigma}) &= h_0^{-1} (g_i^{\sigma})^{-1} g_j h_{i,\sigma} h_0 h_{i,\sigma}^{-1} g_j^{-1} g_i^{\sigma} \ &= h_0 \{ g^{-1} (g_j h_{i,\sigma} h_0 h_{i,\sigma}^{-1} g_j^{-1})^{\sigma^{-1}} g_i \}^{\sigma} \end{aligned}$$

is in H'_0 and, on the other hand, it is evidently in $\varphi(A)$.

Thus, we can construct an extension $(\bar{G}, \iota, \bar{\psi})$ of A_0 by G_0/H_0 as follows:

 \bar{G} is composed of $\{\bar{g}_i, A_0\}$ and has the following relations:

$$egin{aligned} ar{g}_i \, ar{g}_j &= ar{g}_k a_{i,j} & ext{if} & g_i \, g_j &= g_k h_{i,j} arphi(a_{i,j}) \;, \ ar{g}_i^\sigma &= ar{g}_j a_{i,\sigma} & ext{if} & g_i^\sigma &= g_j h_i \;, \; \sigma arphi(a_{i,\sigma}) \;, \end{aligned}$$

and $\bar{\psi}(\bar{g}_i a_0) = \psi(g_i) H_0$

From the method of construction of \bar{G} , it is obvious that

$$(G, \varphi, \psi) = \lambda_{G_0/H_0 \to G_0}(\overline{G}, \iota, \overline{\psi}).$$

4. (S/T, A)

Let S be a Σ -group and let $S \supset T \supset U$ be a Σ -normal series, and suppose it has the properties as follows:

- 1) there is an onto Σ -homomorphism $\xi: S/U \rightarrow G_0$ with the kernel T/U.
- 2) there is a Σ -isomorphism η from T/U into A.
- 3) each element $\langle g_0 \rangle$ of I is an inner automorphism by some element in $\xi^{-1}(g_0)$.

Then $[S/U, \iota, \xi]$ is a Σ -extension of T/U by G_0 , and $\eta^*[S/U, \iota, \xi]$ is a Σ -extension of A by G_0 . Taking all such U in T, the group generated by $\eta^*[S/U, \iota, \xi]$ is denoted by (S/T, A)

Theorem 4. Suppose each element of A is fixed by a Σ -invariant normal subgroup H_0 of G_0 . Then, under the same assumption as Theorem 3, the sequence

$$0 \to (G_0/H_0, A) \xrightarrow{\iota} H^2(G_0/H_0, \Sigma, A) \xrightarrow{\lambda} H^2(G_0, \Sigma, A) \xrightarrow{r} H^2(H_0, \Sigma, A)$$

is exact, where ι is the injection, λ is the lift and r is the restriction mapping.

Proof. Let $[\bar{G}, \bar{\varphi}, \bar{\psi}] \in H^2(G_0/H_0, \Sigma, A)$ and suppose

$$\lambda(\overline{G},\,\overline{\varphi},\,\overline{\psi})=(G,\,\varphi,\,\psi)=0\,.$$

Then, from the definition,

$$G = \{(g_{\scriptscriptstyle 0},\,ar{g})\,|\,g_{\scriptscriptstyle 0}H_{\scriptscriptstyle 0} = ar{\psi}(ar{g})\} igcirc G_{\scriptscriptstyle 0} { imes} ar{G}$$
 ,

and it must be decomposed into

$$G = G_0 \cdot \varphi(A)$$

where G_0' is a Σ -invariant subgroup Σ -isomorphic to G_0 by the mapping $(g_0, \overline{g}) \to g_0$. The mapping $\xi : g_0 \to \overline{g}$ defined by $(g_0, g) \in G_0'$ is a Σ -homomorphism from G_0 into \overline{G} . If its kernel is denoted by N,

$$(\bar{G}, \bar{\varphi}, \bar{\psi}) = \xi * (G_0/N, \iota, \iota)$$
.

5. The Automorphism of $H^2(G_0, \Sigma, A)$

Suppose there are given a Σ -automorphism of G_0 and a Σ -automorphism of A. We shall denote them by a common symbol ρ . Suppose it satisfies the condition

$$\rho(a^{g_0}) = (\rho(a))^{\rho(g_0)}.$$

For any $(G, \varphi, \psi) \in H^2(G_0, \Sigma, A)$ we can define

$$\rho(G,\,\varphi,\,\psi)=(G,\,\varphi\rho,\,\rho^{-1}\psi)\;.$$

Thus ρ induces an automorphism of $H^2(G_0, \Sigma, A)$ which will be denoted by the same notation ρ .

Theorem 5. ρ can be extended to a Σ -automorphism $\overline{\rho}$ of G if and only if $[G, \varphi, \psi]$ is ρ -invariant. Here the extension $\overline{\rho}$ of ρ means a Σ -automorphism of G such that

$$\bar{\rho}(\varphi(a)) = \varphi(\rho(a))$$
 for $a \in A$

and

$$\psi(\bar{\rho}(g)) = \rho(\psi(g))$$
 for $g \in G$.

Proof. Suppose $\rho(G, \varphi, \psi) = (G, \varphi, \psi)$. From the definition of equivalence, there must be a Σ -isomorphism $\bar{\rho}$ (therefore Σ -automorphism in this case) between G and G which coincides with $\varphi \rho \varphi^{-1}$ on $\varphi(A)$ and with $\psi^{-1}\rho\psi$ on $G/\varphi(A)$. So, $\bar{\rho}$ is an extension of ρ . Necessity is trivial from the definition.

6. Applications and Examples

Let A be a group of order p (a prime), G a p-group and H its normal subgroup such that

- 1) [G: H] = p,
- 2) there are into isomorphisms $\varphi_i: A \to G$; $i=1, 2, \dots, n, 1 \leq n \leq p$ and $\varphi_i(A) \cap (\bigvee_{i \in I} \varphi_i(A)) = e$,
- 3) $\bigvee_i \varphi_i(A)$ is normal in G and contained in the centre of H,
- 4) there exists an element g_0 of G out of H, satisfying

$$g_0^{-1}\varphi_1(a)g_0 = \varphi_1(a),$$

 $g_0^{-1}\varphi_i(a)g_0 = \varphi_{i-1}(a)\varphi_i(a)$ for $a \in A \ (2 \leq i \leq n)$.

