
Title SXにおける格子ゲージ場のモンテカルロシミュレー
ション

Author(s) 宮村, 修

Citation 大阪大学大型計算機センターニュース. 1988, 69, p.
21-30

Version Type VoR

URL https://hdl.handle.net/11094/65774

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



sxプログラミング特集

SXにおける格子ゲージ場のモンテカルロシミュレーション

大阪大学基礎工学部数理教室宮村修

1. はじめに

格子ゲージ場のモンテカルロシミュレーションは格子化された時空上に定義された強い相互作用

を持つゲージ場の系を数値的にシミュレートすることにより、その非描動論的様相の解析を行うも

のである。格子ゲージ場の理論的構成は K.Wilsonにより 19 7 4年に提出されたが、 1 9 8 0 

年代に入り、 M.CreutzがSU2ゲージ場におけるモンテカルロシミュレーションの有効性を示し
1.2) 

ていらい、世界中で活発な研究が行なわれてきている。 現在、この手法を用いて、クォーク・グ

ルーオン系の力学である QuantumChromo Dynamics (QCD)の非描動的様相、核子質量の計算

やクォーク・ハドロン相転移の有無等の問題、の解析が大規模なシミュレーション (CPU時間に

して数百時間から千時間におよぶ）により行なわれつつあり、素粒子一原子核物理の一分野として

定着し、又今後も計算機の発展とともにさらに活発化するものと考えられている。
3,4) 

格子ゲージ場のモンテカルロシミュレーションにおいては数値計算上の問題として、

4-6 
(j)多鼠の変数 (10 ケ）により決定されるゲージ場のストカスティックな更新

6 6 
(jj)クォーク等のフェルミオン場を含んだ場合の大行列 (lQXlQ)の逆行列演算

を高速で実行することが決定的である。本文では筆者等が作成した Sい及び SU3ゲージ系シミュ

レーションコードの概要と、 (j)に関する sxにおけるベクトル化について報告する。

本文の構成は以下の様になっている。

2. 2 -1格子ゲージ場と作用 S

2-2ゲージ場の更新手法

2-3SXにおけるシミュレーションコード例の概要

3. 3 -1色わけ法による更新のベクトル化

3-2乱数のベクトル化による高度ベクトル化

4 まとめと今後の展望

2. 格子ゲージ場シミュレーションの概要

ここでは格子ゲージ場シミュレーションについてその基本要素であるゲージ場とシミュレーショ

ンコードの概要について述べる。詳しくは参照文献 4), 5)を見て頂きたい。
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2 -1 格子ゲージ場と作用S

格子ゲージ場では格子化された時空上に定義された群Gの元になっている場を考える。以下簡単

のために格子化時空の大さをいとし、群Gとして SUNを考えよう。 K.Wilsonによる定式化では

ゲージ場は隣接格子点を結ぶリンク上の S恥行列である。ある格子点m (= Cnx, 叫， llz'11t))

からは 4つの異なった隣接格子へのリンクがあるから全時空で 4Xいの SUi行列がひとつの場の

配位となる。以下リンク上のゲージ場のことを凸：ノク変数と呼ぶが今の場合これは

UμC n) ESUN , n (格子点=(nx , ny , n2 , n1)) , μ(リンク方向=x.y. ~. 1) 

と書かれる。各リンク変数は SUNの場合 N2-1ケのパラメーターで指定されるからひとつの配位

を決めるには4XL4X(N2-1)ケのパラメーターを与えねばならない。たとえば L=lO,N = 3 

の場合には 32万ケのパラメーターとなる。

リンク変数はそれぞれ自由ではなく相互作用を持つ。連続極限において、 Quantum Cbromo 

Dynamicsの作用になるという条件を充す Wilsonの格子化された作用は
1) 

S=/3Z::(1-点TrPμv(n)) 
n ,JJ,, II 

(1) 

ここでPぃ (n)は格子点nから μ-v平面の単位格子面 (Plaquette)に沿って 4ケのリンク変数

をかけたもの (4ケの SUN行列積）

At t 
Pμv (n) = Uμ(n) Uv (n+μ) Uμ(n+ v) Uv (n) (2) 

