

Title	A generalization of a theorem of Milnor
Author(s)	Ushitaki, Fumihiro
Citation	Osaka Journal of Mathematics. 1994, 31(2), p. 403-415
Version Type	VoR
URL	https://doi.org/10.18910/6585
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ushitaki, F.
Osaka J. Math.
31 (1994), 403-415

A GENERALIZATION OF A THEOREM OF MILNOR

Dedicated to Professor Seiya Sasao on his 60th birthday

FUMIHIRO USHITAKI

(Received October 29, 1992)

1. Introduction

We work in the smooth category with free actions by groups in the present paper. Let us recall Milnor's theorem:

Theorem 1.1 ([6; Corollary 12.13]). *Any h -cobordism W between lens spaces L and L' must be diffeomorphic to $L \times [0,1]$ if the dimension of L is greater than or equal to 5.*

Let \mathbf{Z}_m be the cyclic group of order m . Then we see that Theorem 1.1 is put in another way as follows:

Theorem 1.2. *Let $S(V)$ and $S(V')$ be free linear \mathbf{Z}_m -spheres of dimension $2n-1 \geq 5$. Then any \mathbf{Z}_m - h -cobordism W between $S(V)$ and $S(V')$ must be \mathbf{Z}_m -diffeomorphic to $S(V) \times I$, where $I = [0,1]$.*

Let R be a ring with unit, G a finite group. Put $GL(R) = \varinjlim GL_n(R)$ and $E(R) = [GL(R), GL(R)]$ the commutator subgroup of $GL(R)$. Then $K_1(R)$ denotes the quotient group $GL(R)/E(R)$. Let \mathbf{Z} be the ring of integers and \mathbf{Q} the ring of rational numbers. Let $\mathbf{Z}[G]$ and $\mathbf{Q}[G]$ denote the group rings of G over \mathbf{Z} and \mathbf{Q} . The Whitehead group of G is the quotient group

$$Wh(G) = K_1(\mathbf{Z}[G]) / \langle \pm g : g \in G \rangle.$$

The natural inclusion map $i: GL(\mathbf{Z}[G]) \rightarrow GL(\mathbf{Q}[G])$ gives rise to a group homomorphism $i_*: K_1(\mathbf{Z}[G]) \rightarrow K_1(\mathbf{Q}[G])$. Then $SK_1(\mathbf{Z}[G])$ is defined by setting

$$SK_1(\mathbf{Z}[G]) = \ker[i_*: K_1(\mathbf{Z}[G]) \rightarrow K_1(\mathbf{Q}[G])].$$

In [15], C.T.C. Wall showed that $SK_1(\mathbf{Z}[G])$ is isomorphic to the torsion

subgroup of $Wh(G)$. We will apply the following algebraic result to extend Theorem 1.2.

Theorem A. *Let G be a finite group which can act linearly and freely on spheres. Then $SK_1(\mathbf{Z}[G])=0$ if and only if G is isomorphic to one of the following groups.*

- (1) *A cyclic group.*
- (2) *A group of type I in Appendix (a metacyclic group with certain condition).*
- (3) *A quaternionic group $\mathbf{Q}(8t)$ with generators B, R and relations $B^{4t}=1, B^{2t}=R^2=(BR)^2$, where $t \geq 1$.*
- (4) *A group $\mathbf{Q}(8t, m_1, m_2)$ generated by A, B, R with relations $A^{m_1 m_2}=B^{4t}=1, BAB^{-1}=A^{-1}, R^2=B^{2t}, RAR^{-1}=A^l, RBR^{-1}=B^{-1}$, where $m_1, m_2 \geq 1, m_1 m_2 > 1, (m_1, m_2)=1, (2t, m_1 m_2)=1, l \equiv -1(m_1), l \equiv 1(m_2)$.*
- (5) *The binary tetrahedral group \mathbf{T}^* .*
- (6) *A generalized binary octahedral group $\mathbf{O}^*(48t)$ generated by B, P, Q, R with relations $B^{3t}=1, P^2=Q^2=(PQ)^2=R^2, BPB^{-1}=Q, BQB^{-1}=PQ, RPR^{-1}=QP, RQR^{-1}=Q^{-1}, RBR^{-1}=B^{-1}$, where t is odd.*
- (7) *The binary icosahedral group $\mathbf{I}^*=SL(2, 5)$.*
- (8) *The group generated by $SL(2, 5)$ and an element S , where $S^2=-1 \in SL(2, 5), SLS^{-1}=\begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} L \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}^{-1}$ for $L \in SL(2, 5)$.*

We obtain the following applications of Theorem A as generalizations of Theorem 1.2.

