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sxプログラミング特集

スーパーコンピューターの効能

原子核物理に於ける散乱問題の例題

大阪大学理学部物理

佐藤 透•田村圭介

1 はじめに

計算機の発展にともない原子核理論の分野でも大型の計算が可能になりより精密な議論が可

能になってきた。我々の研究においては、新たな研究課題に取り組むごと新たにプログラムを

作成し、また修正を加えつつ物理的内容を調べるという計算機の使い方をしている。従ってプロ

グラムの見やすさ、手軽さが重要であり、特に会話形処理は非常に有効になる。逆に、時間を、

スーパーコンピューターのため工夫を凝らすために費やすことには敷居が高く感じられる。し

かし高速の計算が要求されている最近では、スーパーコンピューターを有効に使うことも必要

になってきている。

スーパーコンピューターを有効に使うために、もちろんプログラム技法も重要であろうが、

また問題に対するアプローチ、定式化による因子も大きいであろう。ここでは、原子核に於け

る散乱問題に関連してスーパーコンピューターに於いて有効であろうと思われる二つの例題を

調べてみた。一つは連分数法による Schroedinger方程式の散乱波の解法である〔1〕。 この

方法は三核子問題に適応され非常に強力であることが示されている。この方法は、線形の微分

方程式をある境界条件で解く問題にかなり一般的に用いることが出来ると思われる。二つめは

高エネルギー原子核ー原子核散乱の Glauber理論による解析である〔2〕。 Glauber理論に

よれば、原子核ー原子核散乱振幅は原子核の構成粒子である核子の散乱振幅で与えられ、また

ハドロン一原子核散乱の前方断面積に対して有効であることが知られている。原子核ー原子核

散乱では計算時間が入射核と標的核の核子数の増大に従って長くなり高速な計算が必要になる。

ところで我々素人は、ベクトルプロセッサーをいかす計算とは、メモリイサイズを犠牲にし

て配列を用い判定、分岐を含まないDOループにしてしまえば高速になるであろうと大ざっぱ

に考えている。では実際簡単なプログラムでどの程度高速になりうるのか、計算センターニュ

ース等〔3〕に書かれている高速化技法がどの程度の効果があるのか、まず調べてみる。 定量

的にどの程度高速になるかといったデータは、我々の知る範囲ではないので、高速化を計る際

の目安として有用であると思われる。 2章では簡単なDOループで時間測定を行った結果を示

す。次に3章で連分数法による散乱問題の解法、 4章で原子核ー原子核散乱の Glauberによ

る解析についてベクトルプロセッサーの威力について我々の結果を示す。最後に5章で我々の

得た教訓をまとめる。
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2 SX2N-APにおけるベクトル化の効果

まず簡単なDOIレープを用いて、ベクトル化率 100%の場合、実際ベクトルプロセッサーに

より何倍高速になるか調べることから始める。 FRT77文のオプションVECTORCV)と

NOVECTOR (NV)による結果を比較しベクトル化による計算時間の短縮率を見る。時間は

CALL CLOCKにより DO文の前後で時間差を測定する。

CALL CLOCK自身に要する時間はプログラムー 1により V、NVいずれの場合も T2

-T 1 = 3 . 8 X 1 0 -s secであった。以下の結果にはこの時間を含んでいる。

プログラムー 1

SUBROUTINE TTIME 

IMPLICIT REAL*B(A-H, 0-Z) 

CALL CLOCK (Tl) 

CALL CLOCK (T2) 

~'R ITE(6, lOOO)Tl, T2, T2-Tl 

1000 FORMAT(lH 

RETURN 

END 

SUB CLOCK TIME LOSS'. 3E15. 8) 

2. 1 ベクトル化による効果の演算子、ループ長依存性

倍精度実数、倍精度複素数について配列要素の四則演算、組み込み関数による演算につい

てベクトル化による効果を調べた。ループ長、演算子依存性をみる。使用したプログラムは

プログラムー2である。各演算子について演算時間(T)のNVとVの場合の比R

R= T (NV) /T (V) 

