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解説

高速流れ場の中の音の伝播

大阪大学基礎工学部 椿下屑＿

l. まえがき

音の伝播問題への数値法については， 空力音響学の領域に限っても， 従来から数多くある． しか

し．その適用例は， 放射や散乱，室内音響のように音波の伝播する媒質は静止している場合がほとん

どであり， 噴流のように高速で運動する媒質中での音の伝播といった場合への応用は非常に少ない．

本稿では， このような高速流れ場中の音源からの音の伝播を考え， それに対して差分法を適用する．

ここでは， まず， 音響問題における代表的な数値解法を概略する． 次ぎに， 本論にはいる準備と

して， 差分法の誤差解折について述ぺ， この方法を音の伝播問題に適用する場合に前もって考えて

おくべき種々の問題点について議論する． 最後に， 差分法による音波の伝播および音場計算の具体

例として， 亜音速せん断流中の音源による音場の数値計算について紹介する．

流れ場と音の問題は大別すれば発生と伝播になる． もちろん， これらは密接に結びついているの

であるが， ここでは音の発生の問題，には触れない． 興味ある読者は， 例えば， 坂尾"・ Ribner2>に

よる解説等を参考にしていただきたい．

2. 音場の数伯解法

本稿は， 差分法を中心に話を進め， それについては後で詳しく述べることにする． ここでは， そ

の他の代表的な手法 3, 4 lについて概説する． ただし， 音の伝播問題への有限要素法の適用について

は紙面の制限から他の文献 6)にゆずることにする．

2. l幾何音響学 (Geo曰etorical acoustics, Ray acoustics) の近似

音波の振幅と伝播の方向が波長の距離で一定とみなせる場合の近似であり， 非均ーな媒質中での

伝播に対しては代表長に比ぺ波長が十分短い（一般に高周波数の波）ことが必要である． この方法

を用いると， 音の伝播を直感的なイメージでとらえることができる． しかし， 波の回折（胃ave dif一

fraction) が説明できない， 又， 非均ーな場に適用すると， 多くの場合， 'caustic'と呼ばれる包絡

線が発生するが．その付近では幾何音響学の近似は成立しない， 空間各点における音圧の計算が結構

めんどうである， などの欠点を持つ．

2. 2 スペクトル法

スベクトル法は本来は級数展開法の一種で， 一般にフーリエ級数あるいはチェビシェフ級数を用

いる． フーリエ変換法もこの方法に含まれる． スペクトル法は空間差分を含まないこと， 後述する
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図 I 2次元せん断流における

音の伝播 (Candel,文献 6)