Put $B_0 = \{e\}$, $B_i = \bigcup_{i \geq i \geq 1} \varphi_j(A)$, $C_i = \bigcup_{j \neq i} \varphi_j(A)$, $H_i = H/B_i$ $(0 \leq i \leq n)$, and $\overline{H}_i = H/C_i$, $1 \leq i \leq n$, and suppose G is an identical operator set of A. Then $(H_i, \iota \varphi_{j+1}, \iota)$ is supposed to be contained in $H^2(H_{i+1}, \langle G \rangle, A)$ and $(\overline{H}_i, \iota \varphi_i, \iota)$ in $H^2(H_n, \phi, A)$.

Theorem 6. There are relations, in $H^2(H_{i+1}, \phi, A)$:

- i) $(H_i, \iota \varphi_{i+1}, \iota) = \lambda_{H_n \to H_{i+1}}(\overline{H}_{i+1}, \iota \varphi_{i+1}, \iota)$
- ii) $(\bar{H}_i, \iota \varphi_i, \iota) + (\bar{H}_{i+1}, \iota \varphi_{i+1}, \iota) = g_0(\bar{H}_i, \iota \varphi_i, \iota)$.

Proof. i) is an immediate consequence of the definition of the lift mapping. Let us prove ii). Put

$$\widetilde{H} = H/C_i \cap C_{i+1}$$

and

$$D = \{ \varphi_i(a) \varphi_{i+1}(a^{-1}) (C_i \cap C_{i+1}) \mid a \in A \} \subset \widetilde{H}.$$

By the definition of the addition

$$egin{aligned} (ar{H}_i,\,\iotaarphi_i,\,\iota) + (ar{H}_{i+1},\,\iotaarphi_{i+1},\,\iota) &= (ilde{H}/D,\,\iotaarphi_i,\,\iota) \ &= g_0\!\cdot\!g_0^{-1}(ilde{H}/D,\,\iotaarphi_i,\,\iota) \ &= g_0(ilde{H}/D,\,\iotaarphi_i,\,g_0)\,. \end{aligned}$$

Now, the inner automorphism of G caused by the element g_0 maps \tilde{H}/D on \bar{H}_i and specially $\varphi_i(a)D$ on $\varphi_i(a)C_i$; $a \in A$. These show

$$(\widetilde{H}/D, \iota \varphi_i, g_0) = (\overline{H}_{i+1}, \iota \varphi_i, \iota).$$

Theorem 7. Let G and G' be two p-groups satisfying the conditions of Theorem 6, and let φ_i' $i=1,2,\cdots,n'$ $(1 \le n' \le p)$, H', g_0' , B_i' , C_i' , H_i' and \overline{H}_i' be defined similarly as G, and let $n \le n'$. Suppose there is an onto homomorphism $\theta: G' \to G/B_n$ with a kernel $B_{n'}'$ such that $\theta(H') = H_n$ and $\theta(g_0') = g_0B_n$. Define $f: B_n \to B_{n'}'$ by $f(\varphi_i(a)) = \varphi_i'(a)$. Then from the relation

$$(ar{H}_1',\,\iotaarphi_1',\, heta)=(ar{H}_1,\,\iotaarphi_1,\,\iota)$$
 ,

in $H^2(H_n, \phi, A)$, it follows that

$$(H', \iota, \theta) = f*(H, \iota, \iota)$$

in $H^{2}(H_{n}, \phi, B'_{n'})$.

Proof. From the relation ii) of Theorem 6

$$egin{aligned} (ar{H}_i',\,\iotaarphi_i',\, heta) &= (g_0\!-\!1)^{i-1}(ar{H}_1',\,\iotaarphi_1',\, heta) \ &= (g_0\!-\!1)^{i-1}(ar{H}_1,\,\iotaarphi_1,\,\iota) \ &= egin{cases} (ar{H}_i,\,\iotaarphi_i,\,\iota) & ext{if} \quad 1 \leq i \leq n \ 0 & ext{if} \quad n+1 \leq i \leq n' \end{cases}. \end{aligned}$$

The last relation follows from the fact that $(\bar{H}_n, \iota \varphi_n, \iota) = (H_{n-1}, \iota \varphi_n, \iota)$ and it is g_0 -invariant on account of Theorem 5. Now, our assertion follows from the definition of f^* .

Theorem 8. Under the same conditions as Theorem 7, assume specially that the isomorphism \mathcal{E} defining $(\bar{H}_1, \iota \varphi_1, \iota) = (\bar{H}'_1, \iota \varphi'_1, \theta)$ satisfies the following conditions that we can choose representative systems h_i of H mod C_1 and h'_i of H' mod C'_1 ($i=1,2,\cdots,\lceil H:C_1\rceil$),

$$\mathcal{E}(h_i C_1) = h_i' C_1'$$
 and $\mathcal{E}(g_0^{-j} h_i g_0^{j} C_1) = g_0'^{-j} h_i' g_0'^{j} C_1' (0 \le j \le p-1)$.

Then it follows that

$$f^*(H, g_0, \iota, \iota) = (H', g_0, \iota, \theta).$$

Proof. Put

$$\begin{split} \widetilde{G} &= \{(g,\,g') \,|\, gB_{n} = \theta(g')\} \subset G \times G' \;, \\ \widetilde{H} &= \widetilde{G} \cap (H \times H') \;, \\ D &= \{(\varphi_{1}(a)\varphi_{2}(a') \,\cdots \,\varphi_{n}(a^{(n-1)}) \,, \; \varphi_{1}'(a)\varphi_{2}'(a') \,\cdots \\ &\qquad \qquad \qquad \varphi_{n}'(a^{(n-1)})) \,|\, a,\,a',\,\cdots \,, \; a^{(n-1)} \in A\} \;, \end{split}$$

and

$$E = \{(\varphi_1(a)C_1, \varphi_1'(a)C_1' | a \in A\} = (C_1, C_1') \cup D \subset \widetilde{H}.$$

Let φ be a monomorphism $B_n \to \tilde{H}/D$ defined by $\varphi(b) = (b, e)D$ $(b \in B_n)$ and ψ an epimorphism $\tilde{H}/D \to H_n$ defined by $\psi((h, h')D) = hB_n$. Then, from the fact that $(\tilde{H}/D, \varphi, \psi) = f^*(H, \iota, \iota) - (H', \iota, \theta)$, we have only to show

$$\widetilde{H}/D = H''/D \times (B_n, B'_{n'})/D$$
,

where H'' is a normal subgroup of \tilde{G} .

