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Measuring Methods of Three-Dimensional Residual Stresses
with Aid of Distribution Function of Inherent Strain

(Report I) T

— A Function Method for Estimating Inherent Strain Distributions —

Yukio UEDA* and Ning Xu MA#**

Abstract

When three-dimensional welding residual stresses are measured based on inherent strain using the
Finite Element Method, too many inherent strain components in elements have to be specified to express its
distribution. If these are to be determined experimentally, a large number of elastic strains must be
measured. In order to obtain inherent strain distribution from a small number of measuring points, a

Junction method is proposed.
To verify the function method,

residual stresses and inherent strains in bead-on-plate welds are

estimated. The residual stresses estimated by inherent strain described as functions show very good
accuracy compared with those computed by thermal elastic-plastic FEM.

KEY WORDS: (Residual stresses) (Inherent strains) (Function method) (FEM) (Bead-on-plate welds)

1. Introduction

Inherent strain generated in welded joints is composed
of the contraction of weld metal and plastic strain in the
vicinity of the weld zone. It is considered as a source of
welding residual stresses and has been used for stress
measurement and prediction!-3)- However, in the
measurement and prediction of three-dimensional residual
stresses, the following problems have to be solved :

(1) Until now, inherent strain distributions are
described by the individual value in each finite element.
This description of inherent strain distributions is called
element description or element method. In this case,
many unknown inherent strain components in elements
have to be specified. If these are to be determined using
measured elastic strains, the total components of elastic
strains to be measured must be more than these of
inherent strains, and a large quantity of the measurements
are required.

(2) To estimate the local distribution of three-
dimensional residual stresses, the finite element mesh
has to be divided very fine. Because the local released
elastic strains in these fine meshed elements are

unmeasurable using strain gauges, the local distribution
of inherent strains and residual stresses can not be
determined by experiments.

(3) To predict welding residual stresses using inherent
strain, the distribution patterns of inherent strains first
have to be proposed. The distribution patterns are very
difficult to derive from individual inherent strain
component in elements.

To solve such problems, a function method for
describing and estimating inherent strain distributions is
proposed. With the aid of a parametric function, inherent
strain distributions can be expressed only by a few
unknown coefficients included in functions. When these
coefficients are determined by a few measured elastic
strains, inherent strain distributions and residual stress
distributions can be computed by performing simple
elastic analysis. Furthermore, if the effects of welding
conditions and sizes of welded joints on inherent strain
distributions are clarified by theoretical analysis such as
thermal elastic plastic analysis, prediction for three-
dimensional residual stresses will become possible using
the function method.

In this paper, a general concept of the function
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A Function Method for Estimating Inherent Strain Distributions

method for estimating inherent strain distributions is
described. Then, the elastic response relationship between
unknown coefficients included in functions and residual
stresses is derived. Further, to verify the validity and the
accuracy of the function method, inherent strain
distributions in a simple bead-on-plate weld are estimated.
Then, residual stresses in this weld are computed by
Inherent Strain Elastic Analysis (ISEA) and are compared
with those obtained by Thermal Elastic Plastic Analysis
(TEPA).

2. Estimation of inherent strain distributions
described by element method

When element description for inherent strain
distributions is used, a welded joint has to be meshed
into elements. In the elements within inherent strain
zones, if the total number of inherent strain components
is q, its distributions can be expressed by inherent strain
vector {s*}q. Elastic strains {€°} and residual stresses {0}
at arbitrary positions produced by inherent strain {e*}4
can be computed by the following equations:

{e)= [H){e*), M
{o}= [Dl{e} @

where [H] is the elastic response matrix and [D] is the
stress-strain relation matrix. '

To determine q components of inherent strains {e*},
the m(2q) components of elastic strains {€},,, have to be
measured because various errors may be contained in
experiments. According to equation (1), the errors {e}n,
can be expressed by the following equation:

{e}m = [H]mq{e*}q = {Se}m (3)