エイリアシング誤差を消去できるなどの利点があり， 流体力学や波動問題に広く適用されている．

ただし． 周期境界条件が必要であること， 衝撃波のような急な流れの変化を伴う問題に不適で］ 簡

単な流れに適用が限られているようである．

Candel6' は亜音速せん断流中の線音源からの音の伝播を数値計算している（図 1). まず， せ

ん断層内の連続的な速度分布を階段関数におきかえ， 各々の層内では流れの状態が一様であると仮

定する． 音源は単一周波数の点音源で中心軸上に固定されており， 各層間の接触面で圧力および垂

直方向の流体粒子変位が連続であること， 又， 最後の層については放射条件を満たす必要がある．

この系に対して， X に関してフーリエ変換し逆変換に F F T を用いる． しかし， 実際の適用に際し，

ある居で波がほとんど減衰してしまい外部に放射できないといった不都合が生じるため修正を行う

必要がある． 図 1は M= 0. 8 で 5層からなるせん断層の場合の計算結果で音圧の大きさおよび波面

を表す. 0 = 5 0°(= c o s -1 l / ! + M) に音圧のビークがあり， 主流に近い方向の音圧レペルは低くな

る． このような音場の特徴は高周波数に対する幾何音響学の近似による結果とよく一致している．

この方法を軸対称問題に適用する場合には， フーリエ・ベッセル変換となるが． その逆変換にお

いて， 積分径路上に 'Rayleigh pole' があるため F F T のサンプリング問題に工夫がいる 4). 従っ

て軸対称問題へのこの方法の適用は今のところ簡単な問題に限られている．

2. 3境界要索法

境界積分法は， 微分方程式の境界値問題をそれと等価な積分方程式に変換することで， 境界上の

積分だけを含む方法であるが， 最近では境界要索法と呼ばれる数値解法が注目されている． 境界要

索法は， 境界が複雑な幾何学的形状も扱いやすい， 未知量が境界上の値だけであるため有限要索法

等に比べ未知数が少ない， 又， 入カデータ量が減り労力が省ける， さらに無限遠まで領域が広がる

場合のいわゆる放射条件を簡単に満足するなど有効な点が多い． しかし， 一方， 一般の非線形偏微

分方程式に適用できる差分法や有限要索法に対し， 境界要索法では同次方程式に限られ， 特異解（
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グリーン関数）が簡単に得られるものでないと使えない 7). さらに数値計算上． 完全に密な行列の

反転が必要で計算点の割には計算量が減らない， さらに空間の 1点での値を求めるのに， グリーン

関数を境界上で計算しなおす必要があるなど不利な点も多い．

境界要索法の音響問題への適用は， 音響放射つまり振動する物体からの無限に広がる媒質中への

音の放射， あるいは散乱のように音波が物体によって反射， 回折する場合， さらに室内音墨のよう

な内部音場の問題に限られているようである． これらは． He! oho I zの方程式に支配される． Candel 

')はこの境界積分法を用いて入射平面波が剛体により散乱して作られる音場を具体的に計算して，

既知の解析解と比較した． 数値解は全体的にはよく一致しているが， 剛体球表面のごく近くではあ

まり精度がよくない． これは境界積分法においては境界上で特異項の積分を含んでいることの影響

で何らかの対策が必要であることを示している．

3. 差分方程式と誤差解折

波動問題を差分法で解く場合に． その差分法がもつ誤差の性質が解にどのように影響するかを考

えておく必要がある． 以下で述べる誤差解析については， 既に多くの文献で記述されているので，

ここでは概略を述べるにとどめる．

誤差について述べる．

au au 
―+  Cー =Oat aェ

次の波動方程式に対する Maccormack 法を適用した場合の数値

(1) 

に対する Maccormack 法は

ー＋
 ”.J
 

-
U
 
u" 
C LJ t 

Jーニ(u7 Uい）

u'j+1 =½[ u'}+町+1-宍（町月―町+1)〕 (2) 

この差分方程式の厳密解を D, 有限桁による実際の計算機を使って得られる差分方程式の数値解を

N, もとの偏微分方程式の解折解を A とすれば， 計算機による数値解のもつ誤差 (A N) は， 丸

め誤差 e = N - Dおよび離散化誤差 o = A - Dからなる． ここで丸め誤差は，

有限桁計算のため数値を丸めるのでそれにより生じる誤差である．

連続的な問題を離散化したための誤差で，

S. 1増幅係数による安定性解折 8l 

あるから，

大阪大学大朋計籾機センターニュース

一方．

実際の計算機では

離散化誤差というのは，

主に打ち切り誤差と境界条件の誤差からなる．

ここでは von Neumann によるフーリエ級数に基づく安定性解折を行う．

丸め誤差 e は u と同じ式を満足する．

差分方程式 (2) は線形で

つまり
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c;+1=c; ー½£Jf(c い— C い）+½(予）2 (c い— 2c'J + cい） (3) 

上式に対する解を次の形で仮定すると

c (エ， t)=I:ea1e出,,x
m 

ここで a は複索数.k は波数である． 式 (3)は線形であるから単一の項 eぷ""e 

に基づく誤差のみを考えればよい． そこでこれを式 (3)に代入して整理すると

n+l c m CiJf 
―=  1 -v 2 (1 -cos /3) -iv sin /3, v = -— /3= kmiJX 
c n iJX' 
m 

(4) 

o.t i.i.,m X 
e 

(5) 