From the assumption of theorem, it follows that

$$\widetilde{H}/E = H'''/E \times (B_n, B'_n)/E$$

where $H''' = \{(h_i C_1', h_1' C_1)\} = \{(g_0^{-j} h_i g_0^j C_1, g_0'^{-j} h_0' g_0'^{-j} C_1')\}\ (0 \le j \le p-1).$ Now

$$\bigcap_{0 < j < p-1} (g_0, g'_0)^{-j} E(g_0, g')^j = D.$$

Therefore it follows that

$$H'' = \bigcap_{0 \le j \le p-1} (g_0, g'_0)^{-j} H'''(g_0, g'_0)^j = \{(h_i, h'_i)D\}$$

is normal in \widetilde{G} , $H'' \cap (B_n, B'_{n'}) = D$, and $H'' \cup (B_n, B'_{n'}) = \widetilde{H}$.

Example 1. Let G be a 2-group generated by three elements a, b, and c in such a way that

- 1) $B = \{b\}$ is of order $2^n (n \ge 2)$ and $C = \{c\}$ is of order 2 and there is a normal series $G \supset \{b^2, c\} \supset \{b^{2^{n-1}}, c\} \supset \{e\}$.
- 2) C is not centric but commutative with B.
- 3) denoting $\{b^{2^{n-1}}\}$ by N, G/N by G_0 , B/N by B_0 and $C \cup N/N$ by

 C_0 , G_0/C_0 is the reflexive group¹⁾.

Then, after replacing b by other element if necessary, we may suppose

$$a^2 = b^{2^{n-1}}, a^{-1}ba = b^{-1}$$
 and $a^{-1}ca = cb^{2^{n-1}}$.

We can find (Q, φ, ψ) and (G', ι, ι) in $H^2(G_0/C_0, \varphi, N)$ and in $H^2(G_0/B_0, \varphi, N)$ respectively, where Q is the generalized quaternion group and $G' = \{a\} \cup C \cup N$ is the non abelian and nonquaternion group of order 8, and there is a relation

$$(G, \iota, \iota) = \lambda_{G_0/B_0 \to G_0}(G', \iota, \iota) + \lambda_{G_0/C_0 \to G_0}(Q, \varphi, \psi).$$

Example 2. Let G be a p-group which is not cyclic, not reflexive and not quasi-reflexive, and A a normal subgroup of G of order p. Then G has a normal subgroup M of order p^2 , containing A and not cyclic²⁾. Denote G/A by G_0 and M/A by M_0 . If

$$r_{G_0 \to M_0}(G, \langle G_0 \rangle, \iota, \iota) = 0$$

in $H^2(G_0, \langle G_0 \rangle, A)$, namely if M is contained in the centre of G, then there is a $(\overline{G}, \varphi, \psi)$ in $H^2(G_0/M_0, \langle G_0 \rangle, A)$ such that

$$(G, \iota, \iota) = \lambda_{G_0/M_0 \to G_0}(\overline{G}, \varphi, \psi).$$

On the other hand, if

$$r_{G_0 \to M_0}(G, \langle G_0 \rangle, \iota, \iota) \neq 0$$

then M is not centric and all the elements of G commutative with any element of M form a normal subgroup H and [G:H]=p. Thus G has the structure of the group of Theorem 6 in this case.

§ 2. The Imbedding of Fields

Let k_1 be a finite normal extension of a finite algebraic number field k. Suppose there are given a finite group G with a normal subgroup N and an isomorphism

$$(2.1) G/N \cong \mathfrak{G}(k_1/k).$$

Then, we can naturally consider G as a group of automorphisms of k_1/k identifying G/N with $\mathfrak{G}(k_1/k)$ by (2.1). The so-called imbedding problem is to find an extension K/k_1 such that it is normal over k and

$$(2.2) G \cong \mathfrak{G}(K/k),$$

^{1), 2).} See References at the end of this paper.

which is an extension of (2.1)

We shall treat here a little more complicated problem. Let $l = \{I\}$ be a finite set of primes in k containing all the primes ramified at the exstension k_1/k , and let $l_1 = \{I_1\}$ be a set of primes in k_1 composed of ones selected from each decomposition of $l \in I$ in k_1/k . We shall assume the following conditions which we shall call L-condition.

Each local field $k_{1[1}/k_{[}; 1 \in l]$ has a local normal larger field $K_{\mathfrak{D}}/k_{[}$ and there are monomorphisms $\{\nu_{[}|1 \in l\} \text{ from } \mathfrak{G}(K_{\mathfrak{D}}/k_{]})$ into G respectively, such that

- i) $\nu_{\mathfrak{l}}(\mathfrak{G}(K_{\mathfrak{L}}/k_{\mathfrak{l}\mathfrak{l}_1}))\subset N$
- ii) the monomorphisms induced naturally by $\{\nu_{\rm I}\}$ from $\mathfrak{G}(k_1 \ell_1/k_1)$ into $\mathfrak{G}(k_1/k)$ coincide to the canonical ones.

Then our aim is to construct larger fields K which satisfy the following K-conditions besides those in the ordinary imbedding problem.

- i) Each $\mathfrak{l} \in l$ has a prime divisor \mathfrak{L} respectively in K and each completion of K at these prime divisors is isomorph to $K\mathfrak{L}$ over (K) $k_{\mathfrak{l}\mathfrak{l}}$ respectively
 - ii) If the completion of K at \mathfrak{L} is identified to $K\mathfrak{L}$, each $\nu_{\mathfrak{l}}$ is the canonical monomorphism from $\mathfrak{G}(K\mathfrak{L}/k_{\mathfrak{l}})$ into G.