のループ長依存性をFig-1-3に示す。即ちベクトル化により何倍時間が短縮されたかを

示す。また、ほぼ漸近値と思われるJレープ長がNMAX=9000 の場合のRおよび単位Jレー

プ当りの演算時間をTable-1に示す。

ベクトル化により倍精度実数で約30倍、倍精度複素数で約20倍高速化される。また演

算子依存性が大きいことが判る。特に割り算が意外に 12倍と効率が悪く、倍精度複素数

EXPは53倍と効率がいい。

またこのような単純なJレープでは最大の効率を得るためには 103-104回の繰り返しが必

要である。
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倍精度複索数計算におけるペクトル化の効果
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Table l ベクトル化による効果と演算時間

* I + = exp sin tan cos log *(c) /(c) +(c) =(c) exp(c) 

T(NV)/T(V) 34.1 12. 7 31.9 25.3 34.8 40.5 27.9 40.2 25.9 22.1 22.8 25.2 20.5 56.2 

T(V)/N (nsec) 8.89 39.8 8.83 6.68 98.0 78.0 163. 77.7 123. 31.4 66.9 18.9 14.0 277. 

プログラムー2

倍精度実数

SUBROUTINE SUBI (Al. A3. Bl. B3, KMAX, TT) 

IMPLICIT REAU8(A-H,O-Z) 

PARAMETER (ND IM= 10000) 

DIMENSION Al(NDIM). A3(NDIM). Bl(NDIM). B3(NDIM) 

CALL CLOCK (TS) 

DO 410 N=l,NMAX 

［演算子］

410 CONTINUE 

CALL CLOCK (TE) 

TT = TE-TS 
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RE TUR~ 

END 

倍精度複索数

SUBROUTINE SUBCl (Al. A3, Bl. B3, NMAX. TT) 

IMPLICIT REAL*8(A-H.O-Z) 

PARAMETER (ND IM=l 0000) 

COM p LEX* 1 6 A 1 (ND l M) , A 3 (ND l M) , BI (ND IM) • B 3 (ND l M) 

CALL CLOCK (TS) 

DO 410 N= 1. NMAX 

［演算子］

410 CONTINUE 

CALL CLOCK (TE) 

TT = TE-TS 

RETURN 

END 

［演算子］＝［＊］

A 3 (N) = A3(N) * Al(N) A 3 (N) 

B 3 (N) = B3(N) * Bl(N) B 3 (Ii) 

C 「-' '" ， 

A 3 (N) = A3(1i) + Al(N) A 3 (N) 

B 3 (N) = B3(N) + Bl(N) B3 (ti) 

[ E X P J 

A 3 (N) = EXP(Al(N)) A 3 (Ii) 

B 3 (Ii) = EXP(Bl(N)) B 3 (Ii) 

[ T A N J 

A 3 (Ii) = TAN(Al(N)) A 3 (N) 

B3 (N) = TAN(Bl(N)) B 3 (N) 
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A 3 (N) 

B3 (N) 

= LOG (Al (N)) 

= LOG(Bl(N)) 

2.2 

(j) 

高速化技法の効果

" }レープ展開（アンローリング）を避けた方がいい”

プログラムー3を用いてループ内の演算をN倍にしループの繰り返しを 1/NとするN

次のループ展開について、 NVおよびVの場合の演算時間の比R

R= T (NV) /T (V) 

を調べた。ループ展開の次数N=1は素直にDO;レープを回したことに相当する。 Fig-

4には実線でRを）レープ展開の次数Nの関数として示した。またVの場合の演算時間を破

線で示してある。このとき）レープの長さは 104とした。

まず、すでに示唆されているように、ループ展開によってベクトル化の効果は悪くなる。

しかし実際の演算時間は（これが重

要な因子だが） Vの場合、 N=2、

3、5、6で20形程増加するだけ

である。

またN=9、1 0とループ内の演

算回数が多くなると効率が悪くなり

演算時間も増大する。

ところでN=4、8のゆらぎは何

回プログラムを走らせても正確に生

じる。
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ループ展開におけるペクトル化の効果
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プログラムー3

SUBROUTINE SUBO (Al. AZ. A3, Bl. B2. B3) 

IMPLICIT REAL*8(A-H,O-Z) 