EXAMPLE B. Let G be a finite group in Theorem A. Let X be a free G -homotopy sphere of dimension $2n-1 \geq 5$, and let $S(V)$ and $S(V')$ be free linear G -spheres of dimension $2n-1 \geq 5$. Then,

- (1) Any G -h-cobordism W between X and itself must be G -diffeomorphic to $X \times I$.
- (2) Any G -h-cobordism W between $S(V)$ and $S(V')$ must be G -diffeomorphic to $S(V) \times I$.

EXAMPLE C. Let G be a finite group. Let X be a free G -homotopy sphere of dimension $4n+1 \geq 5$, and let $S(V)$ and $S(V')$ be free linear G -spheres of dimension $4n+1 \geq 5$. Then,

- (1) Any G -h-cobordism W between X and itself must be G -diffeomorphic to $X \times I$.
- (2) Any G -h-cobordism W between $S(V)$ and $S(V')$ must be G -diffeomorphic to $S(V) \times I$.

When G is a compact Lie group of positive dimension, a generalization of Theorem 1.2 is:

Theorem D. *Let G be a compact Lie group of positive dimension which can act freely on spheres. Let X^m and X'^m be free G -homotopy spheres of dimension m , and let $(W; X, X')$ be a G -h-cobordism of a free G -action.*

- (1) *If $G = S^1$ and $m = 2n - 1 \geq 7$, then W must be S^1 -diffeomorphic to $X \times I$.*
- (2) *If $G = NS^1$ and $m = 4n - 1 \geq 7$, then W must be NS^1 -diffeomorphic to $X \times I$ where NS^1 is the normalizer of S^1 in S^3 .*
- (3) *If $G = S^3$ and $m = 4n - 1 \geq 11$, then W must be S^3 -diffeomorphic to $X \times I$.*

This paper is organized as follows: Section 2 presents the proof of Theorem A. In section 3 we prove Examples B and C, and state some results on G -h-cobordisms between G -homotopy spheres. We prove Theorem D in section 4. Appendix is devoted to quoting the table of the finite solvable groups which can act linearly and freely on odd dimensional spheres from [16].

2. Proof of Theorem A

First, let G be a finite solvable group which can act linearly and freely on spheres. As in [16; Theorem 6.1.11], there are 4 types for such kinds of groups. For the convenience of the readers, the table of these groups are cited in Appendix. We now recall the structure of $SK_1(\mathbf{Z}[G])$ of these groups G . We must prepare the following notations.

Let G_1 , G_2 , G_3 and G_4 denote the groups of type I, II, III and IV respectively mentioned in the table in Appendix. Let $(a_1, a_2, \dots, a_\lambda)$ denote the greatest common divisor of integers $\{a_1, a_2, \dots, a_\lambda\}$, and let m, n, r, l, k, u, v and d be the integers appeared in the definition of G_1 , G_2 , G_3 and G_4 . For positive integers α, β, γ and δ , put

$$M_\beta = (r^\beta - 1, m),$$

$$D(\alpha) = \{x \in \mathbf{N} \mid x \text{ is a divisor of } \alpha\},$$

$$D(\alpha, \beta) = \{x \in D(\alpha) \mid x \text{ can be divided by } \beta\},$$

$$D(\alpha)_\gamma^\delta = \{x \in D(\alpha) \mid x\gamma \equiv 0 \pmod{\delta}\},$$

$$D(\alpha, \beta)_\gamma^\delta = \{x \in D(\alpha, \beta) \mid x\gamma \equiv 0 \pmod{\delta}\}.$$

If d is an even integer, we put $d' = d/2$, and put

$$t(2) = \#\{(\alpha, \beta) \mid \beta \in D(v)_{k-1}^v, \alpha \in D(M_{2^u\beta}),$$

$$(\alpha + aM_{2^u\beta})(l-1, r^{n/4} - 1) \equiv 0 \pmod{m}$$

$$\text{for some integer } a \text{ with } 0 \leq a < m/M_{2^u\beta}\}$$

$$- \#\bigcup_{\substack{0 \leq b \leq d \\ \lambda=0,1}} D(m)_{(l-1, r^{n/4} - 1, l^\lambda r^b + 1)}^m,$$

$$t'(2) = \#\{(\alpha, \beta) \mid \beta \in D(v)_{k-1}^v, \alpha \in D(M_{2^u\beta}),$$