The errors in Eq.(3) include measuring error of elastic
strains {e®}y,, modeling error of matrix [Hlyq and the
error of inherent strains {s*}q. In this paper, the elastic
strains {e®},, are computed by thermal elastic plastic
analysis, and the finite element division of the model
used for analyzing the inherent strain is the same as the
thermal elastic plastic analysis. Therefore, the measuring
error of {e®};, and modeling error of [Hlynq can be
neglected; the main error is from the error of {8*}q. The
square sum of the errors is expressed by the following
equation:

Ere") = {e}"{e}

= (Hlng {8} ¢ - {£ ) (g {6} - {£2}) @

When the summation error Er(e*) is minimum, i.e.
the derivatives of the error Er(e*) with respect to inherent

strain components {8*}q are zero, the following equation
can be obtained:
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[HI g [Hl,q 6%} = [HI g e} m 5)
When measured elastic strains {€®},, are substituted into
Eq.(5), inherent strains {e*}, can be obtained, and
resulting residual stresses can be computed by Egs.(1) and
).

3. Estimation of inherent strain distributions
described by function method

3.1 Function description for inherent strain
distributions

Inherent strain distributions can be expressed as
functions of coordinates x,y,z. For a general three-
dimensional problem, there are a total of six inherent
strain components {e*,, e*y, £%;, e*yy, £*y,, £%5%).
These components are simply expressed by €% (s=x, v, z,
Xy, yz, zx). The distribution of component £*s can be
described by the following series function:

L M N
S*S(X’Y!Z)= DIEDIED A*sijk hg; (x) fsj ) gsk(2) ©)
i=1 j=1 k=1
where hg;(x), f5;(y), gsk(2) are the distribution functions in
x,y,z directions for component £*;. These functions can
be freely chosen from some basic functions such as power
functions, exponential functions or trigonometric
functions. However, these distribution functions have to
be zero valued out of inherent strain zones. A*sijk is the
coefficient of distribution functions hg;(x), fsj(y) and
gx(@). L, M, N are the orders of series functions.
If Eq.(6) is written as a vector form, the following
equation can be obtained:

'5(x,y,2) = { A% hsi (%) f(y) gk (@) }
= {P S}Tps {A*S} ps, (pS=LXMXN) (7)

where {Pg}y {A*s} and ps are the vector related to the

functions, the coefficients vector and the total number of
unknown coefficients, respectively, for each inherent
strain component £*s.

For the six components &*5(s=x, Y, Z, Xy, yz, zx)'of
inherent strains, the inherent strain distributions can be
expressed as follows:

{8*5} = { 8*X9 S*yy S*Z, E*xys 8*yz, e*zx}T
= [PI{A*}p, p=6ps ®)

where p, ps are the total number of unknown coefficients

for each inherent strain component and for the total six
components, respectively. [P], {A*}, are the function

matrix and coefficient vector of inherent strains, and they
can be expressed as follows:

{A*}p:{ A*x; A*y’ A*Z’ A*X}U A*YZy A*Zx }pT (9)



Py
Py . 0
— z
[P]= Py (10)
0 Pyz
PZX
3.2 Estimation of coefficient vector of

distribution functions

When inherent strain is described by functions, its
distributions are determined only by the coefficients
included in the functions. The elastic response
relationship between coefficient vector {A"‘}p and elastic
strain {e®} at arbitrary positions can be expressed by

Eq.(11).
{e°} =[G{A"),

where [G] is the elastic response matrix between {A"‘}p
and {e°}. The component G;; of matrix [G] is equal to
the value of the i-th elastic strain €%, generated by an
assumed inherent strain distribution corresponding to unit
coefficient for j-th order (A*j=1) and zero for coefficients
A*(if k#j) in {A*}p, shown as Eq.(12).

(11)

Gij = Sei (12)

when {A*}p= {0....,0, A%(=1), 0,...,0}p"

According to Eq.(12), when elastic FEM analysis is
performed p times, elastic response matrix [G] can be
formed.