μ はクーラン数， f3は波数バラメータである． バ；＋』;.,: は 1タイムステップ当たりの丸め誤差の増

加の割合を意味し， 増幅係数 (Amplification Factor)と呼び， 以下 G で示す． 差分式が安定のため

には G;;; 1 が必要でぁり式(りよりμ;;; 1・

-n十'n
差分方程式の厳密解に対する増幅係数 U・/U・ は， 差分式が線形であるので丸め誤差の増幅係数J J 

沖
と同じになり， これを G= IGI e とおくと

I G 12 = 〔1-1) 2 (1 -cos (i)〕z + v z sin2 (i 

¢=tanー1[ -v sin /3 ] 
1 -)) 2 (1 -cos /3) 

(6)  

方， もとの偏微分方程式の厳密解に対する増幅係数を求めてみる．波勁方程式 (I)の解として u= 
d七 i-kx
e. e を仮定し代入すれば a=-ic k となるので u = e 浪 (x-ct)

沖e.
とGe=IG el e より

IGel=1.¢e=ck』t=-f]v

1.0 0.0 

IGI 

大阪大学大刑計籾機センターニュース

1.0 1.0 0.0 

<l>/<l>e 

図2 MacCormack法の減衰，位相特性

80 -

． 従って, Ge= U.Ct+&t)/Ll(t) 

(7) 

1.0 
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よって，

の比較，

差分方程式およびもとの偏微分方程式のそれぞれの厳密解に対する増幅係数 G および Ge

つまり IGIと</>I在によってスキームの誤差の特性が明らかとなる． 例えば． ¢/ <Pe > 

であれば位相進みを ¢/'Pe Iなら位相遅れのスキームである．理想的なスキームとしては， 減衰

や位相の誤差のないスキームで /GI= 1, ¢I <Pe = Iであればよい． 例として， Maccormack法の減

衰． 位相の各特性を図 2 に示す．

8. Z 擬似微分方程式による解析 0)

ここでは擬似微分方程式 (Modified Equation)に基づいて， 差分法の安定性，散逸性および分散性

等について述ぺる． 例として，基礎方程式は式 (I)を用い， 差分法として Maccormack法を取り上げる．

まわりでテーラー展開すれば式 (2)を (Xj , l71.) 

OU  OU 」t O 2 U C 2 J t O 2 U (LJ t) 2 O 3 U C」t O 3 u 
+c +—+ + 

o t oェ 2 ot2 2 OX2 6 ot3 6 OX3 
(LJ t) 3 0 4 U C 2 J f (LJエ）2 0 4 u 
＋＋  24 0 t 4 - 24 0 X 4 

(8) 

゜式 (8)を珠り返し微分して U を除く高階の時間導関数を消去する．この場合．差分式として実際に解

いているのは式 (8)であり，もとの式 (1)ではないので，

すべきではないという点に注意しなければならない．

られた微分方程式は

高階の時間導関数項消去のため式 (I)を使用

MacCor日ack 法に対して， このようにして得

au au 
+ C at ax 

C 
--(L1 x)2 (1 
6 

沢）
か u C (LIエ）3
0ェ3 8 

）） (1 
a 4 u 
尻） + 0 (』x)4ax-1 

(9) 

式 (9)が実際に数値解が満たす微分方程式であり、 Maccormack 法を使って解いている方程式は式 (I)

ではなく式 (9) である． この方程式を擬似微分方程式という．式 (9)の右辺は差分近似により生じる

誤差で打ち切り誤差と呼ばれる． 差分式の精度はこの誤差に現れる△ X, 

決まる． Mac Cormack 法は (A x) 2であるから 2次精度のスキームである．

をどのように 0 に近づけても打ち切り誤差が 0 に近づくことである．

擬似微分方程式を次式のように

OU  OU  = ozn+l u = oznu 

ot  
—+ C―=  I: μ(2 n+  1) OX  oェ2n+l +I:μ(2n) n=O n+l 0ェ2"

上式の基本的な解とし U (X, t) 
o(t ii::c. 