$$(\alpha + aM_{2^u\beta})(l-1, r^{n/4} - 1) \equiv 0 \pmod{m} \text{ or}$$

$$(\alpha + aM_{2^u\beta})(lr^{d'} - 1, r^{n/4} - 1) \equiv 0 \pmod{m}$$

$$\text{for some integer } a \text{ with } 0 \leq a < m/M_{2^u\beta}\}$$

$$- \#\bigcup_{\substack{0 \leq b \leq d \\ \lambda=0,1}} (D(m)_{(l-1, r^{n/4} - 1, l^\lambda r^b + 1)}^m \bigcup D(m)_{(lr^{d'} - 1, r^{n/4} - 1, l^\lambda r^b + 1)}^m),$$

$$t(3) = \sum_{\beta \in D(n, 3)} \#D(M_\beta) - 1,$$

$$t(4) = \sum_{\beta \in D(n, 3)} \#D(M_\beta) - \sum_{\beta \in D(n, 3)_{k+1}^n} \#D(M_\beta)_{k+1}^n.$$

Then we have:

Theorem 2.1 ([12; Theorem]). *Let G_1 , G_2 , G_3 and G_4 denote the groups of type I, II, III and IV respectively.*

- (1) $SK_1(\mathbf{Z}[G_1]) = 0$.
- (2) $SK_1(\mathbf{Z}[G_2]) \cong \mathbf{Z}_2^{t(2)}$ if d is an odd integer,
 $SK_1(\mathbf{Z}[G_2]) \cong \mathbf{Z}_2^{t'(2)}$ if d is an even integer.
- (3) $SK_1(\mathbf{Z}[G_3]) \cong \mathbf{Z}_2^{t(3)}$.
- (4) $SK_1(\mathbf{Z}[G_4]) \cong \mathbf{Z}_2^{t(4)}$.

By Theorem 2.1, we get (1) and (2) of Theorem A. Let G_2^1 be a group G_2 such that d is odd. At first, we determine the group G_2^1 satisfying $SK_1(\mathbf{Z}[G_2^1]) = 0$. Put

$$\mathcal{T}_+ = \{(\alpha, \beta) \mid \beta \in D(v)_{k-1}^v, \alpha \in D(M_{2^u\beta}),$$

$$(\alpha + aM_{2^u\beta})(l-1, r^{n/4}-1) \equiv 0(m) \\ \text{for some integer } a \text{ with } 0 \leq a < m/M_{2^u\beta},$$

and

$$\mathcal{T}_- = \{(\alpha, v) \mid \alpha \in \bigcup_{\substack{0 \leq b < d \\ \lambda=0,1}} D(m)_{(l-1, r^{n/4}-1, l^2r^b+1)}^m\}.$$

By [12; §3], $t(2)$ the 2-rank of $SK_1(\mathbf{Z}[G_2^1])$ is calculated by

$$t(2) = \#\mathcal{T}_+ - \#\mathcal{T}_-.$$

It is easy to see that \mathcal{T}_- is a subset of \mathcal{T}_+ . Suppose that $t(2)=0$. Then it is necessary that $D(v)_{k-1}^v = \{v\}$. In fact, if there exists an element β of $D(v)_{k-1}^v$ which is different from v , we see that the ordered pair of numbers $(M_{2^u\beta}, \beta)$ is in \mathcal{T}_+ , but is not in \mathcal{T}_- . Hence, if β in $D(v)$ satisfies $\beta(k-1) \equiv 0 \pmod{v}$, it must be equal to v . Thus we have $(k-1, v) = 1$. Since $k^2 \equiv 1 \pmod{n}$ and $k \equiv -1 \pmod{2^u}$, it holds that $k \equiv -1 \pmod{n}$. Since d is a divisor of $k-1$ and d is odd, by [12; Observation 3.1] $(k-1, v)$ is divisible by d . Hence we have $d=1$, thereby $r \equiv 1 \pmod{m}$. By using $(n(r-1), m) = 1$, we get $m=1$, that is, A is equal to the identity element of G_2^1 . Thus if $SK_1(\mathbf{Z}[G_2^1])=0$, G_2^1 must be isomorphic to a group of order $2n$ which is generated by the elements of the form B and R , and which has relations:

$$B^n = 1, \quad R^2 = B^{n/2}, \quad RBR^{-1} = B^{-1},$$

where n is a number of the form $2^u v$ for some $u \geq 2$, $(v, 2) = 1$, $v \geq 1$. Conversely, we can easily check that SK_1 for this group vanishes. By putting $t=n/4$, we have (3) of Theorem A.