Now, when the set $L = l \cup \{K\mathfrak{L}\} \cup \{\mathfrak{l}\}$ satisfying L-condition are given, we shall say that we can formulate an (exact) imbedding problem and it is denoted by

$$P(k_1/k, G, L)$$
.

A field K satisfying K-condition is called a solution of $P(k_1/k, G, L)$. It is necessary of course for the solvability of the ordinary imbedding problem that there is formulated

$$P(k_1/k, G, L)$$

with an adequate L.

The following lemmas are almost evident.

Lemma 1. Suppose there is formulated

$$P(k_1/k, G, L)$$
.

Then l can be enlarged to contain any q in k.

Proof. Let $\mathfrak{q} \notin l$. Then \mathfrak{q} is not ramified at the extension k_1/k by the assumption of l. Therefore, the decomposition group of \mathfrak{q}_1 , which is a prime divisor of \mathfrak{q} in k_1 , is cyclic. Let it be $\{g\} \cup N/N$. Then we can set $K\mathfrak{Q}/k\mathfrak{q}$ to be the non-ramified extension of degree $[\{g\}:e]$, and $\nu_{\mathfrak{q}}:\mathfrak{G}(K\mathfrak{Q}/k\mathfrak{q})\to G$ will be defined evidently (not necessarily uniquely).

Lemma 2. Let there be formulated

$$P(k_1/k, G, L)$$

and let M be any normal subgroup of G. Denote by k_2 the fixed field of $N \cup M/M$ in k_1 and by $\overline{K}_{\mathfrak{L}}$ the fixed fields of $\nu_{\mathfrak{l}}^{-1}(\nu_{\mathfrak{l}}(\mathfrak{S}(K_{\mathfrak{L}}/k_{\mathfrak{l}}) \cap M))|\mathfrak{l} \in l\}$ in $K_{\mathfrak{L}}$ respectively. Then the monomorphisms

$$\bar{\nu}_{\mathfrak{l}}: \mathfrak{G}(\bar{K}_{\mathfrak{Q}}/k_{\mathfrak{l}}) \to G/M$$

are naturally defined by ν_1 for any $l \in l$. We can thus formulate uniquely

$$P(k_2/k, G/M, \bar{L})$$

by $\overline{L} = l \cup \{\overline{K}_{\Omega}\} \cup \{\overline{\nu}_{1}\}$. If the former has any solution K/k, then the latter has the solution as the fixed field of M in K.

Lemma 3. Let there be formulated

$$P(k_1/k, G, L)$$

and let H be any normal subgroup of G containing N. Denote by k' the fixed field of H/N in k_1 . Then

$$P(k_1/k', H, L')$$

is formulated by L' defined as follows.

Let l' be the finite set of primes in k' composed of all prime divisors of the primes in l. Let $\Gamma_{\mathfrak{l}} = \{\gamma\}$ be a representative system of the left cosets of G modulo $M \cup \nu_{\mathfrak{l}}(\mathfrak{G}(K_{\mathfrak{L}}/k_{\mathfrak{l}}))$. Then $\mathfrak{l} \in l$ is decomposed in k'

$$\mathfrak{l} = (\prod_{\gamma \in \Gamma} \mathfrak{l}'^{\gamma})^e \, (\mathfrak{l}'^{\gamma} \in l')$$
 .

Take as local fields

$$K \mathfrak{L}^{\gamma}/k'_{1'\gamma}$$

among which the isomorphisms over k_1 exist such that

$$K_{\mathfrak{D}^{\gamma}} \ni a^{\gamma} \longleftrightarrow a \in K_{\mathfrak{D}}$$
 if $a \in k_1$.

Then monomorphisms ν'_{17} are defined by

$$\mathfrak{G}(K_{\mathfrak{T}^{\gamma}}/k'_{\mathfrak{I}^{\prime\gamma}}) \xrightarrow{\nu} \mathfrak{G}(K_{\mathfrak{T}}/k_{\mathfrak{I}}) \xrightarrow{\nu_{\mathfrak{I}}} G \xrightarrow{\left<\gamma\right>} G \;,$$

where ν means the monomorphism defined naturally by the preceding isomorphisms and $\langle \gamma \rangle$ means the inner automorphism by means of γ . Thus we may set

$$L' = l' \cup \{K \mathfrak{L}^{\gamma}/k' \mathfrak{l}'^{\gamma} | \mathfrak{l}'^{\gamma} \in l'\} \cup \{\nu'_{\mathfrak{l}'\gamma} | \mathfrak{l}'^{\gamma} \in l'\}$$
 .

If the former problem has any solutions, they are solutions of the latter at the same time.

We shall give here a notice concerning group theory. Let G and G' be any two groups, N_1 and N_2 normal subgroups of G, and N'_1 and N'_2 normal subgroups of G'. Suppose $N_1 \cap N_2 = \{e\}$, $N'_1 \cap N'_2 = \{e'\}$, and there is a commutative sequence

$$G'/N_1' \stackrel{
u^1}{\longrightarrow} G/N_1 \stackrel{\iota}{\downarrow} G/N_1 \cup N_2 ,$$
 $G'/N_2 \stackrel{
u^2}{\longrightarrow} G/N_2 \stackrel{\iota}{\iota} G/N_2 \cup N_2 ,$

where ν^i are monomorphism and ι are canonical homomorphism. Then there is a unique monomorphism $\nu^1 \cup \nu^2$ from G' into G such that

$$G \subset G' \setminus G' \setminus G'$$

$$G' \subset G \subset G'$$

$$G \cap G'$$

are commutative. So, we can give the following lemma.

Lemma 4. Let $G \supset N = N_1 \times \cdots \times N_r$ where each N_i is a normal subgroup of G. Put

$$N^i = N_{\scriptscriptstyle 1} \times \cdots \times N_{i-1} \times N_{i+1} \times \cdots \times N_r$$
.