PARAMETER (ND IM= 1000 0) 
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N = I 

CALL CLOCK(T2) 

WRITE(6.1302)T2-Tl 

1302 FORMAT(lH ,'LOOP .1',E15.7} 

C 

CALL CLOCK (Tl) 

DO 301 N=l. NDJM-1. 2 

A 3 (N) = Al(N) + A2(N) N = 2 
301 A3(N+l) = Al(N+l)+A2(N+l) 

CALL CLOCK (T2) 

冑RITE(6.130l)T2-Tl 

1301 FORMAT(lH ,'LOOP .2',El5.7) 

C 

C 

CALL CLOCK (Tl) 

DO 310 N=l. NDIM-9. 10 

A3 (N) = Al(N) + A2(N) 

A3(N+l) = Al(N+l)+A2(N+l) 

A3 (N+2) = Al (N+2)+A2(N+2) 

A3(N+3) = Al(N+3)+A2(N+3) 

A3 (N+4) = Al (N+4)+A2 (N+4) N = 1 0 
AS (N+S) = Al (N+5)+A2 (N+S) 

A3 (N+6) = A 1 (N+6) +A 2 (N+6) 

A3(1i+7) = Al(li+7)+A2(1i+7) 
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 RETURN 

END 

{ii) 廿旨標変数は最初の次元にすべし))

プログラムー4を用いて、ループを配列の

＂前))の足で回した場合に比べて何倍早くな

るか見える。演算時間の比R

R=T(指標変数が後）/TC指標変数が前）

をV、NVの場合それぞれについて調べた。

結果はFig-5の線ー 1で示す。以下{ii)一
{v)の結果RはFig-5に示し、 V、NVの

場合それぞれ実線、破線で示す。ループは

正方形でN=NMAXl=NMAX2である。

Rの値は高速化技法の効果により R>>l

が期待される。

結果RはN=10-290にわたってほぼ

1である。従って指標変数を最初の次元に

しても御利益はない。

プログラムー4

S3 = SQRT(3.D0) 

CALL CLOCK (Tl) 

DO 200 Nl=l. NMAXl 

4
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DO 200 N2=1. NMAX2 

200 A2(Nl.N2) = Al(Nl.N2) + S3*8l(Nl.N2) 

CALL CLOCK (T2) 

90 130 170 210 250 290 

Fig.5 

高速化技法の効果

M
t
 

< - "後”で回す
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CALL CLOCK(Tl) 

DO 210 N2=1. NMAX2 

DO 210 Nl=l. NMAXl 

210 A2(Nl.N2) = Al(NJ.N2) + S3*Bl(Nl,N2) 

CALL CLOCK (T2) 

＜ー ”前＂で回す

Qjj) "積和型は内積型より Jレープが短いときには高速である”

プログラムー5を用い(ii)と同様に

R= T (内積型） /T  (積和型）

のV、NVに於ける結果をそれぞれFig-5の線ー 2で示す。

確かに積和型の方が3倍近く高速になりうる。今の場合Jレープ長が250を越えると効率

が悪くなる。

プログラムー5

CALL CLOCK (Tl) 

DO 220 Nl=l. NMAXl 

DO 220 N2=1. NMAX2 

220 C2(Nl) = C2(Nl) + Al(Nl.N2)*Dl(N2) 

CALL CLOCK (T2) 

CALL CLOCK (Tl) 

DO 2 3 0 N 2 = 1. NM AX 2 

DO 230 Nl=l. NMAXl 

230 CZ(Nl) = C2(Nl) + Al(Nl.N2)*Dl(N2) 

＜ー 内積型

＜一 積和型

CALL CLOCK (T2) （ループ N 1 , N 2の入れ替え）

＂ ＂漸化式演算は避けた方がいい”
漸化式の演算を外側、内側｝レープにいれた場合についてプログラムー6を用いて

R= T (漸化式が内側｝レープ） /T  (漸化式が外側｝レープ）

のV、NVに於ける結果をFig-5、線ー 3で示す。

結果はなぜか漸化式を外側にするとかえって遅くなるぐらいである。
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プログラムー 6