= e , e と仮定し a=a +i b とおけば，

a=LCー l)nk2"μ(2n)
n=l 

b=ICー l)"k211+1μ(2n+l)
n =o 

△ tに関する最低次数で

又．適合性とは△ X• △ t 

係数 a,

(I O) 

b は

数値的に安定のためには a~O でなければならない． 波数 K が小さい場合，

(I I) 

近似的に a は最低次数

の項で決定される． これを Maccormack 法に適用すると

μ(4) = -C (LIエ）3 J) (1 —砂） /8~0 (I 2)  
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Exact Solution 

口
Dissipation Error Dispersion Error 

図 3 散逸性誤差と分散性誤差

となるので V :l,, J となる． これは前述の増幅係数に基づく結果 (4)式と一致する．

次ぎに擬似微分方程式と増幅係数とを関連づけよう． 式 (II)の碁本的な解の増幅係数は
炉 t a_,i七 ;,bat; ;,,f 

Gm=e =e e であり， フーリエ級数に基づく安定性解折から得られる増幅係数 G=IG/e と

致するので， 両者の比較から

IGl=eaJt=exp [J;/-1)nk2nμ(2n)L1t] 

= 
¢=bLJt=ICー 1)"k2n+iμ(2 n+ 1) L1 t 

n=O 

(I 3) 

従って， 減衰に関係するIGIは，打ち切り誤差の偶数解の導関数の係数 μ(2n)で決まり， この誤差を

散逸性誤差 (dissipationerror) と言う． 一方， 位相誤差は打ち切り誤差の奇数階の導関数の係数

μ(2 n +I) にのみ関係し， これによる誤差を分散性誤差 (dispersionerror)と言い位相ずれの原因

となる（図 3) . 

4. 波勁問題と差分法

流れ場中の波の伝播を差分法で解く場合には， 少なく

とも 3 つの重要な長さに関するパラメークが存在する．

それらは差分格子 h と， 非均ーな流れ場の径 D.それに

計算領域の大きさ Lである（図 4) • もちろん， これら

は波長入に対して考えるぺきであるので， h/入、 DI入．

~lim他
コ・に

L
 

および L/入となる． まず， h/入は 1波長当たりに何個 図 4 差分計算にあらわれる代表長さ
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の格子があるかということで解の精度， 安定性に関係する． DI入は非均ーな流れ場に何波長の波が

