

Title	直接解法による3次元ポアソン方程式計算プログラム の利用の手引						
Author(s)	酒井, 勝弘						
Citation 大阪大学大型計算機センターニュース. 1988, 71-85							
Version Type	VoR						
URL	https://hdl.handle.net/11094/65779						
rights							
Note							

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

研究開発

直接解法による 3 次元ポアソン方程式 計算プログラムの利用の手引

*大阪大学工学部 酒 井 勝 弘

§1 はじめに

科学技術計算に於いて種々の境界条件を有するポアソン方程式を解く問題は極めて多い。熱 伝導、原子炉内中性子拡散問題の他、放物型のナビア・ストークス方程式の場合でもその発散 をとって圧力に関するポアソン方程式に変換して解く場合がある¹⁾。更に近年計算機の発達に より計算機による機器構造物等の物理的乃至化学的特性に関する数値予測のニーズが高まって おり、大型体系での高速・高精度の計算が要求されている。特に、近年スーパーコンピュータ の出現に伴い台頭しつつある乱流場の直接数値シミュレーションを行う場合、多大なタイムス テップに亘ってポアソン方程式を解く必要があり、その高速化、高精度化は切実・急務である。 このような背景を鑑みて、いくつかの境界条件を持つ3次元ポアソン方程式を直接解法で高速 ・高精度(差分近似の範囲内において)に解くサブルーチンSPOISN(単精度計算用)、 DPOISN(倍精度計算用)を開発した。

§ 2 ポアソン方程式の解法¹⁾

ポアソン方程式(1)の解Pを inhomogenous boundary condition (以下IHBCと略す)を持つ解P°と homogenous boundary condition (以下HBCと略す)を持つ解P* に分離して重 畳法によって解く。

即ち

$$V^2 \mathbf{P} = \mathbf{S}, \tag{1a}$$

$$P = P^{\circ} + P^{*}. \tag{1b}$$

分離された解P°とP*には一般に任意性が伴うが以下の解法で解るようにPを決める暁に於いては、全ての境界条件がNeumann型又は周期条件で与えられる場合を除いて唯一に決る。境 界条件が全てNeumann型で与えられる場合は、Gaussの発散定理より得られる保存の条件

即ち $\int_{A}^{P} p|_{B}$ $n dA = \int_{V} Sdv$ が満足されてなければならないと同時にもう一つ例えば体系 全体のPの平均値が与えられないとPの唯一解は決らない。境界条件が全て周期条件で与えら れる場合も、Pの平均値等のもう一つの条件が必要である。

IHBCを持つ1つの差分解P°は、差分スキームを決めれば容易に決める事ができる。例え

*現在西独カールスルーエ原子核研究所

ば計算体系の内点で全てゼロ、境界点では与えられた境界条件を満足するように決めてやれば よい(内点の値をどうとるか任意性がある。本プログラムではゼロとしている)。

次に、このP°を用いてP*に対する modified Poisson equation (2)が得られる。

$$V^2 P^* = S^*$$
 (2 a)

$$S^* \equiv S - V^2 P^\circ$$

これをフーリエ級数法と tri-diagonal matrix 法を併用して解く。

まず、ラプラス演算子 P²を 2 次精度の中心差分スキームによって次のように離散化する。 (ここでは、 x、 y 方向には等間隔メッシュ、 z 方向には不等間隔メッシュとする)

$$\mathcal{P}^{2}P^{*} = \frac{P^{*}(i+1, j, k) - 2P^{*}(i, j, k) + P^{*}(i-1, j, k)}{\Delta x^{2}} + \frac{P^{*}(i, j+1, k) - 2P^{*}(i, j, k) + P^{*}(i, j-1, k)}{\Delta y^{2}} + \frac{2P^{*}(i, j, k+1)}{\Delta Z_{k+1}(\Delta Z_{k} + \Delta Z_{k+1})} - \frac{2P^{*}(i, j, k)}{\Delta Z_{k}\Delta Z_{k+1}} + \frac{2P^{*}(i, j, k-1)}{\Delta Z_{k}(\Delta Z_{k} + \Delta Z_{k+1})}$$
(3)

△Zk はメッシュ点kとk-1の間のメッシュ巾である(第1図参照)。

第1図 Z方向メッシュ配置図

x方向、y方向には与えられた境界条件に対応した homogeneous boundary condition を有する離散型フーリエ級数を用いて展開する。例えば、x方向に周期条件、y方向には両端 でDirichlet 型の場合次の様に展開する。

$$P^{*}(i, j, k) = \sum_{\mu=1}^{N_{1}} \sum_{\nu=1}^{N_{2}} \widetilde{P}^{*}(\mu, \nu, k) e^{2\pi\sqrt{1}} \frac{(\mu-1)(i-1)}{N_{1}} \cdot \sin\left(\frac{\pi\nu j}{N_{2}+1}\right)$$

$$\left(\frac{1 \leq i \leq N_{1}}{1 \leq i \leq N_{2}}\right) \cdots \cdots (4)$$

N1, N2 は各々 x 方向、 y 方向のメッシュ分割総数である。

(2b)