CALL CLOCK (Tl} 

DO 2 4 0 N l = 1. NMA X 1 

DO 240 N2=1. NMAX2 

240 AZ (Nl. N2+l}=Al (Nl, N2}+S3*A2(Nl. N2} 

CALL CLOCK (T2} 

CALL CLOCK (Tl) 

DO 250 N2=1. NMAX2 

DO 250 Nl=l. NMAXl 

250 A2(Nl. N2+1)=Al(Nl.N2)+S3*A2(Nl. NZ) 

CALL CLOCK (T2) 

＜ー 漸化式が内側

<― 漸化式が外側

(N 1、 {¥ 2 の入れ替え）

(V) 'ぐ外側のループに対するループ展開で、記憶領域の参照回数が減少する場合には大きな

効果が得られる場合がある”

プログラムー 7を用いて調べる。

R= TT  (; レープ展開無し） /T  (ループ展開）

のV、NVに於ける結果をFig-5、線ー4で示す。

確かにループ展開をした方が有利である。）レープ長が20 0以上では 20~ る程度の効果

である。
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プログラムー7

K = 1 

CALL CLOCK (Tl) 

DO 280 N2=1. NMAX2 

DO 280 Nl=l. NMAXI 

280 Cl (Nl) = Cl (NI) + Al (NI. K) *Bl (K, N2) 

CALL CLOCK (T2) 

ー
=-k

 
CALL CLOCK (Tl) 

DO 290 N2=1.NMAX2,2 

DO 290 Nl=l. NMAXl 

290 Cl(Nl) = Cl(Nl) + Al(Nl.K)*Bl(K,N2) + Al(Nl.KHB1(K.N2+1) 

ループ展開

CALL CLOCK (T2) 

3 連分数法による散乱問題の解法

Sasakawaらに依って提唱された、連分数法による散乱問題の解法を使ってみる。 定常状

態に対する Schroedinger方程式は一般に線型の微積分方程式で

(T+V-E) I 1J1>= 0 

で与えられる。 Tは運動エネルギー、 Vがポテンシャルエネルギー。 1刃＞は適当な境界条件

をつけたグリーン関数G。(=1 / (E-T))に依って

I 1J1>= I¢。>+G。VI1J1> 
と書ける。 I釦＞は入射波。 つぎに tー行列を連分数の形に次のように定義する。

ti=<¢i-1 I Vi-1 Iか＞＋くか IVi Iか>2

／〔くか IVi Iか＞ー ti+l〕

ここで

I釘+1>= G。ViI妬＞
Vi+J =Vi-Vi Iか＞くか IVi/くか IVi Iか＞

また I¢-1 >= V-1 = O、v。=Vとする。 t一行列は、 t。
t。=<¢。 IVl1J1> 

で与えられる。
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この方法は非局所的なポテンシャル、チャンネル結合がある場合にも有効であり、詳しくは

文献を参照されたい〔1〕。 ポテンシャルの行列要素を iterativeに積分することにより解が

もとまり、ベクトル化しやすい計算方法である。

原子核物理への適用として、

とを考える。今回の例題は 1P1 

Reidによる核力のもとで、 lチャンネルの散乱問題を解くこ

の散乱状態であり、 プログラムー8がその主要部分である。

プログラムはおおまかに3つの部分から構成されている。まず、 SUBROUTINE SETPOT 

によってポテンシャル、グリーン関数および散乱波の初期値が、座標の分割に対応して配列に

貯められる。次に、連分数展開において必要とされる積分 (INTEGRAL)が実行され、 最

後に連分数展開によって散乱行列及び波動関数が求められる。プログラムー 8から分かるよう

に、主なループはすべてベクトル化され、ベクトル化率は 98.87%におよんでいる。

ANALYZERのレポートは以下のようになっている。

v--------> 
v---------

2--------> 
！ 
1 v------> 
I I .. 
I I ．． 
I I .. 
l V-------

！ 
l 4--- —一）
I I ．． 
l l V----> 
l I ! 
r 1 1 
l ! V-----
l 4-------
！ 

10 

" --・・~――ー・---------------------------------------------------------------" TEST OF MVFG METHOD STATIONALLY GREEN FUNCTION 