If there are formulated

$$P(k_1/k, G/N^i, L^i)$$

for every i by $L^i = l^i \cup \{K_{\Omega}^i\} \cup \{\nu_{\Gamma}^i\}$, then we can formulate

$$P(k_1/k, G, L)$$

where L is determined as follows. Enlarging l^i if necessary, we may assume $l^1 = l^2 = \cdots = l^r$. Let $l = l^i$, $K_{\mathfrak{L}} = \bigcup_i K^i_{\mathfrak{L}}$ and $\nu_{\mathfrak{L}} = \cup \nu^i_{\mathfrak{L}}$, and set $L = l \cup \{K_{\mathfrak{L}}\} \cup \{\nu_{\mathfrak{L}}\}$. If all the former exact imbedding problems have solutions K^i and they are independent over k_1 from each other, then the latter has the solution $K = \bigcup_i K^i$.

Lemma 5. Let N be an abelian group A, and

$$(F, \varphi, \psi) = (G, \varphi', \psi') + (H, \varphi'', \psi'')$$

in $H^2(G(k_1/k), \phi, A)$. If two problems

$$P(k_1/k, G, L')$$
 and $P(k_1/k, H, L'')$

are formulated, then the third problem

$$P(k_1/k, F, L)$$

is uniquely formulated as follows. Put

$$\bar{F} = \{(g,h)|\psi'(g) = \psi''(h)\} \quad and \quad M = \{(\varphi'(a), \varphi''(a^{-1}))|a \in A\},$$

then we can suppose

$$F = \bar{F}/M$$

by the definition of adition. Identifying $\overline{F}/\{(e, \varphi''(A))\}$ to G and $\overline{F}/\{(\varphi'(A), e)\}$ to H naturally, we can set

$$P(k_1/k, F, L)$$

in the way of Lemma 5 and Lemma 2. If two of them have solutions independent over k_1 from each other, then the third will have a unique solution.

Now we shall give the following

Main Theorem. Let G be a p-group and let the order of N be p. Then, if an exact imbedding problem

$$P(k_1/k, G, L)$$

is formulated, it has always infinitely many solutions.

Proof. As l can be enlarged in infinitely different ways by Lemma 1, we have only to show the existence of a solution for a given problem.

Case 1. G is abelian.

Enlarge l, if necessary, to contain a representative system of basis of the ideal class group of k. It is possible by Lemma 1. Let W be the multiplicative subgroup of $k^* = k - \{0\}$ composed of all numbers which are local units outside l. Set

$$\chi(\alpha) = \prod_{i \in I} \nu_i \left(\frac{K g/k_i}{\alpha} \right) \qquad \alpha \in k^*.$$

Then $\chi(k^*) \cup N = G$ because any element of $\mathfrak{G}(k_1/k)$ is contained in the decomposition group of at least one prime in l. By the product formula of norm residue symbols and L-condition ii),

$$\chi(W) \subset N$$
,

and therefore

$$\chi(w^p) = e \qquad w \in W$$
.

We shall show, enlarging l if necessary,

$$\chi(w) = e \qquad w \in W$$

for the W defined at first, and

$$\chi(k^*) = G.$$

Denote by \bar{k} the field extended by the primitive p-th root of unity over k. Then, we can see

$$W \cap \bar{k}^{*p} = W^p$$
.

So, πX is a character of $W/W \cap \bar{k}^{*p}$, where π is an isomorphism from N to the group of p-th roots of 1. Because, $W \cap \bar{k}^{*p} \supset W^p$ is trivial, and conversely if $v = u^p$; $v \in W$, $u \in \bar{k}^*$, then

$$N_{\overline{k}/k}v=(N_{\overline{k}/k}u)^p$$
.

Therefore the assertion follows from the fact that $N_{\bar{k}/k}v = v^{(\bar{k}:k)}$ and $[\bar{k}:k]$ is prime to p.

There is the well known correspondence

an ideal class group of $\bar{k} \rightleftharpoons \Im(\bar{k}(\sqrt[p]{W})/\bar{k})$

ightharpoonup a character group of $W/W \cap \bar{k}^{*p}$.

This correspondence is given actually by the relation

$$\bar{\mathfrak{b}} \rightleftarrows \text{Frobenius transposition of } \bar{\mathfrak{b}} \rightleftarrows \left(\frac{\bar{\mathfrak{b}}}{\bar{\mathfrak{b}}}\right)_{\mathfrak{p}}$$
.

Let \mathfrak{q} be a k-prime out of l, decomposed at the extension \overline{k}/k and one of its \overline{k} -prime divisor corresponding to \mathfrak{X}^{-1} . By Lemma 1, we can enlarge l to contain \mathfrak{q} and $K_{\mathfrak{Q}}/k_{\mathfrak{1}\mathfrak{q}_1}$ is the unramified extension of degree p or 1. Then

$$\chi_{\mathfrak{q}}(*) = \pi^{-1}\!\!\left(rac{*}{\mathfrak{q}}
ight)_{m{p}}
u_{\mathfrak{q}}\!\left(rac{K\mathfrak{Q}/k\mathfrak{q}}{*}
ight)$$

is a mapping from $k_{\mathfrak{q}}^*$ into G and its kernel determines a local extension $K'_{\mathfrak{Q}}/k_{\mathfrak{q}}$ and a monomorphism $\nu'_{\mathfrak{q}}$ such that

$$\chi_{\mathfrak{q}}(*) =
u'_{\mathfrak{q}} \left(\frac{K'_{\mathfrak{Q}}/k_{\mathfrak{q}}}{*} \right)$$

can be defined. Reforming L by these $K'_{\mathbb{Q}}$ and $\nu'_{\mathfrak{q}}$, we have achieved (2.3) and (2.4).

Let us introduce a "Größencharakter" Φ on the ideal group of k. Let x be any ideal in k prime to any primes in l. Then we can put

$$cx = x$$
; $x \in k^*$

with an ideal c composed of primes in l. As x is uniquely determined mod W, we can define

$$\Phi(\mathfrak{x}) = \mathfrak{X}(\mathfrak{x}).$$

The univalence of (2.5) is given by (2.3).

