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1. Introduction

We work in the smooth category with free actions by groups in the
present paper. Let us recall Milnor’s theorem:

Theorem 1.1 ([6; Corollary 12.13]). Any h-cobordism W between
lens spaces L and L' must be diffeomorphic to L x[0,1] if the dimension of
L is greater than or equal to 5.

Let Z,, be the cyclic group of order m. Then we see that Theorem
1.1 is put in another way as follows:

Theorem 1.2. Let S(V) and S(V') be free linear Z,-spheres of
dimension 2n—12=5. Then any Z,-h-cobordism W between S(V) and
S(V") must be Z,-diffeomorphic to S(V)x I, where I=[0,1].

Let R be a ring with unit, G a finite group. Put GL(R)=1lim GL,(R)
and E(R)=[GL(R),GL(R)] the commutator subgroup of GL(R). Then
K,(R) denotes the quotient group GL(R)/E(R). Let Z be the ring of
integers and Q the ring of rational munbers. Let Z[G] and Q[G] denote the
group rings of G over Z and Q. The Whitehead group of G is the
quotient group

Wh(G)=K,(Z[G])/< +g:g€G>.

The natural inclusion map :GL(Z[G])-»GL(Q[G]) gives rise to a group
homomorphism ,: K (Z[G])»K{(Q[G]). Then SK,(Z[G]) is defined by

setting
SK,(Z[G])=ker[:,:K(Z[G]) > K (Q[GD].

In [15], C.T.C. Wall showed that SK,(Z[G]) is isomorphic to the torsion



404 F. UsHITAKI

subgroup of Wh(G). We will apply the following algebraic result to
extend Theorem 1.2.

Theorem A. Let G be a finite group which can act linearly and freely
on spheres. Then SK,(Z[G])=0 if and only if G is isomorphic to one of
the following groups.

(1) A cyclic group.

(2) A group of type 1 in Appendix(a metacyclic group with certain
condition).

(3) A quaternionic group Q(8t) with generators B,R and relations
B*=1, B*=R?=(BR)?, where t>1.

“4) A group Q(8t,my,m,) generated by A, B, R with relations
Amm=B4%—1 BAB '=4"! R*=B* RAR '=A4', RBR '=
B~ where mym,=1, mm,>1, (m;,m,)=1, (2t,mym,)=1,
I=—1(m,), I=1(0m,).

(5) The binary tetrahedral group T*.

(6) A generalized binary octahedral group O*(48t) generated by
B,P,O,R with relations B3*= 1, P2=0Q%*=(PQ)’=R? BPB !'=
O, BOB™'=PQ, RPR"'=QP, ROQOR '=Q7!, RBR =B},
where t is odd.

(7) The binary icosahedral group 1*=SL(2,5).

(8) The group genervated by SL(2,5) and an element S, where

— _ -1
Sz=—1eSL(2,5),SLS_1=<O 01>L(0 1) for

2 2 0
LeSL(2,5).

We obtain the following applications of Theorem A as generalizations
of Theorem 1.2.

ExampLE B. Let G be a finite group in Theorem A. Let X be a
free G-homotopy sphere of dimension 2n—12=5, and let S(V') and S(V")
be free linear G-spheres of dimension 2n—12=5. Then,

(1) Any G-h-cobordism W between X and itself must be
G-diffeomorphic to X x I.

(2) Any G-h-cobordism W between S(V) and S(I”’) must be
G-diffeomorphic to S(V) x I.

ExampLE C. Let G be a finite group. Let X be a free G-homotopy
sphere of dimension 4n+12=5, and let S(V) and S(V’) be free linear
G-spheres of dimension 4n+1=5. Then,
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(1) Any G-h-cobordism W between X and itself must be G-dif-
feomorphic to X x I.

(2) Any G-h-cobordism W between S(V) and S(V’) must be
G-diffeomorphic to S(V)x I.

When G is a compact Lie group of positive dimension, a generalization
of Theorem 1.2 is:

Theorem D. Let G be a compact Lie group of positive dimension
which can act freely on spheres. Let X™ and X'™ be free G-homotopy spheres
of dimension m, and let (W; X, X") be a G-h-cobordism of a free G-action.

(1) If G = S* and m=2n—127, then W must be S'-diffeomorphic
to Xx1I.

(2) IfG= NS! and m=4n—12=7, then W must be NS*-diffeomorphic
to X x I where NS! is the normalizer of S* in S>.

(3) If G=S? and m=4n—1211, then W must be S>-diffeomorphic
to Xx1I.