" ------------------―-------------------------------------------------IMPLICIT.REAL*S(A-H,0-Z) 
PARAMETER(NDIM=100,NITE=10,FMN=938.903D0,HBC=0.506769D-2) 
DIMENSION CWF(O:NITE,NDIM),CGR(NDIM,NDIM),CWB(NDIM), 

& CVNL (NDIM,NDIM) ,CV(0: NITE, 2), CKB (0: NITE, 2) 1 CVLC(NDIM), 

& XR(NDIM) ,XRRW(NDIM), VLC(NDIM), VNL(NDIM, NDIM), 

& CWFI (NDIM), CGRI (NDIM, NDIM), WF(NDIM) ,A(0 :NITE), 

& TIME2(0:NITE),TIME3(0:NITE) 

" 
CZE = O.DO 

" 
ELAB = 24.DO 
Q = SQRT(FMN*ELAB*O.SDO)*HBC 

" 
ITMAX = 5 
NMAX = 100 
RMAX = 20.DO 

" 
" 
" 
SET POTENTIAL AND GREEN FUNCTION 

DMESH = RMAX/DBLE(NMAX) 

D010K=11NM入X
! XR(K) = DMESH*DBLE(K) 
CONTINUE 
C江 L CLOCK(TIMEO) 
C江 L SETPOT(Q,XR,N駆 X,VLC,VNL,CWFI,CGRI)
C江 L CLOCK(TIME1) 

" 
" 
" 
LOOP MESH= NMAX,NMAX/2 

DO 1000 JJ = 2 , 1 , -1 
J IIM入X = N巫 X/JJ
! DO 100 KI = 1 , IIM認
! ! KIJ = KI*JJ 
! ! CWF(0 ,KI) = CWFI (KIJ) 
J ! XRRW(KI) = XR(KIJ)**2*DMESH*DBLE(JJ) 
! ! CVLC(KI) = VLC(KIJ) 

1 00 ! CONTINUE 
! DO 11 0 KI = 1 , IIMAX 
! ! KIJ = K!*JJ 
! ! DO 120 KF = 1 , IIMAX 
! ! ! KFJ = KF*JJ 
! ! ! CVNL(KI,KF)= VNL(KIJ,KFJ) 
! ! ! CGR(KI,KF) = CGRI(KIJ,KFJ) 

120 ! ! CONTINUE 
110 ! CONTINUE 
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! " 
！ " 
! CKB(O,JJ) = O.DO 
! " 
! DO 200 ITEL=O , ITMAX+1 
! " 
! ! DO 21 0 K1 = 1 , IIMAX 
! ! ! CSUM2 = CZE 
! ! ! DO 220 K2 = 1 , IIMAX 
! ! ! ! CSUM2 = CSUM2 + XRRW(K2)*CVNL(K1 ,K2)*CWF(ITEL,K2) 

220 ! ! ! CONTINUE 
! ! ! CWB(K1) = CSUM2 + CVLC(K1)*CWF(ITEL,K1) 

210 ! ! CONTINUE 
! ! CSUM1 = CZE 
! ! DO 230 K1 = 1 , II叫 X
! ! ! CSUM1 = CSUM1 + XRRW(K1)*CWB(K1)*CWF(ITELぶ1)

230 ! ! CONTINUE 
! ! CV(ITEL,JJ) = CSUM1 
I I " ．． 
! ! IF(ITEL.EQ.ITMAX+1) GO TO 200 
I I " ．． 
! ! DO 300 K1 = 1 , IIMAX 
! ! ! CSUM2 = C.ZE 
! ! ! DO 31 0 K2 = 1 , IIM. 入X
! ! ! ! CSUM2 = CSUM2 + XRRW(K2)*CGR(K1 ,K2)*CWB(K2) 
! ! ! ! CVNL(K1,K2) = CVNL(K1,K2) - CWB(K1)*CWB(K2)/CV(ITEL,JJ) 

310 ! ! ! CONTINUE 
! ! ! CWF(ITEL+1 ,K1) = CSUM2 

300 ! ! CONTINUE 
! ! CSUM1 = CZE 
! ! DO 320 K1 = 1 , II巫 X
! ! ! CSUM1 = CSUM1 + XRRW(K1)*CWF(ITEL+1,K1)*CWB(K1) 