含まれるかを示し， 非均ーな場を通過後の波のゆがみの程度を表す．

の波があるかを示し． 計算領域外端での放射条件の有効性と関係する．

又， L/入は計算領域に何波長

従って空間的な格子配列と

しては上述のパラメータを考えながら計算コストの面から総格子点数を可能なかぎり少なくするこ

とが望ましい． このような点を考慮しつつ， 実際に差分法を適用する場合の問題点を列挙すると

① 数値誤差である分散， 散逸誤差の少ないスキームの選択

② 計算領域が有限であることによる境界外端からの波の反射の問題

③ 波長に対する差分格子間隔の比

④ 数値境界条件の与え方

→ エイリアシング誤差や分散， 散逸誤差の発生

などが考えられる． 最後の数値境界条件については．

るぺきことなので文献 I0を参照していただくとして，

差分法で境界値問題を解く場合に一般的考え

ここでは特に取り上げない．

LI スキームの選択

差分法は， 多種多様の流れの解折に応用されてきたが， 波勁問題への適用は意外に少なく始まっ

たばかりといってよい． 音場の計算においては普通， 遠方場に興味があるので音源から遠方まで精

度よく数値解を求める必要がある． 1次精度の差分法は散逸誤差が支配的で遠方での波が数値的散

逸のため減衷して正確に捉えられない． 定常問題においては， 一般に使用されている 2次精度の差

分法 (Maccormack 法．風上法等）は分散誤差が支配的で位相ずれを起こして波形を崩す． 従って波

動を正確にシミュレートするには数値誤差の少ない高次の精度の差分法を用いる必要がある． この

場合， I格子点， l タイムステップ当りの計算量が多くなり計算時間の増大となる． 又， 境界条件

の取り扱いが難しく誤差の発生をまねきやすい． 一方． 時間に関して高精度な差分スキームは一般

に計算時間がかかりすぎること， アルゴリズムが複雑となるため用いられることはほとんどなく．

高々 2 次精度である． このような考えに基づき，次のような時間 2次、空間 4次の精度のスキームを

用いた方法が提案されている 111 (以下． 簡単のため T冑o-Four Method と呼ぶことにする）．

このスキームは一次元の波勁方程式 (I)に対し

□ = U'J十f(7u'J-8uい+uい）

u j+l =½[ u j +町+l+i ( 7町+!+ 8五］月ー句誌）］
(I 4) 

この差分法の安定性について考えると 前述の安定性解折により増幅係数を求めると

炉
G= 1--

18 
(1 cos /3) (25-7 cos /3) -if sin /3 (4 -cos /3) 

(I 5) 

安定のためには IGI:. Iであり v く 2/3 となる．
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実際に各スキームを適用した場合に， どの程

度の誤差の影響が現れるかを具体例で示す． こ

こでは厳密解がわかっている 1次元の正弦波問

題を考える．図 5 は 40 0タイムステップ後の数値

解を比較したものである．

法は位相遅れを，

る．

明らかに MacCor口ack

風上法は位相進みを示してい

誤差への影響は．パラメータ". f3によって

変わるのでいちがいには判定できないが

要はなく，

例えば， 2 次元方程式

au of og 
訂十万ご万=O

大体に

おいて T●o-Four Methodは厳密解とよく一致して

おり波動問題で有効な方法である．

非定常多次元の問題は直接差分計算される必

時間分割法の考えを適用し非定常 l

次元問題の組み合わせで解かれることが多い．

に対し， 次のように方程式を分割し

ou of 
＋＝  o t oェ ゜au 8 g 
訂十万了=0 

それぞれの差分オペレータを

u (t + 2』t)

で与えられる．

L X. Ly 

(I 6) 

とすれば，

図 5 1次元正弦波の伝播 (/J

LCL1 t) Ly(』t)Ly(Li t) LxCLi t) u (t) 

4.2 外部壊界の位固

音の外部放射問題のように音場が無限遠方まで存在する場合には， 差分計算上，

Maccormack 

v•O, 95・

Upwind 

v•O. 95 

＇ Two-Four 

v•O. 25 

3 6°) 

(1 7) 

(1 8) 

量の制限により計算領域は有限の大きさにならざるをえない． このような場合，

つまり計算機容

その対策として大

別して 2 通りある．

法である．

効であるが，

ただし．

1つは写像あるいは座揉変換により外部の無限領域を有限の領域に変換する方

無限遠方での解が一定値に漸近するか， 急速に減衰する場合にはこの方法は有

振動する性質の場合には適さないという報告がある． もう 1 つの対策は， 音源から有

限の距離に人工的な境界を置く方法がある．

大阪大学大吼汁籾機センターニュース
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射なしで通過できるか， あるいはもう少し条件を弱めて， この人工的な境界の位囲を遠方に移勁さ