The field K which corresponds to Φ by the class field theory is a solution of the initial problem. For, let $\mathfrak{l}+\mathfrak{q}$ belong to l. We shall prove

$$u_{\mathfrak{l}}\!\left(\!\frac{K\mathfrak{Q}/k\mathfrak{q}}{lpha}\!\right) = \left(\!rac{lpha,\,K/k}{\mathfrak{l}}\!
ight) \qquad lpha \in k \;.$$

Let α be any element of k^* , \mathfrak{I}^e , $\mathfrak{m}^{e'}$, \cdots the conductors of the extensions $K_{\mathfrak{D}}/k_{\mathfrak{I}}$, $K_{\mathfrak{M}}/k_{\mathfrak{m}}$, $\cdots \in L$, and β an element of k^* such that

$$\beta \equiv \alpha \mod \mathfrak{l}^e$$
, $\beta \equiv 1 \mod \mathfrak{m}^{e_i}$, ...

Then $(\beta) = l^n b$ where b is prime to any prime in l, and

$$\begin{split} \left(\frac{\alpha, \ K/k}{\mathfrak{l}}\right) &= \left(\frac{K/k}{\mathfrak{b}}\right) = \Phi(\mathfrak{b}) = \chi(\beta) \\ &= \nu_{\mathfrak{l}}\left(\frac{K\mathfrak{L}/k\mathfrak{l}}{\beta}\right) = \nu_{\mathfrak{l}}\left(\frac{K\mathfrak{L}/k\mathfrak{l}}{\alpha}\right). \end{split}$$

Thus ν_{l} is natural. On the other hand, observing Φ mod N it is just the "Größencharakter" of k_{1} , which means $K \supset k_{1}$. Thus we have a solution K in this case.

Case 2. G is not abelian but reflexive or quasi-reflexive.

Enlarge l by Lemma 1, if necessary, so that any element of $\mathfrak{G}(k_1/k)$ is contained in at least one of $\nu_1(\mathfrak{G}(K_{\mathfrak{L}}/k_1))N$. Let B be any cyclic subgroup of G of maximal order and k_2 the fixed field of B/N. By Lemma 3, we can formulate

$$P(k_1/k_2, B, L')$$
.

Suppose G is, for example, the generalized quaternion group. B being abelian, this has a solution K' by Case 1. If K'/k is normal, $\mathfrak{G}(K'/k)$ must be the generalized quaternion group, because any element of $\mathfrak{G}(k_1/k)$ increases its order by p-times in $\mathfrak{G}(K_1/k)$. By Lemma 5, we have only to solve

$$P(k_1/k, \Im(k_1/k) \times N, L_0)$$

defined uniquely in that lemma. The solvability of this has been proved in Case 1. If K'/k is not normal, take its conjugate K''. $K' \cup K''$ is normal over k and $\mathfrak{G}(K' \cup K''/k)$ is isomorphic to G of Example 1, § 1. Again by the last description of that example, Lemma 5 and Lemma 2, we have only to solve the uniquely defined problem

$$P(k_1/k, H, L_1)$$
,

where H is the non abelian and non quaternion group of order 8. This will be solved in the next step. Even if G is not generalized quaternion, the same result will be gained.

Case 3. General case.

Here we shall prove the problem by induction on the order of G. If $\mathfrak{G}(k_1/k)$ is cyclic, then G is abelian, and we have proved it in Case 1. From the argument of Case 2 and Example 2 of §1 we have only to solve it in the case where there exists a normal subgroup M of G containing N and of type (p,p). Put

$$M = B_1 \times C_1$$
 $(B_1 = N)$.

If C_1 is contained in the centre of G, then we can formulate naturally

$$P(k_2/k, G/C_1, \bar{L})$$

by Lemma 2. From the assumption of induction, it has solutions $\overline{K} + k$ and $K = k_1 \cup \overline{K}$ is a solution, of $P(k_1/k, G, L)$ by Lemma 4.

In the next place, assume C_1 is not centric and H is the proper normal subgroup of G composed of all elements commutative with each element of C_1 . Let

$$k_1 > k_2 > k' > k$$

be the series of fields corresponding to

$$N \subset M \subset H \subset G$$
.

Enlarge l, if necessary, so that each element of H is contained in at least one of $\nu_{\mathfrak{l}}(\mathfrak{G}(K\mathfrak{L}(k_{\mathfrak{l}})))$ ($\mathfrak{l} \in l$). And then, we shall formulate the uniquely defined problem

(2.6)
$$P(k_2/k', H/C_1, \bar{L}')$$

by Lemma 3 and Lemma 2. The solution K' of it exists by the assumption of induction. K'/k is not a normal extension because of L-condition

defined in Lemma 2 and Lemma 3. Let \overline{K} be the field composed of all conjugates of K' over k. G and $\mathfrak{G}(\overline{K}/k)$ have the structures of G and G' introduced in Theorem 7 and Theorem 8, and we shall use the same notation as there identifying $\widetilde{G}/(k, B'_{n'})$ with G, and $\widetilde{G}/(B_2, e)$ with G' naturally (n=2) in our case). Specially we may suppose K' is the fixed field of C'_1 .