To determine the coefficient vector {A*}p, elastic
strains have to be measured. If m(2p) components of
elastic strains {e®},, are measured, the relationship
between measured elastic strains {e¢},, and unknown
coefficients {A"‘}p can be written as

[l {A*}p = (6%}

Because some errors are included in measured strains
{2}, and the distribution functions of inherent strains,

(13)

two sides of Eq.(13) are not exactly equal. The errors
between them can be written as the following equation;

{e}m= [G]mp{A*}p - {8e}m (14)
When the derivatives of square error summation with
respect to each component of coefficient vector {A"‘}q are
zero, the minimum error will be obtained. Then, the
following equation can be derived:

[G]Tpm[G]mp{A*}p = [G]Tpm{se}m (15)

When measured elastic strains {e°}, are substituted
into Eq.(15), coefficients vector {A*}q, i.e. inherent

strain distributions, can be estimated. Then elastic
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strains and residual stresses at arbitrary positions can be
computed using elastic FEM analysis.

3.3 Accuracy of function method for inherent
strain distributions

The accuracy of the function method can be evaluated
by the error in residual stresses reproduced by inherent
strains. The error in the reproduced residual stresses is
shown by following equation:

E, =J§(o§“ -of)? /Jg(cin)z
i=1 i=1

where o;™ is the residual stress directly measured or
computed by thermal elastic plastic FEM analysis, ;¢ is
the residual stress reproduced by inherent strain whose
distributions are described by functions, and m is the
total number of residual stresses directly measured or
computed by thermal elastic plastic FEM analysis

Er is called the normalized root mean square error),
It can express the total errors of m:components of
measured residual stresses. Therefore, it is called total
error. Besides the total error, to evaluate the accuracy of
local residual stresses, the ratio of maximum absolute
error (maxlo;™-0l) of reproduced residual stresses to the
yield stress (oyy,) is introduced as the local maximum
error e, i.e.

(16)

e, = maxloy™-oi¢l/oyy, , (i=1,2,...,m) a7)

4. Application of function method to bead-on-
plate welds

4.1 Model to be analyzed

An example for estimation of residual stresses and
inherent strains is a long bead-on-plate weld. The
transverse section of the bead-on-plate weld is shown in
Fig.1. The transverse section of a long weld except near
the two ends of a weld keeps plane when it deforms
during welding and after welding. This kind of
deformation is called plane deformation or generalized

aw. o _a

Weld metal

ot ——— T} ————

555,59

z

Fig.1 A bead-on-plate weld and mesh division used in
FEM analysis
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plane strain. If the welding direction is taken as x, and
the transverse, the thickness directions, are taken asy,z,
respectively, the strain ey distributed on the transverse

sections can be expressed by the following equation:
(18)

where aj, a3, a3 are the coefficients of plane deformation
and can be computed by FEM using equilibrium equation
of force (Fy) and moments (My and My).

In this paper, residual stresses distributed on
transverse sections are analyzed by thermal elastic plastic
FEM and by inherent strain elastic analysis, respectively.
In thermal elastic plastic analysis, the material of the
welded plate is assumed to be steel, and its physical
properties and mechanical properties are assumed as
functions of temperature, as shown in Fig.2 and Fig.3.

Ex = aj+agy+azz

10.0
Density
80 p(g/mm3)x1073
8
=
& ol
<] . Specific heat
A= c(/g/ °C)x10°!
8
w
2 40 ~
- Heat conductivity
A(J/mm/sec/°C)x102
20}
Heat transfer cocff.
a(J/mm?2/sec/ °C)x10°
0 L L L Il
200 400 600 800 1000

Temperature( °C)

Fig.2 Physical properties of mild steel used in heat
conduction FEM analysis

Lincar expansion coeff. o =1.2x10°(1/°C)
1000 Poisson's ratio $=03 200
£
F <)
S 750 Oy : Weld metal and HAZ H 1150 B
< ayp : Base metal 4
= =
e =
) 5
g |
£ 500f 050, H100 &
= Es
Q
) =
o
> =
250 -150
Weld metall
: and HAZ

| L Il
200 400 600 Tm 800
Temperature ( °C)

Fig.3 Mechanical properties of mild steel used in
thermal elastic-plastic FEM analysis
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4.2 Inherent strain components and their
distribution zones

On transverse sections of a long weld, there are four
components of stresses. These components of stresses
are Oy, Oy, 04, Oy, Corresponding to these stress
components, there exist four inherent strain components
g'x 'y, 8% 8*yz on the transverse sections. Because
the effect of shear inherent strain e*yz on residual stresses
is small*5), only the components &*, e*y, e*; are
considered in this paper.