Let G_2^0 be a group G_2 such that d is even. Next, we determine the group G_2^0 satisfying $SK_1(\mathbf{Z}[G_2^0])=0$. Since d is even, we have $m > 1$. Put

$$\mathcal{T}'_+ = \{(\alpha, \beta) \mid \beta \in D(v)_{k-1}^v, \alpha \in D(M_{2^u\beta}), \\ (\alpha + aM_{2^u\beta})(l-1, r^{n/4}-1) \equiv 0(m) \text{ or} \\ (\alpha + aM_{2^u\beta})(lr^{d'}-1, r^{n/4}-1) \equiv 0(m) \\ \text{for some integer } a \text{ with } 0 \leq a < m/M_{2^u\beta}\},$$

and

$$\mathcal{T}'_- = \{(\alpha, v) \mid \alpha \in \bigcup_{\substack{0 \leq b < d \\ \lambda=0,1}} (D(m)_{(l-1, r^{n/4}-1, l^2r^b+1)}^m \bigcup D(m)_{(lr^{d'}-1, r^{n/4}-1, l^2r^b+1)}^m)\}.$$

By [12; §3], $t'(2)$ the 2-rank of $SK_1(\mathbf{Z}[G_2^0])$ is calculated by

$$t'(2) = \#\mathcal{T}'_+ - \#\mathcal{T}'_-.$$

It is easy to see that \mathcal{T}'_- is a subset of \mathcal{T}'_+ . Then by the same argument as before, we have $D(v)_{k-1}^v = \{v\}$ and $(k-1, v) = 1$. Since $k^2 \equiv 1 \pmod{n}$ and $k+1 \equiv 0 \pmod{2^u}$, it holds that $k \equiv -1 \pmod{n}$. Since d is even, by [12; Observation 3.1], $d' = d/2$ is a divisor of $(k-1, v)$. Hence, we have $d=2$, thereby $r \not\equiv 1 \pmod{m}$ and $r^2 \equiv 1 \pmod{m}$. Now we claim that $r \equiv -1 \pmod{m}$. In fact, since $(r+1)(r-1) \equiv 0 \pmod{m}$ and $(r-1, m) = 1$, it holds that $r+1 \equiv 0 \pmod{m}$ or $m=1$. However, it must hold $r \equiv -1 \pmod{m}$ because $m > 1$. Therefore, we have

$$(lr^{d'} - 1, r^{n/4} - 1) = (l+1, (-1)^{n/4} - 1).$$

Thus, for $\#\mathcal{T}'_+ = \#\mathcal{T}'_-$, it is necessary that

$$\begin{aligned} & \#\{\alpha \in D(m) \mid \alpha(l-1, (-1)^{n/4} - 1) \equiv 0 \pmod{m} \\ & \quad \text{or } \alpha(l+1, (-1)^{n/4} - 1) \equiv 0 \pmod{m}\} \end{aligned}$$

$$= \#\bigcup_{\substack{b=0,1 \\ \lambda=0,1}} (D(m)_{(l-1, (-1)^{n/4} - 1, (-1)^b l^\lambda + 1)}^m \bigcup D(m)_{(l+1, (-1)^{n/4} - 1, (-1)^b l^\lambda + 1)}^m).$$

However, we can easily check that this formula always holds. Thus, if $SK_1(\mathbf{Z}[G_2^0]) = 0$, G_2^0 must be isomorphic to a group of order $2n$ which is generated by the elements of the form A , B and R , and which has relations:

$$\begin{aligned} A^m &= B^n = 1, \quad BAB^{-1} = A^{-1}, \\ R^2 &= B^{n/2}, \quad RAR^{-1} = A^l, \quad RBR^{-1} = B^{-1}, \end{aligned}$$

where m, n and l satisfy the following conditions:

$$\begin{aligned} m &> 1, \quad (n, m) = 1, \quad l^2 \equiv 1 \pmod{m}, \\ n &= 2^u v \quad (u \geq 2, \quad (v, 2) = 1, \quad v \geq 1). \end{aligned}$$

Conversely, we can easily check that SK_1 for this group vanishes. Now, we put $t = n/4$. Since $l^2 \equiv 1 \pmod{m}$, there exist two integers m_1 and m_2 such that $m = m_1 m_2$, $(m_1, m_2) = 1$, $l \equiv -1 \pmod{m_1}$, and $l \equiv 1 \pmod{m_2}$. Conversely if we write $m = m_1 m_2$ where $(m_1, m_2) = 1$, there exists an integer l uniquely modulo m such that $l \equiv -1 \pmod{m_1}$ and $l \equiv 1 \pmod{m_2}$. We denote this group by $\mathbf{Q}(8t, m_1, m_2)$ (This notation is based on [11]). Thus we get (4) of

Theorem A.