ここでi=0、i=N₁+1、j=0、j=N₂+1、k=0、k=N₃+1(N₃はz方向のメッ シュ分割数)が各々x、y、z方向の境界メッシュ点である(第2図参照、但し、J=j+1)。
即ち、P*(l,j,k)=P*(N₁+1,j,k)、P*(i,N₂+1,k)=0

(4)式を(3)式に代入すると、 2方向(インデックスk)に関し次の差分方程式を得る。

$$\frac{2P^{*}(\mu,\nu,k+1)}{\triangle Z_{k+1}(\triangle Z_{k}+\triangle Z_{k+1})} - \frac{2P^{*}(\mu,\nu,k)}{\triangle Z_{k}\triangle Z_{k+1}} + \frac{2P^{*}(i,j,k+1)}{\triangle Z_{k}(\triangle Z_{k}+\triangle Z_{k+1})}$$
(5 a)
$$-(\lambda\mu^{2}+\lambda\nu^{2})\widetilde{P}^{*}(\mu,\nu,k) = \widetilde{S}^{*}(\mu,\nu,k), \quad (1 \le \mu \le N_{1})$$

$$\lambda\mu^{2} = \frac{4}{\triangle x^{2}} \sin\left[\frac{\pi(\mu-1)}{N_{1}}\right], \qquad \lambda\nu^{2} = \frac{4}{\triangle y^{2}} \sin\left[\frac{\pi\nu}{2(N_{2}+1)}\right]$$
(5 b)

 $\widetilde{S}^*(\mu,\nu,k)$ は、P*と同じフーリエ級数を用いた展開係数である。 (5)式は3重対角行列形で あるので、TDM (tri-diagonal matrix) algorithm によって遂次的に解く事ができる。 即ち、

$$\widetilde{P}^{*}(\mu,\nu,k) = U_{\mu\nu k} \widetilde{P}^{*}(\mu,\nu,k+1) + V_{\mu\nu k} \quad (k = 1, 2, \dots, N_{3}) \quad (6)$$

ててで、

$$U_{\mu\nu\,k} = \frac{A_{k}}{C_{k}U_{\mu\nu\,k-1} + B_{k}}, \quad V_{\mu\nu\,k} = \frac{U_{\mu\nu\,k}}{A_{k}} \left(C_{k}V_{\mu\nu\,k-1} - \widetilde{S}^{*}_{\mu\nu\,k} \right)$$
(7)

$$A_{k} = \frac{2}{\triangle Z_{k+1} (\triangle Z_{k} + \triangle Z_{k+1})}, \quad B_{k} = -(\lambda_{\mu}^{2} + \lambda_{\nu}^{2} + \frac{2}{\triangle Z_{k} \triangle Z_{k+1}})$$

$$C_{k} = \frac{2}{\triangle Z_{k} (\triangle Z_{k} + \triangle Z_{k+1})}$$
(8)

Z方向の境界条件より境界点でのU $_{\mu\nu k}$, V $_{\mu\nu k}$ が決る。 例えば、両端で Neuman 型条件の場合、

$$P^{*}(\mu,\nu,0) = P^{*}(\mu,\nu,1), \qquad (9a)$$

$$\widetilde{P}^{*}(\mu,\nu,N_{3}) = P^{*}(\mu,\nu,N_{3}+1)$$
(9b)

$$\sharp b U_{\mu\nu0} = 1, \qquad V_{\mu\nu0} = 0$$
 (10)

$$\mathcal{R}\mathcal{T} \quad \widetilde{\mathsf{P}}^{*}(\mu,\nu, N_{3}+1) = V_{\mu\nu N_{3}} / (1 - U_{\mu\nu N_{3}})$$
(11)

(4)式のフーリエ変換はFFT法によるNEC開発ASLライブラリー²⁾に基づいている。

§ 3 チェック計算

本ルーチンを検証する為に、解析解を有するいくつかの例題についてチェック計算を行う。 但し、解析解と計算値との比較をする場合、解析解はポアソン偏微分方程式の解であるが、 一方計算値は離散化されたポアソン差分方程式の解であり、両者の間には、計算機の丸め誤差 の外に離散化誤差分が含まれている点に注意を要する。即ち差分スキームの精度が、問題の現 象の次数に対してより高いか又は離散化誤差が充分丸め誤差以下に小さくなるようにメッシュ 巾を小さくとって比較すれば、両者の違いは丸め誤差だけ(単精度で6桁、倍精度で12桁程度) に帰することができる。

例題1

- 1) ソース項 S=0
- 2) 境界条件

X 方向一周期条件

Y方向一負側境界で12.0、正側境界で1.0 即ち第2図に於いて、P(J=0)= 12.0、 P(J=12)= 1.0

Z方向-両端で∂P/∂Z=0

計算体系:NDZVX=4,NDZVY=10,NDZVZ=5
 メッシュ網:XT=4.0,YT=10.0,ZT=5.0,

 $\triangle X = 1.0$, $\triangle Y = 1.0$, $\triangle Z = 1.0$

4) 解析解: P(y)= 12-y, y=(J-1)△Y=J-1
 S=0でx,z方向の境界条件が両側で対称であるので、
 y方向一次元問題となる。この問題は平行壁間2次元
 ポアズイユフローの圧力場を解くのと同一問題である。