To estimate inherent strains, the shape and the size of
inherent strain zones have to be determined first. To
propose the shape of inherent strain zones, contour lines
of maximum temperature in the thermal cycle and the
residual plastic strain zone are computed by thermal
conduction analysis and thermal elastic plastic analysis,
respectively. The computed results are shown by Fig.4.
The shape of both contour lines of temperature and the
plastic strain zone is roughly elliptical. Based on these
results, the inherent strain zones are assumed to be
elliptical as shown in Fig.5. The size of the ellipsis is
expressed by radius Rg(s=x, y, z), or by width aj(s=x,y,z)
and bg(s=x,y,z), and it varies with each of inherent strain
components €'y, £*y, £%;.

25,10.0

20.0 & 300 250.0
T

0.0
Y(mm)

Q=1500(J/mm)
H=30mm

b Boundary of
elastic-plastic zones

30.0 1
| Z(mm)

Fig.4 Contour lines of max. temperature in thermal
cycle and plastic deformation zone in a bead-

on-plate weld

2B -

€=0
S=X,y,2
Ry*Ry#R,

i
Fig.5 Shape of inherent strain zone in bead-on-plate
welds




4.3 Function description for inherent strain

distributions

Inherent strain distribution for each component
e*5(s=x, y, z) can be expressed as functions of polar

coordinates (r, 8) shown in Fig.5.

M N
e*(xy.2)=Y ZIA*sij fi(® gg®), (s=xy2) (19
i=1j=

The polar coordinates (r, ) can be expressed in
dimensionless form (Eg, w) defined by the following
equation:

(s=x,y,2) (20)

X -9
ES=RS’ W "n/29

The range of (€, w) is from 0 to 1. =0 and E=1
indicate the center of the ellipse and boundary line of
inherent strain zones, respectively. w=0 (6=0) and w=1
(6=m/2) indicate the y axis and z axis, respectively. When
dimensionless polar coordinates (€, w) are used, Eq.(19)
can be rewritten as follows:

s*s(x,y,Z)=§1 gllA*sij fEs) g5(@), (=xy,2) (1)
i=1j=

For f(Es) and ggj(w), many types of functions can be
considered, such as power functions, exponential
functions and trigonometric functions. In this paper,
very simple power functions are used, and inherent strain
distributions are expressed by Eq.(22).

M N .
8*s(x,y,z)=.21 .ZlA*sij (L&) b, (s=xy2) (2
1= J:

The values of inherent strain given by Eq.(22) are zero
at the boundary line (Es=1) of inherent strain zones.

4.4 Estimation of inherent strain distribu-
tions by function method

4.4.1 Estimation of the sizes of inherent strain zones

As shown in Fig.5, the sizes of inherent strain zones
of components €, €*y and £*, are expressed by their
radii Ry, Ry and R,. The values of Ry, Ry and R, can be

determined by numerical computation so that the total
error Ey and local maximum error ey of estimated residual

stresses take the minimum, i.e.
dEr =0 9y
oRs ™  aRs

If all of the three parameters Ry, Ry and R;. are taken
as unknowns, much numerical computation has to be
tried in order to determine their values. Here, inherent
strain zone R, of component €*, corresponding to the
largest stress component oy due to welding is assumed to
be the same as that of the residual plastic strain zone