である。 tはエルミート共役を表すが、リンクを逆行する時はリンク変数のエルミート共役が現れ

る。ある格子点nについての pl!V (n)のケ数は、面の取り方の自由度で6通りである。 一方、あ

るリンク変数 uμ(n)に対してこの作用により関連してくるリンク変数は

Uv (n+μ), U,, (n+v), Uv (n), Uv (n+μ-v), Ua (n—v)'Uv (n-v)'IIヲμ(3)

で V方向の自由度 3を考慮すると 18ケのリンク変数Uμ(n)に対して近接相互作用をしている。

2-2 ゲージ場の更新手法

量子場の理論においてはある物理量0は対応する演算子0のゲージ場の配位についての期待値で
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-s 
ある。この際、ゲージ場配位としては(3)の作用についてeを重み関数とするカノニカルアンサンプル

である。つまり

<o〉=TIJ闘〕e-s O ({ U} /n J 〔⑪〕 e -s (4) 

である。ここで

TT JはU〕

は全てのリンク変数について S贔群のパラメーター空間上の不変積分を行うことを意味する。

前述の様にこのパラメーターのケ数は 104-6にもなるので直接的な積分は実行できない。 そこで

(4)のかわりに、ある初期配位から出発してそれを順次ストカスティックに更新して行き、十分に更

新が進んだ時点で、時系列的相関のない間隔で0の期待値を取り、それらを平均するという手法が

取られる。
5) 

Nsample 
く([)〉-== -

1 

Nsample・ 
I: ([)({U}i) 
z= 1 

ここで更新法に要求されることは、この様にしてつくられた配位の集合が

(5) 

{ {Uμ(n)}i i=l, 礼 ample}
-s 

~canomcal ensemble with e (7) 

となる様なアルゴリズムであることである。この様な更新の手法として

メトロポリス法 (J.Metropolis等 (1953))

熱浴法、擬熱浴法 (M. Creut z C 1 9 8 0)、L.Marinari -N. Cabbibo (198 3)) 

改良型ランジュバン法（福来ー宇川 (1985)、G.Batrouni等 (1985))

等が現在使用されている。これらはいずれもストカステックな更新であるので乱数により

{ Uμ_ (n) }Ne; ← [{ Uμ_ (n) tld• 乱~]

の様にリンク変数を更新してゆく。単純なランジュバン法を例にとると

Uμ(n) 
iX (n,μ) 

New =e Uμ(n) old (8) 
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with 

N色i as N2-1 

XCn,μ)=-ioI.; taI.: CtaUμ(n)) .. 十.r§I.:taが (9)

a=l ij 
ZJ 8(Uμ(n))・ ・ 

り a=l

となる。ここでt凡a=1, …, N2-1はS贔群のジェネレーターでN2-1ケのNxNエルミート行

列である。 0はランジュバンタイムを離散化した時間ステップである。 (9)の第一項はリンク変数を

作用の極小値へむかわせようとする古典力である。これに対して第二項はガウス型乱数が，a=l,

…, N2-1によるランダムカで量子効果を表している。 (9)を実際に更新に用いるためには古典力部

分を(3)の関連近接リンクより計算することと、ランダムカ用の乱数を与えることが必要となる。又、

(9)はあるリンク変数 Uu (n)に対する更新であったので系全体の更新のためには 4XL4ケのリン

ク変数全部について次々と(9)を施こしてゆかねばならない。

2 -3 sxにおけるシミュレーションコード例の概要

筆者等はsxによる高速シミュレーションを念頭において、 S切及びSUs格子ゲージ場のシミ

ュレーションコードを作成した。これらのコードは最終的には次章で述べるベクトル化のための手

法により若干の複雑さをもつが、ここでは基本的構成について述べる。

まずリンクを同定するための通し番号、 リンクアドレスを次の様に取る。

1 + ix + iy L+ iz L叶 itL3+iμL4 (10) 