JCL及び入力データ
 本例題をPOISNDルーチンを利用して実行する場合の

JCL及び入力データ第1表に示す。

6) 出力データ

倍精度計算による出力データを第2表に示す。

上表は比較の為、解析解も示しているが解析解とここに打出している6桁まで正確に一致 している。これはこの例題が1次の現象であり、一方差分スキームの精度は2次である。従っ てこの場合、離散化誤差はゼロであり、又倍精度計算であるので丸め誤差も11~12桁程度に 小さいことに起因している。

7) СРUタイム СРUタイムは約0.01秒である。

(境界点)

I = 12

Y

例 題 2

y方向の負側境界条件が∂p/∂z=−1, 他の計算条件は、Case 1と同じ。この場合解析 解は Case 1と同一になる。 この場合の出力データを第3表に示す。 本ケースでも解析解との一致は良好である。

CPUタイムは例題1と同様約0.01秒である。

例題3

ソース項 S=1.0とし、他の計算条件は Case 1と同じ。

解析解: P(y)= $\frac{1}{2}$ y²- $\frac{15}{2}$ y + 12

出力データを第4表に示す。

解析解との一致は良好である。即ち、以上の例題で分る通り、本プログラムが空間に関し2 次精度であることに対応して、2次以下の現象に関しては本プログラムは正解を与える。 CPUタイムは約0.01秒である。

> 表1表 ICL及び入力データ \$: JOB:; A, A,, R,, JPA4 \$: EXEC: DPOIS 〔\$:EXEC:SPOIS…単精度用〕 \$:LIMITS:305,,,80000 &INPT NDIVX=4, NDIVY=10, NDIVZ=5, IOPTBC=1, IOPTDZ=0, XT=4., YT=10., ZT=5. ISKIP=2, JSKIP=1, KSKIP=2, DZ=7*1. PIN=42*12.0, POUT=42*1.0, DPDZ1=72*0.0, DPDZ2=72*0.0, S=504*0.0, &END \$: ENDJOB 第2表 例 題 1 P P(解析解) Ι К J 12 2 2 1.20000E+01 1 11 2 2 2 2 2 2 2 2 2 2 2 222222222222 2 1.10000E+01 10 3 1.00000E+01 9 4 9.00000E+00 8 5 8.00000E+00 6 7.00000E+00 7 6.00000E+00 7 6 2 2 8 5.00000E+00 5 9 4.00000E+00 4 2 10 3.00000E+00 3 2 2.00000E+00 11 2 2 2 1.00000E+00 12 1

		第	3表	例	題	2	
I 2 2 2 2 2 2 2 2 2	K 2 2 2 2 2 2 2 2 2 2 2	J 1 2 3 4 5 6 7	1.20 1.10 9.00 8.00 7.00	P 10001 10001 10001 10001	E+01 E+01 E+01 E+00 E+00 E+00		P (解析解) 12 11 10 9 8 7 6
2 2 2 2 2 2 2	2 2 2 2 2	8 9 10 11 12	5.00 4.00 3.00 2.00 1.00		E+00 E+00 E+00 E+00 E+00 E+00		5 4 3 2 1
		第	4表	例	題	3	
I	К	J		Р			P(解析解)
2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 7	1.20 6.00 1.00 -3.00 -6.00 -8.00 -9.00)000)000)000)000)000)000	E+01 E+00 E+00 E+00 E+00 E+00 E+00		$ \begin{array}{c} 12\\ 6\\ -3\\ -6\\ -8\\ -9\\ 0\end{array} $

§5 参考文献

- K. Sakai and T. Sekiya, "Numerical Simulations of Turbulent Fluid Flows. I-Fast Fourier Transform Method -, Tech. Repts. OSAKA Univ., 34 (1762) Oct. (1984) 193-200.
- 2) NEC, "SXソフトウェア 科学技術計算ライブラリイ説明書<ASL/SX 第2分冊>

§6 あとがき

高速フーリエ変換法とTDMアルゴリズムの併用による直接解法で3次元ポアソン方程式を 解く計算プログラムSPOIS, DPOISについて説明した。本プログラムは高速演算を主目的と している為、計算体系のとり方に制約が伴うが、使用目的によっては有効なツールになると思われる。 例えばスーパーコンピュータの進歩に伴い近年台頭しつつある乱流問題、その他の直接数値シ ミュレーションに対しては、特に有力なツールとなろう。