=0, (s=x,y,2) @3)
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R#Ry#R, i=1,2 j=1,2
50 T T v T T T v T
—_ R
S 40 —£=0.6
% Ry W
o
5
3 !
< I
g 1
% 10 F er% E N
[ 1
0 ) 1 " [} 1
0.0 0.2 0.4 0.6 0.8 1.0
RY
Ry
(a) Estimation of Ry
R#Ry#R, i=1,2 j=1,2
50 —T T T T T T
—_ ® Er%
X Or r Ry —06 -
:’ 3 0 er% Ry 4
g2 30t .
% ‘Fe—ew,
g5 20 : -
— _ I . ]
g A g —‘T- *-o—o —:l
m 10 ™ :
I | ]
o 1 L Ll L 1
0.0 0.2 0.4 0.6 0.8 1.0
R,
Ry

(b) Estimation of R,

Fig.6 Estimation of the sizes Ry, R, of inherent strain
zones from the errors of reproduced stresses

shown in Fig.4. Ry and R, of components &*y, ¥,
corresponding to stress components oy, o, are assumed to
be smaller than Ry. When Ry/Ry and R,/Ry vary from 0
to 1, the changes of total error E; and local error e, with
Ry/Ry and R;/Ry are shown in Fig.6. When Ry/Ry and
R,/Ry are about 0.6 and 0.55 respectively, the smallest
errors will be obtained, and these Ry and R, can be
considered the sizes of inherent strain zones of
components €'y, £*,. Because the sizes of inherent strain
zones of components €y, €%, show very little difference,
they can be assumed to be the same.

4.4.2 Accuracy of function method

When inherent strain distributions are expressed by
series function, the accuracy is governed by the order M
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R#Ry#R, i=1,2, ..M j=1,2,. N
r T - -

60
— 50 4
§ : e E, : Total error
;6 40 - © er : Local error ]
o -
.8 30 1
g 50l i
g L I er%o——h,,
£ 10 F m=2 Er% o——
- n=2 J
0 : i I 2 1
0 5 10 15 20 25
Ps=MxN

Fig.7 Effect of total unknown coefficients in series
function on accuracy of reproduced residual
stresses

and N of series function. The effects of M and N, or the
total number ps(=MxN) of unknown coefficients for each
inherent strain component £*(s=x, y, z) on the errors Er,
e, of reproduced residual stresses, are shown by Fig.7.
By increasing the order M and N of series function, or by
increasing the total number ps(=MXN) of unknown
coefficients, the total error E, and local error e, decrease.
In actual measurements, according to the expected
accuracy, M and N of series function, or measuring
points corresponding to the total number ps(=MxN) of
unknown coefficients, can be freely selected. As shown
in Fig.7, when M and N are more than 2, or the total
number pg of unknown coefficients are more than 4, the
change of errors becomes smaller and practically
reasonable accuracy can be obtained. In this case, if
elastic strains are measured at 4 points for each
component, inherent strain distributions can be estimated.
Then residual stress distributions can be computed.
Therefore, when the function method is employed to
describe inherent strain distributions, the required
measurements for elastic strains will be greatly reduced
compared with the element method.

4.4.3 Distributions of inherent strains and residual
stresses

When M and N of series function are taken as 2,
inherent strain distributions estimated by the function
method are shown in Fig.8. In the radial direction, the
inherent strain distributions show a trapezoidal pattern.
Using the inherent strains given in Fig.8, residual
stresses shown in Fig.9 are estimated by performing
simple elastic analysis. As shown in Fig.9, very good
accuracy of residual stresses estimated by elastic analysis
usingi inherent strain (ISEA) can be obtained compared
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Fig.8 Estimated inherent strain distributions

Rx=Ry#Rz i=1,2 j=1,2
500 T T T L

400

300

200

100

Residual stresses (MPa)

Fig.9 Residual stresses by TEPA and ISEA
(TEPA : Thermal Elastic-Plastic Analysis)
(ISEA : Inherent Strain Elastic Analysis)

with those computed by thermal elastic plastic analysis
(TEPA).