せるにつれて， 反射が急激に減衰するかということである. Bayliss & Turkei121は無限領域問題

のときの Soamerfeldの放射条件を一般化して． 音源から十分遠方で．解が振動する性質を持つ場合

に有効な方法を提案している． また， 最も簡単な方法としては， 外部境界の位囲を可能なかぎり遠

方に骰き． 音源からの擾乱が到達する前に計算を終了させる方法がある． この時， 格子数が必然的

に増加するが， 十分遠方では格子間限を大きくとるなどの工夫により十分可能な方法といえる． 第

5節で述べる計算例では， この方法を採用している．

4.3 差分格子間隔

波勁問題の差分計算における格子間隔に関して． 定常問題では無視されるいくつかの特有な点が

ある． まず波動問題では散逸誤差よりもむしろ分散誤差の低減が重要である． つまり分散誤差によ

る位相ずれで波形が変形しないということである． もう 1つ． いわゆるエイリアシング誤差と呼ば

れる誤差がある． 格子間隔を h とすれば格子がとらえることのできる波の最小波長は 2h である．

従って， 例えば流れに逆らって伝播して行く波のように． その波長が短くなれば格子間隔も小さく

しなければならない． この制限を越えて格子間限が大きいと， 長い波長成分の波に影墨を与え． 結

果的に数値不安定性を起こす．

以上のことから． 格子間限が小さい程これらの誤差は減少して良好な結果が期待できる． しかし，

前述のように用いるスキームが陽的差分法のため空間格子間限が小さくなれば時間間隔も減少し，

ある時刻に達するまでの総ステップ数が増加し誤差の累積の影響があらわれる． 又， 3. 2 節で述べ

たように計算領域の外端は十分遠方にとる必要があり． その結果， 格子点数が多く計算時間も増大

する． 従って． 十分遠方では格子間隔を粗くとるなどして空間格子の配列に工夫が必要である．

5. 咬流中の音源による音場

Bayliss & Maestrellol3)は亜音速噴流中のパルス音

からの音の伝播に関して．実験的に得られた速度分布を

用いて数値計算した． 使ったスキームは前述の T冑o-Pour

Methodである． 図 6 はある時刻における音圧の空間分

布を示す． 彼らはそれまでの Lig h th i l l方程式あるいは

Lil le yの方程式のような波勁方程式を用いず Eule rの方

程式に基づいて計算した．前に述ぺたように ,Candel は

図 6 音場の計算例 (Bayliss

& Maestrello. 文献 13)

せん断流中におかれた点音源の作る音場を， フーリエ変換に基づき数値計算で具体的に求めている

が， その適用に際し， せん断流速度分布をいくつかの不連続な階段関数の集まりの分布で近似して

いること， 軸対称問題への拡張が難しいなどの制約があった．差分法を用いた場合 14) にはこれらの
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2
 f/0 

-1 
X/0 1 2

 

2
 「/D

-1 
X/01 2

 

(a)音圧レベル分布 (b)波面

図 7 軸対称亜音速せん断流からの音の伝播 (Tsubakishita,Y. et al., 文献 14)

制限はない． 一例として， 図 7 に主流マッノ、数 0.8 の場合の音圧レペル分布および波面を示す．こ

こで簡単のため， 平均流れ場は圧力と密度が一定で， 広がりなしのせん断流を仮定している． 格子

点数は 585X259 で計算領域は音源から波長の IO 0倍程度にとっている． 音源上流での音波の波長

は主流マッノ、数が増大すれば短くなるのでこの領域での格子間隔は細かくしている．

6. あとがき

以上， 流れ場中の音源からの音の伝播を例に取り代表的な数値解折手法について概略し， 差分法

を波勁問題に適用する場合に考慮すぺき点について述ぺた． 差分法による音場計算の具体例として，

せん断流および超音速自由噴流への適用を示した． しかし， 実際の咀流からの音の伝播をシミュレ

ートするには， 例えば， 音源の種類やその分布および音源の運動の影響， 平均流れ場をどのような

形で与えればよいか， などといったまだまだ多くの問題が残されている． なお， 浅学のため不適切

な説明があったかと思うが， 不十分な点については参考文献を参照していただきたい． また， 本稿

は日本機械学会関西支部第 1 5 3回講習会の教材（文献 1 5) の原稿を加筆、 修正したものである．
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