$\begin{array}{c} 10\\ 20\\ 30\\ 50\\ 60\\ 100\\ 100\\ 1120\\ 140\\ 150\\ 100\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 100\\ 120\\ 100\\ 10$	PROGRAM POISSN PARAMETER IM=6,JM=12,KM=7 DIMENSION PA(0:1M,0:JM,0:KM),SA(0:IM,0:JM,0:KM),SSA(0:IM,0:JM) DIMENSION PB(0:IM,0:JM,0:KM),SB(0:IM,0:JM,0:KM),AF(0:IM),BF(IM) DIMENSION PN(0:IM,0:JM,0:KM),SB(0:IM,JM,KM),CK(KM),RAMX(0:IM) DIMENSION PZ(0:KM),AK(KM),BK(0:IM,JM,KM),CK(KM),RAMX(0:IM) DIMENSION RAMY(0:JM),VKB(0:IM,JM,KM),AX(IM) DIMENSION WI(0:IM,JM,KM),VK(0:IM,JM,KM) DIMENSION WI(0:IM,JM,KM),VK(0:IM,JM,KM) DIMENSION VK(0:IM,JM,KM),VK(0:IM,JM,KM) DIMENSION VK(0:IM,JM,KM),VK(0:IM,JM,KM) DIMENSION VG(JM),VH(3#JM),SSAQ(0:IM,JM) DIMENSION VG(JM),VH(3#JM),SSAQ(0:IM,JM) DIMENSION DPD21(IM,JM),DPDZ2(IM,JM) DIMENSION PIN(IM,KM),POUT(IM,KM) NAMELIST /INPT/NDIVZ,NDIVZ,XT,YT,ZT,IOPTBC,IOPTDZ, & DZ,PIN,POUT,DPD21,DPDZ2,S,ISKIP,JSKIP,KSKIP READ(5,INPT) IMAX=IM: JMAX=JM: KMAX=KM IM1=IMAX-1: JMI=JMAX-1: KMI=KMAX-1 CALL DPOIS (IMAX,JMAX,KMAX,XT,YT,ZT,IOPTDZ, & DZ,IOPTBC,PIN,POUT,DPDZ1,DPDZ2,S,PN, & AX,SSAQ,WI,XQ,WISI,WI,VK,WK, & RAMX,RAMY,AK,BK,CK,AF,BF,SA,SB,PA,PB,SSA) WRITE(6,8010) D0 8100 L=2,IM1,JSKIP 1 D0 8100 K=2,KMI,KSKIP
250	2 KK=K+KSKIP
260	2 WRITE(6,8012)
270	2 D0 8100 J=1,JMAX,JSKIP
280	3 S WRITE(6,8040) I.K.J.PN(I.J.K)
290	3 S 8100 CONTINUE
300	8010 FORMAT(//2X.' I'.K'.' I'.8X 'P')
310	8012 FORMAT(1H)
320	8040 FORMAT(2X,13,13,13,2X,1PE12.5)
330	STOP
340	END
350	C SUBPROGRAME OF POISSON SOLVER
360	SUBROUTINE DPOIS (IM.JM.KM.XT.YT.ZT.IOPTDZ,
370	& DZ.IOPTBC.PIN.POUT.DPDZ1.DPDZ2.S.PN,
380	& AX.SSAQ.WI.XQ.WISI.WII.VK.VK.VK.
390	& RAMX,RAMY,AK,BK,CK,AF,BF,SA,SB,PA,PB,SSA)
400	C ********* POISSON-3D FOR ACOS-1000 *********
410	DIMENSION PA(0:IM,0:JM,0:KM),SA(0:IM,0:JM,0:KM),SSA(0:IM,0:JM)
420	DIMENSION PB(0:IM,0:JM,0:KM),SB(0:IM,0:KM),AF(0:IM),BF(IM)
430	DIMENSION PN(0:IM,0:JM,0:KM),S(IM,JM,KM)
440	DIMENSION DZ(0:KM),AK(KM),BK(0:IM,JM,KM),CK(KM),RAMX(0:IM)
450	DIMENSION RAMY(0:JM),VKB(0:IM,JM,KM),AX(IM)
460	DIMENSION VK(0:IM,JM,KM),VK(0:IM,JM,KM)
470	DIMENSION IW(15), IWI(15), W1I(3*IM)
480	DIMENSION IW(15), W1SI(4*JM)
490	DIMENSION XQ(JM), W1(3*JM), SSAQ(0:IM, JM)
500	DIMENSION DPDZ1(IM, JM), DPDZ2(IM, JM)
510	DIMENSION PIN(IM, KM), POUT(IM, KM)
520 530 540 550 560	C CORRESPONDENCE BETWEEN (MU,NU,K) AND (MI,NJ,K) C (MU=0,MI=1) (MU=N1-1,MI=M) C (NU=0,NJ=1) (NU=N2-1,NJ=N) C (K=1,K=2) (K=N3,K=KM1)
580	PAI=4.0*ATAN(1.0)
590	PAI2=PAI*PAI
600	NDIVX=IM-2; NDIVY=JM-2; NDIVZ=KM-2
610	M=NDIVX
620	N=NDIVY
630	IMAX=M+2