5. Application of function method to over-
matching and undermatching welds

Compared with the strength of base metal, the same
or higher or lower strength of weld metals are used in
welding. These options are called evenmatching,
overmatching and undermatching, respectively. For
evenmatching welded joints, the inherent strain
distributions can be described by series function as shown
in chapter 4. In this chapter, the function method is
applied to overmatching and undermatching welded joints.
For simplicity, the strength of HAZ is assumed to be
different from that of base metal but the same as that of
weld metal.
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Fig.10 Inherent strain distributions estimated with aid of furnctions including additional strains Ae*s for weld metal and
HAZ in overmatching and undermatching welds, and residual stresses estimated by TEPA and ISEA
(TEPA : Thermal Elastic-Plastic Analysis, ISEA : Inherent Strain Elastic Analysis)

5.1 Application of series function to over-
matching and undermatching welds

Theoretically, a continuous series function shown in
Eq.(22) can also describe inherent strain distributions even
in overmatching and undermatching welded joints.
However, to obtain high accuracy, the higher order M
and N of series function have to be used. To describe
such discontinuous characteristics of inherent strain
distributions due to overmatching and undermatching
using the same order M and N as evenmatching welded
joints, a supplemental inherent strain Ae*s(s=x,y,z) for
weld metal and HAZ is introduced into series function as
follows:

* M N * i i1 *
gy 2)=) A% (-5 wlD + Ag¥g
i=1j=1

(24)

The supplemental strain Ae* does exist in weld metal
and HAZ, but it is zero in base metal.

77

Fig.10 shows inherent strain distributions described
by Eq.(24) with M=N=2 and residual stress distributions
when the yield stress of weld metal is 450MPa and
250MPa, and the yield stress of base metal is 330MPa,
respectively. Comparing Fig.10 with Fig.9, the
difference of yield stress of weld metal and base metal has
a significant effect on inherent strain component £*, and
less effect on the other two components e*y, £,
of

5.2 Prediction inherent

strain Ag*g

supplemental

Generally, residual stress component oy in weld
metal and HAZ attains their yield stresses. The other two
components Oy, 0 are less than the yield stresses. For
this reason, by changing the yield stresses of weld metal
and HAZ, nearly the same change can be observed in
residual stress component oy, but little change is
produced on residual stress components Oy, 0z, and
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Fig.11 Residual stresses, estimated by inherent strain, whose distributions are described by series function and
approximate value Ag*y= (eyw - €yp) for weld metal and HAZ in overmatching and undermatching welds

(TEPA : Thermal Elastic-Plastic Analysis, ISEA : Inherent Strain Elastic Analysis)

inherent strain components e*y, e*z. Therefore, the
supplemental inherent strain Ae*, is approximately equal
to the difference of yield strains between weld metal and
base metal shown by the following equation, and the
supplemental strains Ae*y, Ae*; can be neglected.

(252)
(25b)

Ae* = (eyw - €y)=(0yw - Oyp)/E
Ag*y = Ae*, = 0

where &y, €yp are the yield strains of weld metal and
base metal respectively. Oyy, Oyp and E are the yield
stresses of weld metal, base metal and Young's modulus
of the steel, respectively.

To demonstrate the accuracy of the prediction based on
Eq.(25) for Ae*s(s=x, y, z), the residual stresses are
estimated by inherent strain elastic analysis (ISEA) and
the results are shown by Fig.11(a), (b), respectively, for
overmatching and undermatching welded joints.
Compared with the results computed by thermal elastic
plastic analysis (TEPA), very good accuracy is obtained.

6.
@

Conclusions

A function method for estimating inherent strain
distributions is proposed.

Inherent strain zones show elliptical shape on the
transverse sections. The size of elliptical zones
varies with each of inherent strain components.

With the aid of series function, inherent strain
distributions in bead-on-plate welds are expressed by
a few unknown coefficients, residual stresses are
reproduced with good accuracy compared with those
computed by thermal elastic plastic analysis.

@

€
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(4) The function method for estimating inherent strains
is also efficient for overmatching and undermatching
welded joints without increasing unknown
coefficients.
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