320 ! ! CONTINUE 
! ! CKB(ITEL+1,JJ) = CSUM1 
! ! CALL CLOCK (TIME2 (ITEL)) 

200 ! CONTINUE 
1000 CONTINUE 

’’ 
" 
’’ 
" 
’’ 
DO 1000 ITTMAX = 1 , ITMAX+1 

13 —-----> ! CKK1 = CZE 
! ! CKK2 = CZE 
! ! DO 1010 ITEL= ITTM入X , 0 , -1 
! V------> ! ! CV1 = CV(ITEL,1) 
! ! ! ! CV2 = CV(ITEL,2) 
! ! ! ! CV3 = (4. DO*CV1 -CV2) / 3. DO 
l ! S ! l CKK3 = (,.DO*CKK1-CKK2)/3.D0 
! ! ! ! A(ITEL) = CV3/(CV3-CKK3) 
! ! S ! ! CKK1 = CKB(ITEL,1) + CV1**2/(CV1-CKK1) 
! ! S ! ! CKK2 = CKB(ITEL,2) + CV2**2/(CV2-CKK2) 
! V------- 1010 ! CONTINUE 
! ! COEF = 1.D0 
! ! DO 1020 K = 1 , NMAX 
! V------> ! ! WF(K) = O.D0 
! V------- 1 020 ! CONTINUE 
! ! DO 1030 ITEL= 0 , ITTMAX+1 
! 16-----> ! ! DO 1040 K = 1 , NMAX 
! ! V----> ! ! ! WF(K) = WF(K) + COEF*C訂 (ITEL,K)
! ! V----- 1 040 ! ! CONTINUE 
! ! ! ! COEF = COEF * A(ITEL) 
! 16------ 1030 ! CONTINUE 
! ! DEL= ATAN(-Q*(4.DO*CKK1-CKK2)/3.DO) 
! ! CALL CLOCK (TIME3 (ITEL)) 
13-------- 1 000 CONTINUE 

" 
諜 ITE(*,5000) TIMEO,TIME1 
甑 ITE(*,5010) (TIME2 (ITEL), ITEL=O, ITMAX+1) 
甑 ITE(*,5010) (TIME3(ITEL) 

5000 FOR沿 T(1H
, ITEL=O,ITMAX+1) 

, 2017.6) 
5010 FOR琺 T(1H ,10D17.6) 
STOP 
END 
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LOOP ITERATION 

OUTPUT INTERMEDIATE STEP 

CAL OF K-MATRIX 
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プログラムー 8

sxos VER. Rl. 21 ANALYZER/SX REV. 026 

TOTAL EXECUTION (CPU) TIME 

TOTAL EXECUTION FREQ-UENCY 

TOTAL VECTORIZATION RATIO 

0 : o・o・11 (11 MSEC) 

424171 

9 6. 41芸

ATR PROGRAM FREQUENCY EXEC COST(%)・ V.RATIO LOOP V.LOOP V.LOOP RATIO 

--〉 MAIN

SUB SETPOT 

FNC VPOT 

FNC SBESL 

0

0

 

9

9

 

1

9

7

3

 

7

4

1

6

 

．

．

．

．

 

9

6

0

3

 

8
 

7

7

0

l

 

8

4

0

5

 

．

．

．

．

 

8

7

0

8

 

9

9

3

 

1 0 1 0 

。 。

7
 
c:, 

c:, 

4
 

9
 
c:, 

c:, 

7
 

．

．

．

．

 

9
 
c:, 

c:, 

c:, 

9

0

4

 