Suppose first, $\overline{K} \supset k_1$. Then k_1 is the fixed field of $B'_{n'-1}$. Let K_0 be the fixed field of $B'_{n'-2}$. Put

$$(G, \varphi_1, \iota) = (G'/B'_{n'-2}, \iota \varphi'_{n'-2}, \iota) + (G'', \varphi'', \psi'')$$

in $H^2(\mathfrak{G}(k_1/k), \langle \mathfrak{G}(k_1/k) \rangle, A)$. We can formulate uniquely

$$P(k_1/k, G'', L'')$$

by Lemma 5, and the existence of its solution means that of $P(k_1/k, G, L)$ again by the lemma. But

$$r_{\mathfrak{S}(k_1/k) \to \mathfrak{S}(k_1/k_2)}(G'', \varphi'', \psi'') = r(G, \varphi_1, \iota) - r(G'/B_{n'-2}, \iota\varphi'_{n'-2}, \iota) = 0$$

and the solvability of $P(k_1/k, G'', L'')$ have been given already. Therefore we can suppose $\overline{K} \cap k_1 = k_2 \subset k_1$. We can formulate

$$(2.7) P(k_2/k, \tilde{G}, \tilde{L})$$

uniquely from Lemma 4. If a solution \widetilde{K} of it exists and the fixed field of $(B_1, B'_{n'})$ is just k_1 , then the fixed field of $(e, B'_{n'})$ will be the solution of $P(k_1/k, G, L)$. Denote the fixed field of B'_1 and B'_2 in \overline{K} by K_1 and K_2 . The fact that

$$(B_1, e) \cap (D \cap (B_1, B_1')) = (e, e)$$
 and $(B_1, e) \cup (D \cap (B_1, B_1')) = (B_1, B_1')$

and the existence of the solution $\overline{K} \cup k_1$ of $P(K_1 \cup k_1/k, \widetilde{G}/(B_1, e), L^1)$ formulated from (2.7) by Lemma 2 show us, because of Lemma 4, that (2.7) is reduced to find a solution of $P(K_1 \cup k_1/k, G/D \cap (B_1, B_1'), L^2)$ defined uniquely from that by Lemma 2, which is independent of $\overline{K} \cup k_1$ over $K_1 \cup k_1$ or, more sufficiently, to find infinitely many solutions of this. Here we shall need some words about $L^1 = l^1 \cup \{K_{\mathfrak{Q}}^1\} \cup \{\nu_1^1\}$ and $L^2 = l^1 \cup \{K_{\mathfrak{Q}}^2\} \cup \{\nu_1^2\}$ because l^1 must contain all the k-primes ramified at the extension K_1/k_2 . But their formulations are possible, of course, from the existence of the solution of the problem corresponding to the former. Making use of Lemma 4 again, this $P(K_1 \cup k_1/k, \widetilde{G}/D \cap (B_1, B_1), L^2)$ is reduced to find infinitely many solutions of the uniquely defined problem

(2.8)
$$P(\Omega/k, \tilde{G}/D, L^3) \qquad (L^3 = l^1 \cup \{K_{\Omega}^3\} \cup \{\nu_1^3\}),$$

where Ω is the fixed field of $D \cup (B_1, B_1')$. Here we shall make use of Theorem 8, §1 and its proof. Then, from the *L*-condition of Lemma 3, \tilde{H}/D can be decomposed into

$$\widetilde{H}/D = H''/D \times (B_2, B'_n)/D$$

where H'' is normal in \widetilde{G} and $\nu_{\mathfrak{f}}^{\mathfrak{g}}(G(K_{\mathfrak{Q}}^{\mathfrak{g}}/k_{\mathfrak{f}})) \cap \widetilde{H} \subset H''$.

Thus we have reduced the original problem to

(2.9)
$$P(\Omega_1/k, T, L^0) \qquad (L^0 = l^1 \cup \{K_\Omega^0\} \cup \{\nu_1^0\}).$$

where $T = \tilde{G}/H''$, Ω_1 fixed field of $H'' \cup (B_1, B_1')$ in Ω , L^0 uniquely defined from (2.7) by Lemma 2, and all k-primes in l are fully decomposed at Ω_0/k' .

We shall take here another assumption of induction that all k-primes out of l ramified at a solution can be taken so as to have the absolute degree 1, if necessary. This can be fulfilled in Case 1. Adapt this to the construction of K' which was a solution of (2.6). Then we can see easily any primes in l^1 out of l have the relative degree 1 and fully decomposed at the extension k'/k. This means $K_{\mathfrak{L}}^{\mathfrak{g}}/k_{\mathfrak{l}}$ is abelian extensions for any $\mathfrak{l} \in l^1$. Denote \widetilde{H}/H'' , $(e, B_i')H''$, and $(g_0, g_0')H''$ by \overline{H} , \overline{B}_i , and g. Enlarge l^1 of (2.9), if necessary, adding k-primes which are all fully decomposed at k'/k, so that a representative system of the basis of the absolute ideal class group of k' is contained in the k'-prime divisors of k-primes in l^1 . Let

(2. 10)
$$P(\Omega_{1}/k', \bar{H}, L^{4}) \qquad (L^{4} = l^{\nu} \cup \{K_{\mathfrak{L}}^{4}\} \cup \{\nu_{\mathfrak{L}}^{4}\})$$

be the problem uniquely defined from (2.8) by Lemma 3. If $\nu_{l'}^4$ is not trivial or, phrased in another way, $K_{\mathfrak{L}}^4 = k'_{l'}$, then $k \cap l' \in l^1 - l$ and it is fully decomposed at k'/k. Therefore we can put all such k'-primes in the form

$$m \cup m^g \cup \cdots m^{g^{p-1}} \quad (m^{g^i} \cap m^{g^j} = \phi \quad \text{if} \quad i \neq j)$$
 ,

where $m^{g^i} = \{ \mathfrak{m}^{g^i} | \mathfrak{m} \in m \}$.

Let us define a mapping $\chi: k'^* \to \overline{H}$ by the following

$$\chi(\alpha) = \prod_{\mathfrak{l}' \in I^1} \nu_{\mathfrak{l}'}^4 \left(\frac{K_{\mathfrak{L}'}^4/k_{\mathfrak{l}'}'}{\alpha} \right) \qquad \alpha \in k'^*.$$

Then, as easily seen, \mathcal{X} is an onto mapping. Let W be the multiplicative subgroup of k'^* composed of all elements which are local units outside l'. Then

$$(2. 11) \chi(W) \subset \bar{B}_1$$

214 Y. Akagawa

because

$$egin{aligned} \mathcal{X}(w) mod ar{B}_1 &= \prod_{\mathfrak{l}' \ni \mathcal{l}^1}
u_{\mathfrak{l}'}^4 \Big(rac{K_{\mathfrak{L}'}^4 / k_{\mathfrak{l}'}'}{w} \Big) mod ar{B}_1 \ &= \prod_{\mathfrak{l}' \in \mathcal{I}^0} \Big(rac{w, \Omega_1 / k'}{\mathfrak{l}'} \Big) \,. \end{aligned}$$

This is the unit because of the product formula of norm residue symbols and the fact that all the primes ramified at Ω_1/k' are contained in $l^{1\prime}$. Put

$$W_{0} = \{w_{0} \in W | N_{k'/k}w_{0} \in k^{*p} \}$$

= $\{\alpha_{0}w^{1-g} | \alpha_{0} \in W \cap k, w \in W \}$.