This paper is organized as follws: Section 2 presents the proof of
Theorem A. In section 3 we prove Examples B and C, and state some
results on G-h-cobordisms between G-homotopy spheres. We prove
Theorem D in section 4. Appendix is devoted to quoting the table of
the finite solvable groups which can act linearly and freely on odd
dimensional spheres from [16].

2. Proof of Theorem A

First, let G be a finite solvable group which can act linearly and
freely on spheres. As in [16; Theorem 6.1.11], there are 4 types for
such kinds of groups. For the convenience of the readers, the table of
these groups are cited in Appendix. We now recall the structure of
SK,(Z[G]) of these groups G. We must prepare the following notations.

Let G,, G,, G; and G, denote the groups of type I, II, III and
IV respectively mentioned in the table in Appendix. Let (ay,a,,:-,a;)
denote the greatest common divisor of integers {a;,a,, :-,a;}, and let
m,n,r,l,ku,v and d be the integers appeared in the definition of G,, G,,
G5 and G,.For positive integers a,f,y and J, put

Mﬂ=(rﬂ—1)m)a
D(@)={xeN | x is a divisor of a},
D(a,p)={xeD(a) | x can be divided by S},
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D(a)’={xe D(®) | xy=0 (3)},
D(a,f)={xe D(a,p) | xy=0(5)}.

If d is an even integer, we put d'=d/2, and put

t(2) =#{(2,B) | € D(v); - 1,0 € D(M 5up),
(a+aM,ug)(l— 1,7"*—1)=0(m)
for some integer a with 0=<a<m/M,.;}

—# U D(m)( - 1 ,pma—1 120 + 1),
0<b<d
2=0,1
£(2)=¥(x,p) | Be D(v); - 1,00 € D(Mup),
(+aM yug)(l— 1,”*—1)=0(m) or
(o + aMzuﬁ)(lr"' —1,7"*—1)=0(m)

for some integer a with O§a<m/M2uﬂ}

—% U (D(m)?t'— 1,rm/4— 1,140 + 1) U D(m):'l'r"' —1,/n/4—1 1Arb + 1))»

0<b<d
A=0,1

t(3)= ) #D(M;)—1,

peD(n,3)
t4)= ) #DWMyp— >  $DMy),,.
BeD(n,3) BeD(n,3);. ,

Then we have:

Theorem 2.1 ([12; Theorem]). Let G,, G,, G5 and G, denote the
groups of type 1, 11, 111 and IV respectively.

(1) SK,(Z[G])=0.

(2) SK,(Z[G,])=Z5® if d is an odd integer,
SK,(Z[G,))=Z5? if d is an even integer.

(3) SK((Z[G;)=Z.

(4) SK(Z[G.))=Z5Y.

By Theorem 2.1, we get (1) and (2) of Theorem A. Let G; be a
group G, such that d is odd. At first, we determine the group G}
satisfying SK,(Z[G3])=0. Put

T+ ={(@,p)| Be D(v); 1,0 € D(Mpup),
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(@ +aMug)(I—1,7"* —1)=0(m)
for some integer a with 0<a<m/M,.z},

and

.7_={(Ot,v)|<16 U D(m)?l'—l,r"/“~1,li~rb+l)}'
3o

WA

By [12; §3], #(2) the 2-rank of SK,(Z[G}]) is calculated by
t2)=4%7, 47 _.

It is easy to see that J_ is a subset of . Suppose that {(2)=0. Then
it is necessary that D(v);_;={v}. In fact, if there exists an element f8
of D(v);y_; which is different from v, we see that the ordered pair of
numbers (Myu,f) is in J,, but is not in J_. Hence, if f in D(v)
satisfies f(k—1)=0 (v), it must be equal to v. Thus we have
(k—1,0)=1. Since k*=1 (n) and k=—1 (2%, it holds that k=—1
(n). Since d is a divisor of k—1 and d is odd , by [12; Observation
3.1] (k—1,v) is divisible by d. Hence we have d=1, thereby r=1 (m). By
using (n(r—1),m)=1, we get m=1, that is, A is equal to the identity
element of Gi. Thus if SK,(Z[G3])=0, G} must be isomorphic to a
group of order 2n which is generated by the elements of the form B and
R, and which has relations:

B'=1, R*=B"?, RBR™'=B"1,

where n is a number of the form 2% for some u=2, (v,2)=1,
v=1. Conversely, we can easily check that SK,; for this group
vanishes. By putting t=n/4, we have (3) of Theorem A.