640 650 6700 7100 7100 7500 7500 7500 7500 8100 8200 8200 8400 8400 8500			с		JMAX=N+2 JMAX=N+1 IN CASE OF MESH EDGE SCHEME KMAX=NDIVZ+2 MH=M/2 JMH=JM/2 JMH=JM/2 JMH=JM/2 DELX=T/NDIVX DELY=YT/NDIVY DELZ=ZT/NDIVZ XTH=XT/2 DELI=DELX DELI=DELX DELI=DELX DELI=DELX DELK=DELZ IM1=IMAX-1 JM1=JMAX-1 IM2=IMAX-2 JM2=JMAX-2 KM2=KMAX-2 IM3=IMAX-3 JM3=JMAX-3
860 870 880 900 910 920 930 940 950 960 970	1 2	v			JM3=JMAX-3 KM3=KMAX-3 RDELI = 1.0 / DELI RDELJ = 1.0 / DELJ RDELK = 1.0 / DELK NORM=N IF(IOPTBC.EQ.1) NORM=N+1 NORMB=4 IF(IOPTBC.EQ.1) NORMB=2 IF(IOPTDZ.EQ.0) THEN DO 20 K=1,KMAX DZ(K)=DELZ
980 990 1000 1010 1020 1030 1040 1050 1060	2	V		20	CONTINUE END IF DZ(1)=DZ(2) DZ(1)=DZ(2) DZ(0)=DZ(1) DZ(KMAX)=DZ(KM1) DZ(KMAX+1)=DZ(KMAX) RAMX(0)=0.0 D0 10 MI=1.AMH
1070	1 1	S S		10	D=SIN(PAI#MI/M)/DELX RAMX(MI)=4.0*D*D
1090 1100 1110 1120 1130	1 1 1	S S S		11	DO II NJ=1/N D=SIN(PAI*(2*NJ-1)/(4*N))/DELY IF(IOPTBC.EQ.1) D=SIN(PAI*NJ/(2*(N+1)))/DELY RAMY(NJ)=4.*D*D D0 12 K=1.KMI D1=(D7(K)+D7(K-1))/2
1140 1150 1160 1170 1180 1200 1210 1220 1220 1240 1250 1260 1270 1260 1270 1280 1270 1280 1310 1310	1111112333331 122	~~~~~	С	13 13 12	D1= $(U_2(K)+U_2(K-1))/2$ D2= $(D_2(K)+D_2(K+1))/2$ D3=D1+D2 AK (K) = 2. / (D2+D3) CK (K) = 2. / (D1+D3) AK (K) = 1. / (D2 (K)+D2) CK (K) = 1. / (D2 (K)+D2) D0 13 NJ=1.N D0 13 NJ=1.N UK (M1, NJ, K) = - (RAMX (M1) + RAMY (NJ) + 2. / D1 / D2) BK (M1, NJ, K) = - (RAMX (M1) + RAMY (NJ) + 2. / D1 / D2) BK (M1, NJ, K) = - (RAMX (M1) + RAMY (NJ) + D4* (D5+D6)) CONTINUE D0 14 NJ=1.N D0 14 K=2. KM1 IK (M1, NJ, K) = - 6K (K) / (CK (K)+UK (M1, NJ, K-1) + BK (M1, NJ, K))
1330 1340 1350	3	5 V		14 150	$\begin{array}{c} \text{ON}(MT,NS,N) = -AN(N) / (ON(N) # ON(MT,NS,N) + 1 + ON(MT,NS,N) $
1360					CALL DECQEI(XQ;N;IW;WI;IEKK)

•

1370 1380 1390	1	v		152	CALL DFSIFB(XQ,N,IWSI,WISI,IERR) DO 152 MI=1,M AX(MI)=1.0 CALL DEFET(AX M AF PE MH IWI WILLIERP)
1400 1410 1420 1430	1	V			$\begin{array}{c} \text{CALL} & DERFITIAN, MARKER, $
1440 1450 1460	1	v		151	CONTINUE CALL DFRFBT(AF,BF,MH,AX,M,IWI,W11,IERR) DO 154 LJ=1,N
1470 1480 1490	1	V	с	154	XQ(LJ)=1.0 CALL DFCQBT(XQ,N,IW,W1,IERR) CORRECTION OF S(I,J,K) IN CONNECTION TO NEUMANN TYPE B.C.
1500 1510 1520	122	V			DO 160 J=2,JM1 DO 160 J=2,JM1 S(I,J,2)=S(I,J,K)+DPDZ1(I,J)/DZ(1) S(I,J,KM1)=S(I,J,KM1)=DPDZ2(I,J)/DZ(KM1)
1540 1550 1560	2	v		160	CONTINUE IF(IOPTBC.EQ.O) THEN DO 161 I=2,IM1
1570 1580 1590	2333	V V	с		D0 161, K=2,KM1 DDD=2*DPDY1(1,K) DDD=2*PIN(1,K) S(1,2,K)=C(1,2,K)+DDD/DELY
1610 1620 1630	3 3 1	v v		161	S(I, JM), K) = S(I, JM1, K) - POUT(I, K) / DELY/DELY CONTINUE ELSE
1640 1650 1660	1233	V			D0 162 I=2,IM1 D0 162 K=2,KM1 S(I,2,K)=S(I,2,K)-PIN(I,K)/DELY/DELY S(I, M) K)-S(I, M) K)-POUT(I,K)/DELY/DELY
1680	3	v		162	CONTINUE END IF
1700 1710 1720 1730	·		С С С	*& *	*** FOURIE TRANSFORM OF S(1,J) ***** ***** SA(K1,KJ,K) = QA(MU,NU,Z) ****** SA(K1,LJ,K)=SIGMA (S(1,J,K)) * EXP(-2.PA1.1.1.K1/M - 2.PA1.1.J DO 45 K=2,KM1
1740 1750 1760 1770	1 2 3 2	۷		60	DO 50 =2, M1 DO 60 NJ=1,N XQ(NJ)=S(I,NJ+1,K) IF(IOPTBC.EQ.O) CALL DFCQTF(XQ,N,1W,W1,1EBR)
1780 1790 1800 1810	2232	s		61 50	IF(IOPTBC.EQ.1) CALL DFSTBF(XQ;N;IWST;WIST;TERR) DO 61 LJ=1;N SSAQ(I;LJ)=XQ(LJ)/NORM CONTINUE
1820 1830 1840	1 2 3	v		62	DO 51 LJ=1,N DO 62 MI=1,M AX(MI)=SSAQ(MI+1,LJ)
1850 1860 1870	222				CALL DFRFTF(AX,M,AF,BF,MH,IWI,W11,IERR) SA(O,LJ,K)=AF(O) SB(O,LJ,K)=0.0
1880 1890 1900	23333	V V V		63	D0 63 KI=I,MH SA(KI,LJ,K)=AF(KI) SB(KI,LJ,K)=BF(KI) CONTINUE
1920 1930	22	•	с	т	SB(MH,LJ,K)=0.0 EMP
1940 1950 1960	2			51 45	CONTINUE CONTINUE DO 70 MI=0,MH DO 70 NI=1 N
1980 1990 2000	233	s s			D0 70 K =2,KM1 DB=CK(K)*VKB(MI,NJ,K-1) - SB(MI,NJ,K) VKB(MI,NJ,K)=UK(MI,NJ,K)*DB/AK(K)
2010 2020 2030 2040	3 3	S S	с	70	DA=CK(K)*VK(MI,NJ,K-1)-SA(MI,NJ,K) VK(MI,NJ,K)=UK(MI,NJ,K)*DA/AK(K) """ FOURIE TRANSFORM OF PRESS. P BY POISSON EQ. """""" DO 71 MIEO.MH
2050 2060 2070	1 2 2	V V			DO 71 NJ=1,N PA(MI,NJ,KMAX)=VK(MI,NJ,KM1)/(1UK(MI,NJ,KM1)) PB(MI,NJ,KMAX)=VKB(MI,NJ,KM1)/(1UK(MI,NJ,KM1))
2080 2090 2100 2110	2	V		71	CONTINUE DO 73 MI=0,MH DO 73 NJ=1,N
2120 2130 2140	2333	v v v			K=KM1-KK+2 PA(M1,NJ,K)=UK(M1,NJ,K)*PA(M1,NJ,K+1)+VK(M1,NJ,K) PB(M1,NJ,K)=UK(M1,NJ,K)*PB(M1,NJ,K+1)+VKB(M1,NJ,K)