Next, we determine the group G_3 satisfying $SK_1(\mathbb{Z}[G_3])=0$. Assume that

$$t(3) = \sum_{\beta \in D(n,3)} \#D(M_\beta) - 1 = 0.$$

Since $\#D(M_\beta) \geq 1$ for every $\beta \in D(n,3)$, it is necessary that $\#D(n,3) = 1$. Hence, n must be 3, thereby d is 1 or 3. However, if $d=3$, n/d is not divisible by 3. Hence d must be equal to 1, thereby $r \equiv 1(m)$. By using $(n(r-1),m)=1$, we have $m=1$, that is, A is equal to the identity element of G_3 . Thus, if $SK_1(\mathbb{Z}[G_3])=0$, G_3 must be isomorphic to a group of order 24 which is generated by the elements of the form B, P and Q , and which has relations:

$$B^3 = 1, \quad P^2 = Q^2 = (PQ)^2, \quad BPB^{-1} = Q, \quad BQB^{-1} = PQ.$$

This group is the binary tetrahedral group \mathbf{T}^* . Conversely, we can easily see that $SK_1(\mathbb{Z}[\mathbf{T}^*])=0$. This proves (5) of Theorem A.

Next, we determine the group G_4 satisfying $SK_1(\mathbb{Z}[G_4])=0$. Suppose that

$$t(4) = \sum_{\beta \in D(n,3)} \#D(M_\beta) - \sum_{\beta \in D(n,3)_{k+1}^n} \#D(M_\beta)_{k+1}^n = 0.$$

Then it is necessary that $D(n,3) = D(n,3)_{k+1}^n$. In fact, if there exists an element β_0 of $D(n,3) - D(n,3)_{k+1}^n$, since $\#D(M_{\beta_0}) \geq 1$, we have $t(4) \neq 0$. Hence, for every element β in $D(n,3)$, it must hold that $\beta(k+1) \equiv 0 \pmod{n}$. In particular, we have $3(k+1) \equiv 0 \pmod{n}$. Thus k must satisfy $k+1 \equiv 0 \pmod{n/3}$. We claim that $k \equiv -1 \pmod{n}$. In fact, if k is congruent to $n/3 - 1$ or $2n/3 - 1$ modulo n , the conditions $k+1 \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$ imply $n \equiv 0 \pmod{9}$, but it is a contradiction to the condition $k^2 \equiv 1 \pmod{n}$. Therefore we have

$$r^{k-1} \equiv r^{n-2} \equiv r^n \equiv 1 \pmod{m},$$

which implies d is a divisor of $(n-2, n)$. Since a group G_4 has odd n , we have $d=1$. By the same argument as above, we have $m=1$, that is, A is equal to the identity element of G_4 . Thus if $SK_1(\mathbb{Z}[G_4])=0$, G_4 must be a group of order $16n$ which is generated by the elements of the

form B , P , Q and R , and which has relations:

$$\begin{aligned} B^n &= 1, \quad P^2 = Q^2 = (PQ)^2 = R^2, \\ BPB^{-1} &= Q, \quad BQB^{-1} = PQ, \quad RPR^{-1} = QP, \\ RQR^{-1} &= Q^{-1}, \quad RBR^{-1} = B^{-1}, \end{aligned}$$

where n is divisible by 3, but is not divisible by 2. This group is the generalized binary octahedral group $\mathbf{O}^*(48t)$. Conversely, we can easily check that $SK_1(\mathbf{Z}[\mathbf{O}^*(48t)]) = 0$. This proves (6) of Theorem A.

Next, we consider the case that G is non-solvable.

Lemma 2.2 ([16; 6.3.1 Theorem]). *Let G be a finite non-solvable group. If G has a fixed point free representation, then G is one of the following two types.*

TYPE V. $G = K \times SL(2,5)$ where K is a solvable fixed point free group of type I in Appendix and order prime to 30.

TYPE VI. $G = \langle G_5, S \rangle$ where $G_5 = K \times SL(2,5)$ is a normal subgroup of index 2 and type V, $S^2 = -1 \in SL(2,5)$, $SLS^{-1} = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} L \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}^{-1}$ for $L \in SL(2,5)$, and S normalizes K .