ー

VPOTは SETPOTの中で CALL されるポテンシャルを与える FUNCTIONで、

SBESL は球ベッセル関数である。 Table2にSETPOT及びMAIN中の積分

(INTEGRAL)、連分数 (C.F)の計算について 1回の iteration あたりに消費される

時間（ベクトル・プロセッサーを用いた場合）と NOVECTOR指定をした場合の比(NV/V)、

さらに6回の iterationにかかる時間と NOVECTORVECTORの比を与える。 MESH 

は、座標の分割数である。 MESHの増加に従って、ベクトル・プロセッサーの効果が顕著に

なり、 500ポイントの場合には、積分 (INTEGRAL)は63倍！？もの利得が認められる。

さて、 iterationとMESHについての収束性を見るために、散乱の位相差について調べる。

Table 3に、 MESHとiterationの回数に対して、得られる散乱の位相差をまとめる。

iterationの回数については、 3-4回で3桁程度の収束が得られている。 MESHについて

は、 200ポイント程度で十分あると考えられる。波動関数については、具体的な結果は示さな

いが、位相差と同様な収束が得られる。今回示した結果は、実験室系のエネルギーで 24MeV

（原子核物理においては低エネルギー）についてのもので、収束性はエネルギーの増加に従っ

て悪くなっていくものと考えられる。この問題とあわせて、チャンネル結合がある場合、非局

所的ポテンシャル扱い等については、別の機会に議論したい。

大阪大学大型計算機センターニュース -58 - Vol. 18 No.l 1988-5 



Table 2
 
ベク トル化による効果と演算時間 （連分数法）

MESH SETPOT 

T(sec) NV/V 

IN'l'EGRAL 

T(sec) NV/V 

C.F. 
T(sec) NV/V 

'fOTAL 
'!'(sec) NV/V 

0

0

 0
0
0
 

0

0

 0
0
0
 

1
2
3
4
5
 

4.60D-3 
1.01 D-2 
1.700-2 
2,550-2 
3,46D-2 

)
）
）
‘
.
,
、
）

0
5
9
8
6
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5
8
0
2
4
 

1
1
1
 

,.i
―『
-f̀
.I
、!-『‘ー`

5.460-4 
1.740-3 
3.170-3 
7.610-3 
6.420-3 
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」

-9-―
dn

！しー，．`
3
9

3
1
9
5
0
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0
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3
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、

9

―

r
J
-
E
-
n
＿
ー
、
＿
ー
一
•
I

―
-
J
-
9

―
『

1 • 81 D-5 
1. 95D-5 
2.47D-5 
2.60D-5 
2.78D-5 
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Table 3
 

核子—核子散乱 1 p 1 チャ ンネル位相差の収束性

100 200 300 400 500 

1
2
3
4
5
6
 

-0.42728870-01 
-0.34141820-01 
-0.33150120-01 
-0.33120120-01 
-0.33119450-01 
-0.33119360-01 

-0.4244949D-01 
-0.3352741D-01 
-0.3314364D-01 
-0.3312477D-01 
-0.3312512D-01 
-0.3312397D-01 

-0.4251735D-01 
-0.3351588D-01 
-0.3313523D-01 
-0.3312485D-01 
-0.33124650-01 
-0.3312~23D-01 

-0.42531B'J!l-01 
-0.3352099D-01 
-0.3313455D-01 
-0.3312484D-01 
-0.3312438D-01 
-0.3312427D-01 

-0.4253619D-01 
-0.3352325D-01 
-0.3313472D-01 
-0,3312485D-01 
-0.3312434D-01 
-0.3312429D-01 

4
 
高エネルギー原子核ー原子核散乱の GIuaber理論による解析

我々は、高エネルギー原子核ー原子核散乱の例としてa-a散乱を取りあげる。 a粒子は 2

個の中性子と 2個の陽子からなる原子核であるが、 4核子系ぐらいであるとGlauberの多重

散乱過程を全て取り入れることが可能であると思われる。 a-aINCLUSIVE非弾性散乱

断面積の表式を模式的に表すと

da /d△ 2 = L ij Ci C j Aij EXP (-B ij *△り

とかける。ここで△は散乱角によって決まる運動量移行でC,A, Bは△に依らない定数であ

る。
，
 

.
1
 
jは多重散乱の過程を表す indexでそれぞれ3875通りある。 係数A,Bは6* 6 

の行列の逆行列を用いて求まる。

この計算で最も時間のかかる部分は 1が個の6* 6の行列要素を求め、逆行列を計算する部

分と、 EXPの計算である。そこで、ベクトルプロセッサーをいかすために、 6 * 6の逆行列

の計算を陽に書き下し行列要素の計算と共に 1重のDO;レープの中に入れてしまうことにした。

ところで、全ての i• jの場合を配列にしまうのは大変なので、 SUB2である程度貯めてか

ら計算することにした。 SUB3でA,B, Cの係数を計算し SUB4で断面積の計算をする。

SUBSは、 1つのDO;レープの中に 150行ほど入っている。
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sxos VER. Rl. 21 ANALYZER/SX REV. 026 