We shall show

$$\chi(w_0) = e \qquad w_0 \in W_0.$$

From (2.11) and L-condition $g^{-1}\nu_{l'}^4\left(\frac{K_{\mathfrak{L}}^4/k'_{l'}}{w}\right)g = \nu_{l'g}^4\left(\frac{K_{\mathfrak{L}}/k'_{l'}}{w^g}\right)$ of Lemma 3, it follows that

$$\chi(w^g) = (\chi(w))^g$$
.

Therefore

$$\chi(w^{1-g}) = e$$
.

On the other hand,

$$\begin{split} \mathcal{X}(\alpha_{\scriptscriptstyle 0}) &= \prod_{\substack{l'g^i \in l^{1'}}} \nu_{l'g^i}^4 \Big(\frac{K_{\mathfrak{L}g^i}^4 / k_{l'g^i}'}{\alpha_{\scriptscriptstyle 0}} \Big) \\ &= \Big(\prod_{\mathfrak{m} \in m} \nu_{\scriptscriptstyle m}^4 \Big(\frac{K_{\mathfrak{M}}^4 / k_{\mathfrak{m}}'}{\alpha_{\scriptscriptstyle 0}} \Big) \Big)^{_{1+g+\cdots \cdot g \cdot p-1}} \end{split}$$

If the order of \bar{H} does not surpass p^{p-1} , then this becomes the unit after easy calculation. If the order of \bar{H} is p^p , then there exists one and only one cyclic subgroup of T not contained in \bar{H} and of order p except the congruent ones $\operatorname{mod} \bar{B}_{p-1}$. Therefore every $\nu_{\mathfrak{l}}^{0}(\mathfrak{G}(K_{\mathfrak{L}}^{0}/k_{\mathfrak{l}}))$ ($\mathfrak{l} \in l^1$) is contained in it $\operatorname{mod} \bar{B}_{p-1}$. We may put it $\{g\bar{B}_{p-1}\}$. Denote by Ω_2 the fixed field of $\{g\bar{B}_{p-1}\}$ in Ω_1 . All primes in l are fully decomposed at Ω_2/k . Thus

$$\prod_{\mathfrak{M} \in \mathfrak{M}} \nu_{\mathfrak{M}}^{4} \left(\frac{K \mathfrak{M} / k_{\mathfrak{M}}'}{\alpha_{\mathfrak{0}}} \right) \operatorname{mod} \bar{B}_{p-1} = \prod_{\mathfrak{M} \in \mathfrak{M}} \left(\frac{\alpha_{\mathfrak{0}}, \Omega_{\mathfrak{2}} / k}{\mathfrak{M} \cap k} \right)$$

and it becomes the unit by the product formula of norm residue symbol. So, again $\mathcal{X}(\alpha_0)$ becomes the unit by the same calculation as the former case. Thus we can put

$$\chi(w) = \chi_{0}(N_{k'/k}w)$$

where \mathcal{X}_0 is a mapping $k^* \cap N_{k'/k}W \to \overline{B}_1$. By the same method as Case 1, we can find a k-prime \mathfrak{q} of absolute degree 1, if necessary, a local extension $K_{\mathbb{Q}}/k_{\mathfrak{q}}$, and a mapping $\nu_{\mathfrak{q}}^0$ such that

$$\chi(w)\,
u_{\mathfrak{q}}^{\mathfrak{o}}\Big(rac{K\mathfrak{Q}/k\mathfrak{q}}{N_{k'/k}w}\Big)=e$$
 .

Let x be any k'-ideal. Then

$$cx = x$$
 $(x \in k'^*)$,

where c is a k'-divisor composed of primes in l''. By

$$\Phi(\mathfrak{x}) = \chi(x) \,
u_{\mathfrak{q}}^{\mathfrak{q}} \Big(rac{K \mathfrak{Q}/k \mathfrak{q}}{N_{k'/k} x} \Big)$$

a "Grössencharakter" Φ is introduced. Let K be the field corresponding to Φ . K/k is normal, because from $\Phi(\mathfrak{x}) = e$ it follows that $\Phi(\mathfrak{x}^g) = e$ and there is a relation

$$r_{T/\overline{B}_1 \to \overline{H}/\overline{B}_1}(T, \langle \mathfrak{G}(\Omega_1/k) \rangle, \iota, \iota) = r_{T/\overline{B}_1 \to \overline{H}/\overline{B}_1}(\mathfrak{G}(K/k), \langle \mathfrak{G}(\Omega_1/k) \rangle, \iota, \iota).$$

Thus by the same reason stated in the beginning of this step, the problem is reduced to

$$P(k'/k, U, L^5)$$
,

where U is a group of order p^2 namely abelian and infinitely many solutions of it had been given in Case 1. Hereby the proof of theorem is conplete.

(Received April 23, 1960)

References

- 1) We shall call a 2-group R generated by two elements X and Y a reflexive group if i) $\{Y\}$ is a normal subgroup of order $2^n(n \ge 1)$ and $[R: \{Y\}] = 2$, ii) $X^{-1}YX = Y^{-1}$, and a 2-group $R' = \{X', Y'\}$ a quasi-reflexive group if i) Y' is normal and of order $2^n(n \ge 3)$, and $[R': \{Y'\}] = 2$, ii) $X'^{-1}Y'X' = Y'^{-1+2^{n-1}}$. If the order of X is 4, R is the so-called generalized quaternion.
- 2) Let G H N([H:N]=p) be a normal series where N is one of cyclic, reflexive and quasi-reflexive but so H. It is easy to see that H has a unique normal subgroup of type (p,p) which can be taken as M.