Let G be a finite group of type V or VI. For an odd prime p , since p -Sylow subgroups of G are cyclic, $SK_1(\mathbf{Z}[G])_{(p)} = 0$. Hence by [7; Theorem 3], $SK_1(\mathbf{Z}[G])$ is generated by induction from 2-elementary subgroups of G , that is, $SK_1(\mathbf{Z}[G]) = 0$ if and only if G has not a subgroup which is isomorphic to $\Gamma \times S_2$ where Γ is a cyclic group of order prime to 2 and S_2 is a 2-group. In these cases, $SK_1(\mathbf{Z}[G]) = 0$ if and only if G has not a subgroup of the form $\Gamma \times \mathbf{Q}_8$ (see [5]). Hence K must be $\{1\}$ which proves (7) and (8) of Theorem A.

3. G -h-cobordisms between G -homotopy spheres

Let $Wh(G)$ be the Whitehead group of G , $L_m^s(G)$ and $L_m^h(G)$ the Wall groups (for the Wall groups, see [2], [14]). $\mathbf{Z}[G]$ is the integral group ring with involution $-$ defined by $\sum a_g g = \sum a_g g^{-1}$ where $a_g \in \mathbf{Z}$ and $g \in G$. For a matrix (x_{ij}) with coefficients in $\mathbf{Z}[G]$, (\bar{x}_{ij}) is defined by (\bar{x}_{ji}) . Then $Wh(G)$ has the induced involution also denoted by $-$. We define a subgroup $\bar{A}_m(G)$ of $Wh(G)$ by

$$\bar{A}_m(G) = \{\tau \in Wh(G) \mid \bar{\tau} = (-1)^m \tau\},$$

and put

$$A_m(G) = \tilde{A}_m(G) / \{\tau + (-1)^m \bar{\tau} \mid \tau \in Wh(G)\}.$$

Let $c: A_{2n+1}(G) \rightarrow L_{2n}^s(G)$ be the map in the Rothenberg exact sequence

$$\cdots \rightarrow A_{2n+1}(G) \xrightarrow{c} L_{2n}^s(G) \xrightarrow{d} L_{2n}^h(G) \rightarrow \cdots,$$

and $\tilde{c}: \tilde{A}_{2n+1}(G) \rightarrow L_{2n}^s(G)$ the map determining c (for this exact sequence, see [8; Proposition 4.1]).

Proposition 3.1. *Let G be a finite group such that $SK_1(\mathbf{Z}[G])=0$. Then the following hold:*

- (1) *If X is a free G -homotopy sphere of dimension $2n-1 \geq 5$, any G -h-cobordism W between X and itself must be G -diffeomorphic to $X \times I$.*
- (2) *If $S(V)$ and $S(V')$ are free linear G -spheres of dimension $2n-1 \geq 5$, any G -h-cobordism W' between $S(V)$ and $S(V')$ must be G -diffeomorphic to $S(V) \times I$.*

Proof. (1) In the case $|G| \leq 2$, since it holds that $Wh(G)=0$, the conclusion follows from the s -cobordism theorem. Our proof will be done under $|G| \geq 3$. Let W be a G -h-cobordism between X and itself, with $\dim W = 2n \geq 6$. To distinguish the inclusions of X to W , we put $\partial W = X \sqcup X'$, where X' is a copy of X . Let $i: X \rightarrow W$ and $i': X' \rightarrow W$ be the natural inclusion maps. Let r be a G -homotopy inverse of i . Since the order of G is greater than or equal to 3 and G acts freely on a homotopy sphere X with $\dim X \geq 5$, any G -self-homotopy equivalence of X is G -homotopic to the identity map. Hence, we have

$$\tau(r \circ i') = \tau(id) = 0.$$

On the other hand,

$$\begin{aligned} \tau(r \circ i') &= \tau(r) + r_* \tau(i') \\ &= -r_* \tau(i) + r_* \tau(i') \\ &= r_*(\tau(i') - \tau(i)). \end{aligned}$$

Thus we have $\tau(i') = \tau(i)$, that is,

$$\tau(W, X) = \tau(W, X').$$

By the duality theorem ([6; p. 394]), we also get

$$\tau(W, X') = -\overline{\tau(W, X)}.$$

Hence by these formulae, we see that $\tau = -\bar{\tau}$, that is, τ is an element of $\tilde{A}_{2n+1}(G)$.