Let G9 be a group G, such that d is even. Next, we determine the
group G satisfying SK,(Z[G9])=0. Since dis even, we havem>1. Put

Th ={(°‘,ﬂ)|ﬁ€D(U)Z—1, o€ D(M ,up),
(¢ +aM,up)(I—1, ¥*—1)=0(m) or
(t+aMpg)(lr" —1, *—1)=0(m)
for some integer a with O§a<m/M2uﬁ},
and
9”_={(a,v)|ae U (D(m):'l‘—l,r"/“—l,l‘-r"+l)UD(m)?l‘rd'—l,r"/“—1,llrb+1))}-

0<b<d
A=0,1

WA



408 F. UsHITAKI

By [12; §3], #(2) the 2-rank of SK,(Z[GY]) is calculated by
'QQ)=%7,—-%7" .

It is easy to see that 7 is a subset of 7,. Then by the same argument
as before, we have D(v)y_; ={v} and (k—1,0)=1. Since k’=1 (n) and
k+1=0(2"), it holds that k= —1 (n). Since d is even, by [12; Observation
3.1], d'=d/2 is a divisor of (k—1,v). Hence, we have d=2, thereby r#1

(m) and r*=1 (m). Now we claim that r= —1 (m). In fact, since (r+1)
(r—1)=0 (m) and (r—1,m)=1, it holds that r+1=0 (m) or m=1. How-
ever, it must hold r= —1 (m) because m>1. Therefore, we have

W =1, M- =1+1,(—1)"*—1).
Thus, for #7, =47, it is necessary that

#{ae D(m)|a(l—1, (=1)"*—1)=0 (m)
or a(l+1, (—1)"*—1)=0 (m)}

=4 U (D(m)?l'—1,(—1)"/4—1,(—1)bl’-+1)UD(m)z7+1,(—-l)"/“—1,(—1)"1’-+1))-
b=0,1

0,
A=0,1

I}

However, we can easily check that this formula always holds. Thus,
if SK,(Z[G%])=0, GJ must be isomorphic to a group of order 2n which
is generated by the elements of the form A, B and R, and which has
relations:

A"=B"=1, BAB™'=A4"",
R*=B"?, RAR '=4', RBR"'=B",

where m,n and [ satisfy the following conditions:

m>1, (nm)=1, I>=1 (m),
n=2"vuz=2, (v,2)=1, v=1).

Conversely, we can easily check that SK; for this group vanishes. Now,
we put t=n/4. Since [>?=1(m), there exist two integers m, and m, such
that m=mm,, (m{,my)= 1, lI=—1(m,), and [=1(m,). Conversely if we
write m=m;m, where (m;,m,)=1, there exists an integer [ uniquely
modulo m such that [= —1(m,) and [=1(m,). We denote this group by
Q(8t,m,,m,) (This notation is based on [11]). Thus we get (4) of
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Theorem A.

Next, we determine the group G5 satisfying SK{(Z[G3])=0. Assume
that

(3)= Y #D(M;—1=0.
peD(n,3)

Since #D(Mg)21 for every feD(n,3), it is necessary that #D(n,3)=1.
Hence, n must be 3, thereby d is 1 or 3. However, if d=3, n/d is not
divisible by 3. Hence d must be equal to 1, thereby r=1(m). By using
(n(r—1),m)=1, we have m=1, that is, A is equal to the identity element
of G;. Thus, if SK,(Z[G3])=0, G; must be isomorphic to a group of
order 24 which is generated by the elements of the form B,P and Q,
and which has relations:

B3=1, P2=0Q?=(PQ)?, BPB '=Q, BOB !=PQ.

This group is the binary tetrahedral group T*. Conversely, we can easily
see that SK,(Z[T*])=0. This proves (5) of Theorem A.

Next, we determine the group G, satisfying SK,(Z[G,])=0. Sup-
pose that

)= > #$DWMp— Y  #DMp),=0.

peD(n,3) ﬁeD(n,3): ‘1
Then it is necessary that D(n,3)=D(n,3);+,. In fact, if there exists an
element B, of D(n,3)—D(n,3);,,, since #D(M;)=1, we have #(4)#0.
Hence, for every element f in D(n,3), it must hold that f(k+1)=0
(n). In particular, we have 3(k+1)=0(n). Thus k must satisfy
k+1=0(n/3). We claim that k= —1(n). In fact, if k is congruent to
n/3—1 or 2n/3 —1 modulo #n, the conditions £+ 1=0(3) and =0 (3) imply
n=0 (9), but it is a contradiction to the condition k2=1(n). Therefore
we have

*l=y""2=y"=1 (m),

which implies d is a divisor of (n—2,n). Since a group G, has odd =,
we have d=1. By the same argument as above, we have m=1, that is,
A is equal to the identity element of G,. Thus if SK(Z[G,])=0, G,
must be a group of order 16n which is generated by the elements of the



410 F. USHITAKI

form B, P, Q and R, and which has relations:

B"=1, P’=0Q*=(PQ)*=R?,
BPB™'=Q, BOB™'=PQ, RPR™'=QP,
ROR™ '=Q7!, RBR™ '=B!,

where 7 is divisible by 3, but is not divisible by 2. This group is the
generalized binary octahedral group O*(48t). Conversely, we can easily
check that SK(Z[O*(48¢)])=0. This proves (6) of Theorem A.