ここで ix, i y , iz , itはそれぞれX,y,Z, t座標で0からL-1までの整数値を取る。びは方向を指

定する”座標”で X , y , Z , t方向がそれぞれ0,1 , 2, 3となる。 Jの取る値は 1から 4Xいでリ

ンクをユニークに指定する。

次にリンク変数 U,.,(n)はSUiの行列であるが、 SU2,Sいの場合対応する配列として

su2 a+ ia3 ia1 +a2 
Uμ(n)=(゜） with a訂a「国+a2=1 -A(J,I) ,J=l,・・, 4L4, 

国—a2 a。-ia3 3 

げU3_ { UR (], IA, IB) 
μ U  I CJ, IA , IB) 

1,"', 4L4, IA, h= 1,3 

I =1, ・・, 4 

Ul) 

を考える。 C SU2の場合、必要なパラメーター数は本来 3ケ、 US3の場合は8ゲで良いのだが取り

扱いの容易さを考えて (11)のように配列を取っている）
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プログラムの構造は図のプロックダイアグラムのようになっている。スタートから順に説明する

と、ステップ SIでは関連リンク変数を指定するアドレス配列を作成する。これは一次元化された

リンクアドレスUOlの定義に従って関連リンク変数(3)を指定するリストアドレスを準備するもので

更新の際の呼び出しを即時に行うためのものである。次のステップS2ではリンク変数の初期配位

を設定するもので Uu (n)を単位行列に置くコールドスタートや乱数で行列要素を与えるホット

ロニコは 1~4心の長大ループを持つ

Sl ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．・ベクトルイt可

．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．ベクト Jレイt可

S3 II 更新用乱数のストア II・・….... ……•• •會・・・・..…... …・ ……•……………組み込み乱数RAND(),
FRAND()を使用した場合
ベクトル化不可

I; 
関連リンク変数による古典力ta.. (仔U).. as 

tJ ZJ 8Uz 
．．の計算

S4 II古典力とランダムカによる更新行列 Xの計算 ］ ．….. 色わけによるベクトル化可
C*VDIR NODEP宣言が

Uμ(n¥;ew =eiXUμ(n)ord (リンク変数更新）

Sweep 
くりかえし

物理量の測定

作用 S=こ(1-一1 
S5 II N n.μ,v 

TrPμ,(n)) 

S6 

；悶ヤコフラインTr[Ut (n+Lt) Ut 

物理量の”カノニカル”平均

(S〉= 1~Si 
Nsample Sample 

終了

C n+ (L-l)t)・・

必要）

］ 
II……ベクトル化可

＾ U1 Cn+t) 

図1 格子ゲージ場シミュレーションコードのプロックダイヤグラム
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スタート等が設定される。ステップS3では次のステップS4の更新プログラムに使用するために乱