TOTAL EXECUTION (CPU } TIME 

TOTAL EXECUTION FREQUENCY 

TOTAL VECTORIZATION RATIO 

0 : 0 . 29 • 930 

1299734765 

96. 88% 

(29930 MSEC) 

ATR PROGRAM FREQUENCY EXEC COST(%) V. RATIO LOOP V. LOOP V.LOOP RATIO 

--〉 MAIN 0. 0 1 8 3. 1 7 3 2 ~9. 8 0 

SUB SUB! 0. 0 1 9 9. 9 6 9 9. 9 7 

SUB SUB2 3. 11 0. 0 0 

゜
0. 0 0 

SUB SUB3 2504 6 9. 4 6 100. 00 100.00 

SUB SUB4 2?04 2 7. 4 1 9 9. 9 7 100. 00 

さて、 ANALI ZERのレポートを見れば分かるように、 96.8%の時間がSUB3(69.5%)、

SUB4(27.4%)費やされている。 また、おのおののサプルーチンのベクトル化率は、ほぼ

100 %である。例によって全体の演算時間のNV、Vの比 R= T (NV) /T (V)はほぼ

13である。 これは一応の成果ではあるが、 2章の経験から 20倍ぐらいは期待していたので

少々期待はずれでもある。 SUB3、SUB4各々別々にRを測定してめると、 Table4のよ

うになる。

Table 4 ベクトル化による効果 (a-a散乱）

full sub3 suh4 

R
 

1 3 5
 

37 

これから分かるように、苦労して6* 6の逆行列を書き下し、 SUB3をベクトル化率 100

形近くにしたにも関わらず、 5倍の効果しかない。そこでSUB3の中を細かく分けて調べる

と、次のプログラムー9の関接番地指定の部分がベクトル化によって少しも早くならず CR<

1)かつ時間を消費していた。
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プログラムー9

All(IL) 

A12(IL) 

A13(IL) 

AllO(ll(lL))+AllO(!Z(IL)) 

AlZO (11 (IL)) +Al 20 (12 (IL)) 

A130(ll(!L))+Al30(12(1L)) 

現在の演算時間は一応問題のない範囲まで短縮された。更に間接番地指定を避ける工夫をす

る可能性が残されてはいるが、今後の問題としたい。

5 まとめ

2章で行ったような基本的なアルゴリズムにおける、ベクトル化の効果のデータは、我々の

ような初心者にとってこれからプログラムを作っていこうとする際に、有用な情報になると思

われる。今回の報告はまだまだ不完全で、高速化技法等について系統的に調べでいく必要があ

る。ここの例題の範囲で少なくとも分かったことは、

ベクトル化による効果は、非常に演算依存性が強い。割り算は特に効率が悪い。

ループ展開はやめた方がいい。特に4、8次は遅い。 4次までならしかし演算時間は

2 0 %程度の遅れである。

指標変Nは前でも後ろでもかまわない。

積和型は和積型より、最大3倍早くなる。

漸化式演算を気にしなくてもよい。

外側の Jレープ展開•…••は、 90-1096の効果がある。

また、実際の応用計算の中で、ベクトルプロセッサーは威力を発揮し 10~4 0倍以上の計

算時間の短縮を行えた。この因子は非常に大きく、可能な計算の範囲がかなり広がってくる。

ところで、ベクトル化率は一応の目安にしかならない。 4章の例題ではベクトル化率 10 0 % 

でも、間接番地指定が高速化に対する一つの阻害要因であった。この点については改良する必

要がある。

最後に有益な議論をしてくださった大坪助教授に感謝する。
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