2150 2160	3 V	′ c	73	CONTINUE PA(0,1,KM1)=PAVE
2170 2180		Ċ		PB(0,1,KM1)=PAVE PA(0,1,KMAX)=PAVE
2190 2200		С		PB(0,1,KMAX)=PAVE D0 75 KK=2,KM2
2210 2220	1 V 1 V	/ /		K=KM2-KK+2 PA(0,1,K)=UK(0,1,K)*PA(0,1,K+1)+VK(0,1,K)
2230 2240	1 V	′с	75	PB(0,1,K)=UK(0,1,K)*PB(0,1,K+1)+VKB(0,1,K) "INVERSE FOURIE TRANSFORM OF PA(K1,LJ,K) """""
2250 2260		С		WRITE(6,*) SA(1,1,2),PA(1,1,2),PA(2,2,2) DO 77 K=2,KM1
2270 2280	1 2			DO 80 LJ=1,N AF(0)=PA(0,LJ,K)
2290 2300	2 3 V	,		DO 81 KI=1,M AF(KI)=PA(KI,LJ,K)
2310 2320	3 V 3 V	1	81	BF(KI)=PB(KI,LJ,K) CONTINUE
2330 2340	2 2			CALL DFRFTB(AF,BF,MH,AX,M,IWI,W1I,IERR) DO 82 I=2,IM1
2350 2360	3 V 2	/	82 80	SSA(I,LJ)=AX(I-1) CONTINUE
2370 2380	1 2			D0 83 1=2,1M1 D0 84 LJ=1,N
2390 2400	3 V 2	/	84	XQ(LJ)=SSA(I,LJ) IF(IOPTBC.EQ.O) CALL DFCQTB(XQ,N,IW,W1,IERR)
2410 2420	2			IF(IOPTBC.EQ.1) CALL DFSIBF(XQ,N,IWSI,WISI,IERR) DO 85 J=2,JM1
2430 2440	3 S 3 S	ç		PN(,J,K)=XQ(J-1)/NORMB WR_TE(6,*)
2450	3 5	s C	85 85	CONTINUE
2470	1	~	83 77	CONTINUE
2500		č	****	**SPECIFICATION OF PRESSURE BOUNDARY CONDITION****
2520		č	ጥጥጥጥ	1) DIRICHLET CONDITION DO 90 L=2 LM1
2540 2550	1 2 V	,		DO 90 K=2,KM1 PN(1,JMAX,K)=POUT(1,K)
2560 2570	2 v	' c	90	CONTINUE
2580 2590	1	-		IF(IOPTBC.EQ.O) THEN DO 95 I=2,IM1
2600 2610	2 3 V	' C		DO 95 K=2,KM1 DDD=2*DPDY1(1,K)
2620 2630	3 V 3 V	,	95	DDD=2*PIN(I,K) PN(I,1,K)=PN(I,3,K)-DDD*DELY
2640 2650	1			ELSE DO 96 1=2,1M1
2660	2 3 V	,	96	DO 96 K=2,KM1 PN(1,1,K)=PIN(1,K)
2680	I	с	P	ERIODIC B.C. IN THE X-DIRECTION
2710	1	,		DO 91 $K=2, KM1$ DO 91 $J=2, JM1$
2730	2 V 2 V	,	Q 1	PN(IMAX,J,K) = PN(2,J,K)
2750 2760	2 *	C*	*****	*ĚND OF PRESS. B.C.***** END