Since G has periodic cohomology, $\tilde{A}_{2n+1}(G)$ is isomorphic to $SK_1(\mathbf{Z}[G])$ by [9; Theorem 3]. Hence we have $\tilde{A}_{2n+1}(G) = 0$, thereby $\tau = 0$.

(2) Let C be a cyclic subgroup of G . By Theorem 1.2, $\text{res}_c V = \text{res}_c V'$ as real C -modules. Thus $V = V'$ as real G -modules, and then $S(V')$ is G -diffeomorphic to $S(V)$. Since $SK_1(\mathbf{Z}[G]) = 0$, the conclusion now follows from (1) of this proposition. \square

Proof of Examples. Example B follows from Theorem A and Proposition 3.1 immediately. By [10], if a finite group G whose 2-Sylow subgroups are quaternionic acts freely on spheres, its dimension must be $4n-1$ ($n \in \mathbf{N}$). Hence, if a finite group G can act freely on spheres of dimension $4n+1$, the 2-Sylow subgroups of G are cyclic. Thus G must be of Type I in Appendix, thereby $SK_1(\mathbf{Z}[G]) = 0$, which proves Example C.

In [13], we studied G -h-cobordisms between G -homotopy spheres and obtained the following results:

Theorem 3.2 ([13; Theorem A]). *Let G be a finite group, and X a free G -homotopy sphere of dimension $2n-1 \geq 5$. Then the following (1) and (2) are equivalent.*

- (1) *Any G -h-cobordism W between X and itself must be G -diffeomorphic to $X \times I$.*
- (2) *$\ker \tilde{c}$ is trivial.*

Corollary 3.3 ([13; Corollary B]). *Suppose $\ker \tilde{c} = 0$. Let $S(V)$ and $S(V')$ be free linear G -spheres of dimension $2n-1 \geq 5$. Then a G -h-cobordism W between $S(V)$ and $S(V')$ must be G -diffeomorphic to $S(V) \times I$.*

Theorem 3.2 is shown by using surgery theory. Corollary 3.3 is an immediate consequence of Theorem 3.2. Since by [9; Theorem 3] $SK_1(\mathbf{Z}[G]) \cong \tilde{A}_{2n+1}(G)$ for a periodic group G , Proposition 3.1 is a special case of Theorem 3.2 and Corollary 3.3. Moreover, as in [13], there exists a finite group G such that $SK_1(\mathbf{Z}[G]) \neq 0$ and $\ker \tilde{c} = 0$. For example, let p be an odd prime, q a prime such that $q \geq 5$. Let G be $\mathbf{Q}_8 \times \mathbf{Z}_p$, $\mathbf{T}^* \times \mathbf{Z}_q$, or $\mathbf{O}^* \times \mathbf{Z}_q$, where \mathbf{Q}_8 , \mathbf{T}^* , and \mathbf{O}^* denote the quaternionic group, the binary tetrahedral group, and the binary octahedral group

respectively. Then we see that $SK_1(\mathbf{Z}[G]) \cong \mathbf{Z}_2$ and any G -h-cobordism W between a free G -homotopy sphere X of dimension $4n-1 \geq 7$ and itself must be G -diffeomorphic to $X \times I$, because $\ker \tilde{\epsilon} = 0$.

4. Proof of Theorem D

Let G be a compact Lie group of positive dimension which can act freely on a sphere. Then by [3; p. 153, Theorem 8.5], G must be isomorphic to S^1 , S^3 or NS^1 the normalizer of S^1 in S^3 . If G is S^1 , the dimension of a sphere on which G acts freely is $2n-1 (n \geq 1)$. If G is NS^1 or S^3 , it is $4n-1 (n \geq 1)$ because G has a subgroup which is isomorphic to \mathbf{Q}_8 . Now we recall the equivariant Whitehead group which is defined by S. Illman. By [4; Corollary 2,8],

$$\begin{aligned} Wh_{S^1}(X^m) &\cong Wh(1) = 0 & \text{where } & m = 2n-1 \geq 7, \\ Wh_{NS^1}(X^m) &\cong Wh(\mathbf{Z}_2) = 0 & \text{where } & m = 4n-1 \geq 7, \\ Wh_{S^3}(X^m) &\cong Wh(1) = 0 & \text{where } & m = 4n-1 \geq 11. \end{aligned}$$

Thus $(W; X, X')$ is a G -s-cobordism in the sense of [1]. The conclusion now follows from the conditions about the dimension of the homotopy sphere by using [1; Theorem 1].