数を配列にストアする。これは、組み込みの乱数、 RAND()、FRAND等をS4で引用するとベク

トル化の阻害要因となるのであらかじめ配列に入れておくことによって更新段階での乱数の並列的

引用を可能とするものである。 S4はリンク変数を次々と 4L4ケ更新してゆくプログラムで、更新

されるべきリンク変数に対してSlで用意したリストアドレスを使い関連リンク変数を呼び出し古

典力を計算し、又S3でストアしておいた乱数によるランダムカを合わせてランジュバン法による

更新を行なう。 S5では更新されたゲージ場の配位にたいして、作用 Sの値や、 WilsonI oop , ポ

リヤコフライン等、系の性質を特徴づける物理量の値を求める。このS3から S5までを 1スウィー

プというが、これを十分くりかえした後（通常 102~徊）最終段階S6にうつり S5で測定した物理

量の平均を求め(5)の意味での物理量の期待値を出す。

次にベクトル化に関する各ステップの性質を述べる。 S1は単純なリストベクトルの計算なので

そのままベクトル化する。 S2,S5は配列の定義引用を含んでいるが定義一引用関係に干渉がない

のでそのままベクトル化する。 S3は組み込み乱数を利用している限り（現在のsxでは）ベクトル

化できない。これを改良する方法については 3-2に述べる。 S4はこのシミュレーションコード

によるAP時間の主要部分を占めるのでぜひともベクトル化したい部分であるが更新操作が関連リ

ンク変数の引用を含むので定義一引用関係の干渉がある。これをさける手法は色わけ手法と呼ばれ

ているが、 3-1で述べる。 S4は色わけ手法により非干渉グループわけした場合、ベクトル化宣

、*VDIRNODEPによりベクトル化する。 S6は単純計算なので問題とならない。

以上が我々が作成したシミュレーションコードの概要であるが、構造としては単純な部分が多い

ので大部分のベクトル化が可能であり、ベクトル演算率はS3において組み込み乱数を使用した場

合でも、更新法により若干の差はあるものの SU2 格子ゲージ場コードにおいては 80~95 形のベク

トル演算率、 Sいの場合には9051る前後のベクトル演算率となりベクトル計算機としての sxの有

効な利用ができた。表 1は作成したコードの主要なもののリンク当りの更新時間等を表したもので

ある。絶対的な更新時間／リンクはメトロポリス法や改良型ランジュバン法が良いが、 ゲージ配位

の更新についての時系列的相関より更新度を見ると、熱浴法や擬熱浴法が良いので実際のシミュレ

ーションコードとしての有用性は別に評価しなければいけないが、表 1に見る限り sxによるベク

トル演算の効用は非常に大きい。又、後述のベクトル化乱数を使用した場合はペクトル演算率が、

99形を超えベクトル性能の最大限の利用が可能となった。この時の擬熱浴法によるSU3ゲージ場

シミュレーションコードによる更新時間／リンクは 30μsであるが、現在CRAY等の使用で公表

されている値 30~18µs と同程度となった。これについてはプログラムの洗練によりさらに 1 0 

μs程度向上できるものと思われる。
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3. 更新プログラムのベクトル化

3-1 色わけ法による更新のベクトル化

リンク変数を更新する際には近接の関連リンク(3)を引用しなければならないため、全てのリンク

変数を同時に並列的に更新すると定義一引用関係の干渉が起る。しかし(3)を見ると関連リンクは更

新したいリンク変数を含む単位格子面上に限られているので 2格子単位以上離れていれば同時更新

しても干渉しない。そこでリンク変数をグループわけし、同ーグループ内のリンクは干渉しない様

にしておきベクトル化更新をすれば良い。我々が作成したコードは格子数Lが偶数の場合のチェス

ボード型色わけを採用したが、以下にそれを述べる。リンク変数Uu (n)はリンクのつけねの 4次

元座標nと方向μで指定される。まず方向μを指定する。次に格子点nを偶格子点と奇格子点にわ

ける。

{ n}→ { neven: n戸凡＋朽 +n1=偶数}+{ nodd: 尻＋瓜+nz+nt=奇数｝

それぞれのグループないの格子点は2単位格子以上離れていることは定義より明らかである。

従ってリンクのグループわけをμ と格子点の偶奇性によりグループわけすれば良い。この様に、全

リンク変数をいくつかの非干渉グループにわけることを色わけ法というが（多色アルゴリズム）今

の場合、更新のループの構造は下図の様になり最深部のループが*VDIR NODEP宣言によりベ

クトル化される。ループ長はL4/2である

S4 

μ=x,y,z,t 

I 
even, odd 

I * VD IR NODEP 
n = n or n even odd 

叫 (n) , Uv (n)・・・
｝呼び出し

刀（乱数）

更新行列xc{u},{叶）の計算

叫 (n) = eix Uμ(n)old 
New 

大阪大学大型計鉢機センターニュース -27 -

ので、 Lが6以上では 25 6を超し、ベク

トル化は十分に意味を持つ。

なおリンク変数に対する境界条件のことは

省略したが、ここで述べた方法は週期境界

条件と適合する。なお奇数格子、ヘリカル

境界条件の色わけについては文献を参照し

ていただきたい。
4) 
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3-2 乱数のベクトル化による高度ベクトル化