POISNS POISND

SOLUTION OF 3-D POISSON EQUATION BY DIRECTLY SOLVING METHOD (FFT & TDM TEQNIQUE) 直接解法(FFT & TDM法)による3次元ポアソン方程式の解 プログラムの形式 a コンプリートプログラム ① サブルーチン c 関数 著 作 権 者 大阪大学工学部 洒井勝弘 1988年1月1日 利 用 者 の 義 務 @ プログラム名と作者名を明記する b 明記の必要なし c その他 ソースプログラムの公表 a 公表する ^(D) 公表しない(当分の間) ^(C) 相談の上 使 用 種 ACOS シリーズ 77 機 SX シリーズ 使 用 言 語 FORTRAN 77

§1概要

いくつかの境界条件に対する3次元ポアソン方程式(P²P=S)の解を求める。高速フーリ エ変換法(FFT)と三重対角行列アルゴリズム(TDM)を併用して反復法に依らず直接解法 で解くので高速・高精度(2次の差分近似の範囲内に於いて)計算が可能であり、多大なタイ ムステップに亘ってポアソン方程式を解くような問題に対して特に有用である⁽¹⁾

§2 使用法

(単精度)

CALL SPOIS (IM, JM, KM, XT, YT, ZT, IOPTDZ, IOPTBC, PIN, POUT, DPDZ1, DPDZ2, S, PN, WK01, WK02, WK03, WK04, WK05, WK06, WK07, WK08, WK09, WK09, WK10, WK11, WK12, WK13, WK14, WK15, WK16, WK17, WK19, WK20, WK21)

(倍数度)

CALL DPOIS (引数はSPOISと同様)

21 *6	型		蒲 類 寸注	内容
71 xX	SPOIS	DPOIS		ц
I M JM KM XT YT ZT IOPTDZ D Z	整 実 整 実 数	整 " 倍実 整 倍実 数 " " 精数 " " 数 度型 数 度型	1 次元配列 (0:KM)	X 方向メッシュ分割数+2 Y <i>"</i> Z <i>"</i> X 方向全長 Y <i>"</i> Z <i>"</i> Z 方向メッシュの取り方に関するオプション = 0:等間隔メッシュ = 1:入力値(DZ(k)) Z 方向メッシュ巾(IOPTDZ=0の時は 任意値ない) K=2 K=3 K=KM-1 DZ(2) DZ(3) DZ(KM-1) K DZ(0), DZ(1), DZ(KM)は任意値でよい。
				 − − − − − − − − − − − − − − − − − −
IOPTBC	整数	整数	2次-元配列	 Y方向境界条件のオプション = 0:Y方向負側で Neumann型、正側で Dirichlet型 = 1:Y方向正、負両側で Dirichlet型
PIN	実数	「	(IM, KM)	Y方向負側境界条件(Neumann 型の場合 は微係数)
POUT	"	"	"	Y方向正側境界条件(
DPDZ1	" "			Z方向負側の Neumann 型境界条件
DPDZ2	" "		2 次元配列 (IM, JM)	"正"
S	"	"	3 (K元配夕) (IM, JM, KM) 	ポアソン方程式のソース項

(Continued)

21 **	퓐	민	· 待 稻 · 十 计	中	
51 炙	SPOIS	DPOIS	性 积 ,		
ΡN	実数	倍 精 度 実 数 型	3次元配列 (0:IM,0:JM,0:KM)	ポアソン方程式の解 (P ² (PN)= S)	
WK01	"	"	1 次元配列 (IM)	作業領域	
WK 02	"	"	2 次元配列 (0:IM, IM)	"	
WK 03	"	"	1 次元配列 (3*IM)	"	
WK 04	"	"	1 次元配列 (IM)	"	
WK 05	"	"	1 次元配列 (4 * JM)	"	
WK 06	"	"	1 次元配列 (3 * IM)	"	
WK 07	"	"	3 次元配列 (0:IM, JM, KM)	"	
WK 08	"	"	3 次元配列 (0:IM, JM, KM)	"	
WK 09	"	"	3 次元配列 (0:IM, JM, KM)	"	
WK 10	"	"	1 次元配列 (0:IM)	"	
WK 11	"	"	1 次元配列 (0:JM)	"	
WK 12	"	"	1 次元配列 (KM)	<i>"</i>	
WK 13	"	"	3 次元配列 (0:IM, JM, KM)	"	
WK 14	"	"	1 次元配列 (KM)	"	
WK 15	"	"	1 次元配列 (IM)	"	
WK 16	"	"	1 次元配列 (IM)	"	
WK 17	"	"	3 次元配列 (0:IM, 0:JM, 0:KM)	"	
WK 18	"	"	"	"	
WK 19	"	"	"	"	
WK 20	"	"	"	"	
WK 21	"	"	2 次元配列 (0:IM, 0:JM)	"	