5. Appendix

Let G be a finite solvable group. Then G has a fixed point free complex representation if and only if G is of type I, II, III, IV below, with the additional condition: if d is the order of r in the multiplicative group of residues modulo m , of integers prime to m , then n/d is divisible by every prime divisor of d .

TYPE I. A group of order mn that is generated by the elements of the form A and B , and that has relations:

$$A^m = B^n = 1, \quad BAB^{-1} = A^r,$$

where m, n and r satisfy the following conditions:

$$m \geq 1, n \geq 1, (n(r-1), m) = 1, r^n \equiv 1 \pmod{m}.$$

TYPE II. A group of order $2mn$ that is generated by the elements of the form A , B and R , and that has relations:

$$R^2 = B^{n/2}, \quad RAR^{-1} = A^l, \quad RBR^{-1} = B^k$$

in addition to the relations in I, where m, n, r, l and k satisfy the following conditions:

$$l^2 \equiv r^{k-1} \equiv 1(m), \quad k \equiv -1(2^u), \\ n = 2^u v (u \geq 2, (v, 2) = 1), \quad k^2 \equiv 1(n)$$

in addition to the conditions in I.

TYPE III. A group of order $8mn$ that is generated by the elements of the form A, B, P and Q , and that has relations:

$$P^2 = Q^2 = (PQ)^2, \quad AP = PA, \quad AQ = QA, \\ BPB^{-1} = Q, \quad BQB^{-1} = PQ$$

in addition to the relations in I, where m, n and r satisfy the following conditions:

$$n \equiv 1(2), \quad n \equiv 0(3)$$

in addition to the conditions in I.

TYPE IV. A group of order $16mn$ that is generated by the elements of the form A, B, P, Q and R , and that has relations:

$$R^2 = P^2, \quad RPR^{-1} = QP, \quad RQR^{-1} = Q^{-1}, \\ RAR^{-1} = A^l, \quad RBR^{-1} = B^k$$

in addition to the relations in III, where m, n, r, k and l satisfy the following conditions:

$$l^2 \equiv r^{k-1} \equiv 1(m), \quad k \equiv -1(3), \quad k^2 \equiv 1(n)$$

in addition to the conditions in III.

References

- [1] S. Araki and K. Kawakubo: *Equivariant s-cobordism theorems*, J. Math. Soc. Japan **40** (1988), 349–367.
- [2] A. Bak: *K-Theory of Forms*, Annals of Mathematics Studies, Princeton University Press, 1981.
- [3] G. E. Bredon: *Introduction to compact transformation groups*, Academic Press, 1972.
- [4] S. Illman: *Whitehead torsion and group actions*, Ann. Acad. Sci. Fenn., Ser.AI

558 (1974), 1–45.

- [5] E. Laitinen and I. Madsen: *The L-theory of groups with periodic cohomology* I, Aarhus Univ. Preprint Series **14** (1981/82).
- [6] J. Milnor: *Whitehead torsion*, Bull. Amer. Math. Soc. **72** (1966), 358–426.
- [7] R. Oliver: *SK₁ for finite group rings III*, Lecture Notes in Math. Springer Verlag **854** (1981), 299–337.
- [8] J.L. Shaneson: *Wall's surgery obstruction group for $G \times \mathbb{Z}$* , Ann. of Math. **90** (1969), 296–334.
- [9] J. Sondow: *Triviality of the involution on SK₁ for periodic groups*, Lecture Notes in Math. Springer Verlag **1126** (1983), 271–276.
- [10] R. Swan: *The p-period of a finite group*, Ill. J. Math. **4** (1960), 341–346.
- [11] C.B. Thomas: *Free actions by finite groups on S^3* , Proc. of Symposia in Pure Math. **32** (1978), 125–130.
- [12] F. Ushitaki: *SK₁($\mathbb{Z}[G]$) of finite solvable groups which act linearly and freely on spheres*, Osaka J. Math. **28** (1991), 117–127.
- [13] F. Ushitaki: *On G-h-cobordisms between G-homotopy spheres*, to appear in Osaka J. Math.
- [14] C.T.C. Wall: *Foundations of algebraic L-theory*, Lecture Notes in Math. Springer Verlag **343** (1973), 266–300.
- [15] C.T.C. Wall: *Norms of units in group rings*, Proc. London Math. Soc. (3) **29** (1974), 593–632.
- [16] J.A. Wolf: *Spaces of Constant Curvature*, Publish or Perish, INC., 1974.

Department of Mathematics
 Faculty of Science
 Kyoto Sangyo University
 Kita-ku, Kyoto, 603, Japan