Next, we consider the case that G is non-solvable.

Lemma 2.2 ([16; 6.3.1 Theorem]). Let G be a finite non-solvable
group. If G has a fixed point free representation, then G is one of the
following two types.

TypE V. G=K x SL(2,5) where K is a solvable fixed point free group
of type 1 in Appendix and order prime to 30.

TYPE VI. G=<Gs,S> where Gg=K x SL(2,5) is a normal subgroup

_ 1\ -1
of index 2 and type V, S*= —1eSL(2,5),SLS™! =<(2) 01> L <2 01>
for Le SL(2,5), and S normalizes K.

Let G be a finite group of type V or VI. For an odd prime p,
since p-Sylow subgroups of G are cyclic, SK;(Z[G]),,)=0. Hence by
[7;Theorem 3], SK,(Z[G]) is generated by induciton from 2-elementary
subgroups of G, that is, SK(Z[G])=0 if and only if G has not a subgroup
which is isomorphic to I' xS, where I' is a cyclic group of order prime
to 2 and S, is a 2-group. In these cases, SK;(Z[G])=0 if and only if
G has not a subgroup of the form I' x Qg (see [5]). Hence K must be
{1} which proves (7) and (8) of Theorem A.

3. G-h-cobordisms between G-homotopy spheres

Let Wh(G) be the Whitehead group of G, L(G) and L!(G) the Wall
groups (for the Wall groups, see [2], [14]). Z[G] is the integral group
ring with involution — defined by Zag,gr=‘2.agg_l where a,€Z and
g€G. For a matrix (x;;) with coefficients in Z[G], (x;;) is defined by
(x;). Then Wh(G) has the induced involution also denoted by —. We
define a subgroup 4,(G) of Wh(G) by

A,(G)={1e Wh(G) |t=(~1)"1},

and put
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A(G) =4, (G)/{t+(—1)"t|te Wh(G)}.

Let ¢:4,,,1(G)—>L5,(G) be the map in the Rothenberg exact sequence

w5 Ayy(G) S L3(G) S LA (G) » -,

and & A,,,(G) = L,(G) the map determing ¢ (for this exact sequence,
see [8; Proposition 4.1]).

Proposition 3.1. Let G be a finite group such that SK(Z[G])=0.
Then the following hold:

(1) If X is a free G-homotopy sphere of dimension 2n—125, any
G-h-cobordism W between X and itself must be G-diffeomorphic
to X xI.

2) If S(V) and S(V') are free linear G-spheres of dimension 2n—125,
any G-h-cobordism W' between S(V) and S(V') must be
G-diffeomorphic to S(V')x 1.

Proof. (1) In the case |G|<2, since it holds that Wh(G)=0, the
conclusion follows from the s-cobordism theorem. Our proof will be
done under |G|=3. Let W be a G-h-cobordism between X and itself,
with dim W=2n=6. To distinguish the inclusions of X to W, we put
OW=X1X, where X' isa copy of X. Leti:X—> W and {: X' —» W be
the natural inclusion maps. Let » be a G-homotopy inverse of 7. Since
the order of G is greater than or equal to 3 and G acts freely on a
homotopy sphere X with dim X =5, any G-self-homotopy equivalence of
X is G-homotopic to the identity map. Hence, we have

©(ro1)=1(id)=0.
On the other hand,

t(rod)=1(r)+r1()
= —r,1(2) +7,7()
=7,(t(") — 1(2)).

Thus we have t(/')=1(z), that is,
(W, X)=1(W,X).

By the duality theorem ([6; p. 394]), we also get

(W, X)= — (W, X).
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Hence by these formulae, we see that 1= —%, that is, T is an element of
‘42n+l(G)'

Since G has periodic cohomolgy, A4,,,,(G) is isomorphic to
SK(Z[G]) by [9; Theorem 3]. Hence we have A4,,,,(G)=0, thereby
t=0.