3 出 力

計算体系の全ての内点に対してポアソン方程式の解((((PN(I,J,K), I=2, IM-1), J=2, JM-1), K=2, KM-1)が SPOIS 又は DPOIS より得られるので、ユーザが 適当にプリントアウトすればよい。

4 性 能

科学技術計算に於いて頻出する3次元ポアソン方程式を、高速フーリエ変換法と三重対角行 列アルゴリズム法を併用することによって直接解法で高速・高精度に解く機能を有する。即ち、 X、Y方向にはその方向の境界条件を満足する離散型フーリエ級数で展開し、その展開係数を Z方向の境界条件を満足するように三重対角行列アルゴリズムによって解き、然る後にフーリ エ逆変換を行って任意位置のポアソン解を求めている。

このように本サブルーチンは高速・高精度演算を本来の目的としている為、計算体系やメッ シュのとり方には制約条件がある。又現在取扱うことのできる境界条件の組み合わせについて も、以下の制限があるが他の境界条件の取扱いについては若干の追加作業により可能である。

1) 計算体系及びメッシュ体系

計算体系は直方体系で、X、Y方向には等間隔メッシュに固定、Z方向には不等間隔メッシュが可能。

2) 境界条件

X方向には、周期条件。

Y方向には、①両端で Dirichlet 型、又は、②負側境界で Neumann 型、正側境界で Dirichlet 型の2 種類の境界条件が設定できる。

Z方向には、両端で Neumann 型。

5 備 考

フーリエ変換はFFT法によるNEC開発科学技術計算ライブラリイ(ASL)⁽²⁾に基づいて おり、又単精度計算(SPOIS)と倍精度計算(DPOIS)が可能で各々でライブラリイを使 い分けている。

計算精度に関しては、POISSON方程式を離散化する際の打ち切り誤差及び計算機の丸め 誤差の2種類が一般に考えられる。前者については、本ルーチンでは2次精度の中心差分式を 使用しているので、打ち切り誤差はO($\triangle x^2$, $\triangle y^2$, $\triangle z^2$)である。この誤差はメッシュ巾を小 さくとることによって、原理的にどんどん小さくできる。丸め誤差に関しては、ACOSの場合 単精度計算(SPOIS)で約6桁、倍精度計算(DPOIS)で約12桁の精度である。従って、 両者(打ち切り誤差と丸め誤差)のより大きい方で計算精度は律則される。

6 使用例

計算の使用例を次に示す。

PROGRAM POISSN PARAMETER IM=6, JM=12, KM=7 DIMENSION PA(0:IM,0:JM,0:KM),SA(0:IM,0:JM,0:KM),SSA(0:IM,0:JM) DIMENSION PB(0:IM,0:JM,0:KM),SB(0:IM,0:JM,0:KM),AF(0:IM),BF(IM) DIMENSION PN(0:IM,0:JM,0:KM),S(IM,JM,KM) DIMENSION DZ(0:KM), AK(KM), BK(0:IM, JM, KM), CK(KM), RAMX(0:IM) DIMENSION RAMY(0:JM), VKB(0:IM, JM, KM), AX(IM) DIMENSION UK(0:IM, JM, KM), VK(0:IM, JM, KM) DIMENSION W11(3*IM), W1SI(4*JM) DIMENSION XQ(JM), W1(3*JM), SSAQ(0:IM, JM) DIMENSION DPDZ1(IM, JM), DPDZ2(IM, JM) DIMENSION PIN(IM, KM), POUT(IM, KM) NAMELIST /INPT/NDIVX,NDIVY,NDIVZ,XT,YT,ZT,IOPTBC,IOPTDZ, & DZ, PIN, POUT, DPDZ1, DPDZ2, S, ISKIP, JSKIP, KSKIP READ(5, INPT) IMAX=IM; JMAX=JM; KMAX=KM IM1=IMAX-1; JM1=JMAX-1; KM1=KMAX-1 CALL SPOIS(IMAX, JMAX, KMAX, XT, YT, ZT, IOPTDZ, & DZ, IOPTBC, PIN, POUT, DPDZ1, DPDZ2, S, PN, 8 AX, SSAQ, W1, XQ, W1SI, W1I, VKB, VK, UK, ጲ RAMX, RAMY, AK, BK, CK, AF, BF, SA, SB, PA, PB, SSA) WRITE(6,8010) DO 8100 I=2, IM1, ISKIP DO 8100 K=2, KM1, KSKIP KK=K+KSKIP WRITE(6,8012) DO 8100 J=1, JMAX, JSKIP WRITE(6,8040) I,K,J,PN(I,J,K) CONTINUE FORMAT(//2X, ' I', ' K', ' J', 8X, 'P') FORMAT(1H) FORMAT(2X, I3, I3, I3, 2X, 1PE12.5) STOP END

参考文献

8100

8010 8012

8040

- K. Sakai and T. Sekiya, "Nemerical Simulations of Turbulent Fluid Flows. I-Fast Fourier Transform Method -, Tech. Repts. Osaka Univ., 34 Oct. (1984) 193-200.
- NEC, "SX ソフトウエア科学技術計算ライブラリイ説明書"
 <ASL/SX 第2分冊>