2-3においては更新用乱数をストアすることにより更新プログラムのベクトル化阻害要因を取

り除くことを述べたが、ストアのプログラム自身は現在のsxの組み込み関数RAND,FRAND等

を使用している限りベクトル化できない。格子ゲージ場シミュレーションに限らずモンテカルロ型

シミュレーションの多くの場合にベクトル化された乱数は有用と思われる。我々が作成した格子ゲ

ージ場シミュレーションコードの場合、ベクトル演算率を99形以上にできたので、以下にそれを

述べる。

通常乱数はそれ以前の乱数から適当なアルゴリズムを使って生成されるので、ひとつの乱数列を

並列的に同時に引用するのにむいていない。これを克服するには (a)乗積合同法(Xnt1=ふぉn(m

odP))を用いて k-stepまで先の乱数をお，： + k=入k1Xn C modP)として生成する方法や、(b)独

立な乱数列を 25 6ケ考える方法等が考えられる。筆者等が採用したのは (b)の方法でプログラ

ムのスタート直後に乱数種を 25 6組用意し、それをもとにして乱数が必要な時毎に合同法でつく

り出してゆくものである。従って乱数ストアのプログラムは必要としない。乱数用の配列として設

定したのは整数型2次元配列LRAN (2 5 6 , 2 5 0)であり、前述の色わけ法による更新の最深部の

ループを 25 6 C又はそれに近い適当な数）に分割し、そのループ内で25 6組の乱数列を使用す

る。下図にその使用の様子を示すがベクトル化は最新部のループに行なわれる。

この方法は乱数を引用す

乱数種→{ LRANC256,250)} 

I 
旦｝

S4 

腿二

る毎に生成するので、メ

トロポリス法や熱浴法な

ど、更新に実際使用する

乱数のケ数があらかじめ

わかっていない場合には

ストア法が多めに乱数を

ストアしておかなければ

いけないのに比べ経済的

である。しかしどの方法

が良いかはまだ経験が不

十分であり、目下検討中

である。

格子ゲージ場シミュレー

ションコードの場合、乱

数の引用ケ数が多いSU3
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擬熱浴法（ストア法ではリンク当り 1回の更新に 60ケ程度）では乱数のベクトル化の効用は特に

著しい（表 1)。

4. まとめと今後の展望

SU2及びSい格子ゲージ場のシミュレーションコードを作成しsxにおけるベクトル化したシ

ミュレーションを行なったが、その結果は表 1に見る様にベクトル演算の効用が非常に大きいこと

がわかった。フェルミオン場の入らないゲージ場のみの系では更新プログラムのベクトル化が色わ

け手法によって容易に実行でき、 sxにおいてはむしろ乱数のベクトル化の工夫が必要とされた。

乱数のベクトル化が行なわれた場合のベクトル演算率は 9996を超し、又更新速度も現在世界で使わ

れている他機種のベクトル計算機によるものと同水準に到達した。

格子ゲージ場シミュレーションの数値計算上のもうひとつの問題はフェルミオンが入った系にお

ける大行列 c106x106程度）の高速逆行列演算であるが今回はそこまで手がおよばなかった。 素

粒子物理の問題としてもフェルミオンが入った系が現実的であり、 sxにおけるシミュレーション

コードの作成は有意義と思われる。

最後に本文の主題となった格子ゲージ場モンテカルロシミュレーションコードと SXにおける高

速化は昭和62年度の「sxのためのベクトル計算技法の開発」の一計画として承認され、実行され

たものであることを記すとともに大阪大学大型計算機センターにこの機会を与えていただいたこと

を感謝します。

又、本コードの作成は筆者の他に広瀬喜久治（帝国女子大），神吉健（近畿大），橋本貴明（東大

原子核研）が協力して行った。又、基礎工学部大学院生、日置慎治氏にも協力していただいた。

擬熱浴法については C.De Tar氏 (Utah大）の示唆に感謝します。
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