(2) Let Cbeacyclic subgroup of G. By Theorem 1.2, res IV =res I’
as real C-modules. Thus V=1V" as real G-modules, and then S(I) is
G-diffeomorphic to S(V). Since SK,(Z[G])=0, the conclusion now
follows from (1) of this proposition. O

Proof of Examples. Example B follows from Theorem A and
Proposition 3.1 immediately. By [10], if a finite group G whose 2-Sylow
subgroups are quaternionic acts freely on spheres, its dimension must be
4n—1(ne N). Hence, if a finite group G can act freely on spheres of
dimension 4n+1, the 2-Sylow subgroups of G are cyclic. Thus G must
be of T'ype I in Appendix, thereby SK,(Z[G])=0, which proves Example
C.

In [13], we studied G-h-cobordisms between G-homotopy spheres and
obtained the following results:

Theorem 3.2 ([13; Theorem A)).Let G be a finite group, and X a
free G-homotopy sphere of dimension 2n—12=5. Then the following (1) and
(2) are equivalent.

(1) Any G-h-cobordism W between X and itself must be G-diffeomorphic
to XxI.
(2) ker ¢ is trivial.

Corollary 3.3 ([13; Corollary B]). Suppose ker c=0. Let S(V)
and S(V') be free linear G-spheres of dimension 2n—12=5. Then a
G-h-cobordism W between S(V) and S(V') must be G-diffeomorphic to
S(V)xI.

Theorem 3.2 is shown by using surgery theory. Corollary 3.3 is an
immediate consequence of Theorem 3.2. Since by [9; Theorem 3]
SK,(Z[G])=A4,,, (G) for a periodic group G, Proposition 3.1 is a special
case of Theorem 3.2 and Corollary 3.3. Moreover, as in [13], there
exists a finite group G such that SK,(Z[G])#0 and kerc=0. For
example, let p be an odd prime, ¢ a prime such that ¢g=5. Let G be
Qg x Z,, T*x Z,, or O* x Z_, where Qg, T*, and O* denote the quaternionic
group, the binary tetrahedral group, and the binary octahedral group
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respectively. Then we see that SK,(Z[G])~Z, and any G-A-cobordism
W between a free G-homotopy sphere X of dimension 4n—12=7 and
itself must be G-diffeomorphic to X x I, because keré=0.

4. Proof of Theorem D

Let G be a compact Lie group of positive dimension which can act
freely on a sphere. Then by [3; p. 153, Theorem 8.5], G must be
isomorphic to S!, S or NS' the normalizer of S! in S3. If G is S*,
the dimension of a sphere on which G acts freely is 2n—1(n=1). If
G is NS! or S3, it is 4n—1(n=1) because G has a subgroup which is
isomorphic to Qg. Now we recall the equivariant Whitehead group which
is defined by S. Illman. By [4; Corollary 2,8],

Who(X™) = Wh(1)=0 where m=2n—127,
Whys (XM= Wh(Z,)=0 where m=4n—12=27,
Whe:(X™ >~ Wh(1)=0 where m=4n—1211.

Thus (W;X,X’) is a G-s-cobordism in the sense of [1]. The conclusion
now follows from the conditions about the dimension of the homotopy
sphere by using[1; Theorem 1].

5. Appendix

Let G be a finite solvable group. Then G has a fixed point free
complex representation if and only if G is of type I, II, III, IV below,
with the additional condition: if d is the order of r in the multiplicative
group of residues modulo m, of integers prime to m, then n/d is divisible
by every prime divisor of d.

Type I. A group of order mn that is generated by the elements of
the from A and B, and that has relations:

Am"=B"=1, BAB '=4",
where m,n and r satisfy the following conditions:

m>1n>1,(n(r—1),m)=1""=1(m).

Type II. A group of order 2mn that is generated by the elements
of the form A4, B and R, and that has relations:

R*=B"?, RAR™'=A4', RBR™'=B*
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in addition to the relations in I, where m, n, r, ] and k satisfy the following
conditions:

P=r"1=1(m), k= —1(2Y),
n=2"2u=22,v,2)=1), k*=1(n)

in addition to the conditions in I.

Type II1. A group of order 8mn that is generated by the elements
of the form A,B,P and Q, and that has relations:

P?=0%=(PQ)?, AP=PA, AQ=0A,
BPB '=Q, BOB !=PQ

in addition to the relations in I, where m, n and r satisfy the following
conditions:

n=1(2), n=0(3)
in addition to the conditions in I.

Type IV. A group of order 16mn that is generated by the elements
of the form A,B,P,Q and R, and that has relations:

R?*=P2, RPR"'=QP, ROR =071,
RAR '=4', RBR '=B*

in addition to the relations in III, where m, n, r, k and [ satisfy the
following conditions:

P=rF"1=1(m), k=—1(3), k*=1(n)

in addition to the conditions in III.
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