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sxプログラミング特集

3次元熱剛塑性有限要素解析並列

処理プログラムの開発

神戸大学工学部 冨田佳宏秋萬錫

1. ま え が き

塑性加工過程中の被加工物内の変形及び温度分布などを計算機シミュレーションによって正

確に予知し、その情報を工程の設計や新しい加工法の確立のために利用する傾向が最近特に強

くなっている。その中で各種剛塑性有限要素法が広く使われている。通常、剛塑性有限要素法

では、塑性ひずみの非圧縮性をLagrange乗数法、 Penaltyなどによって満足させているが、

要素の選択と剛性マトリクスの数値積分において特別な注意を払うことなしに、高精度の解を

得ることは困難である。このような状況を打開する最も簡単でかつ実用的な手法に、剛性マト

リクスの評価に低減積分 (RI)あるいは選択低減積分 (SRI)を用いる方法があるい 事実、こ

れまでの各種塑性加工過程の解析• シミュレーションでは、 2次元問題に対して 4節点4辺形

要素、 3次元問題に対して8節点6面体要素が主に用いられ、 RIあるいはSRIによって剛性マ

トリクスが評価されている。しかしながら RIにおいては、計算時間が短縮されるが、 変形後

の有限要素メッシュにいわゆるアワーグラス状のZeroEnergy Mode (ZEM) が発生し~)、そ

れが結合して、メカニズムを形成し、本来の解を覆い隠すことがある。一方、 SRIを用いると

安定した解は得られるが、計算時間が長くなるということは否めない。

そこで本研究では、 Liu ら~)の安定化マトリクスを熱剛塑性有限要素法に導入し、 3次元問

題を高速かつ数値的に安定に解析することを可能にしたプログラムを開発したので報告する。

2. 熱剛塑性有限要素法

2• 1 安定化マトリクス

RIすることによって発生する ZEMを抑える手法について種々研究がなされているが、その

中でLiuらによって提案された手法3)は最も簡単で、 ZEMを抑えると同時に精度を犠牲にする

ことなく計算効率もよく、かつ非圧縮性に近い変形の場合に Lockingしないと長所を持つ4)0 

ここでは、線形弾性問題に対してLiuらの安定化マトリクスKsの具体形を再記し、その性質
を示そう。

3次元有限要素内の変位及びひずみをそれぞれ、且ヽ足、節点における変位を見で表すと、そ

れらの間には次式が成立する。

U = q)N d N、c=BN dN ------ (1) 

見＝（史丸2T史丸4T戸、む T=CuxN UyN UZN) 
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ここで、必退Nは節点 Nに対応した形状関数と Bマトリクス、i訂は節点Nにおける変位
成分を表す。

RI法を用いて剛性マトリクスを評価することができれば、計算時間を大幅に抑えることがで

きる。しかしながら、不適切な RI法を用いると上述のような余分な ZEMを発生させる恐れが

ある。 ZEMの発生原因は RIによって得られた剛性マトリクスがランク落ちすることによる。

そこで、 RIによって求めた剛性マトリクスどに安定化マトリクスぎを加えて、剛性マトリク

スKをつぎのように表し

K= K1+ K5 (2) 

剛性マトリクスのランク落ちを防止する。

3次元の 8節点6面体要素の場合のひずみ£を、要素の自然座標ぶ瓜（の原点まわりに展

開することによりつぎの表示式を得る。

乏（ど，刀，()=旦NCO) Q_,N十旦N'どCO)Q_,Nど＋旦Nバ1CO)_£、NT/+BNべ， CO)辻、N(

+2且N心7/CO)心frJ+ 2見!',7J(CO)心沢+2旦N 心 CO)~、N くど

(3) 

ここで、（），どヽ(),nヽ (),I; ... は，（）のど、 n 、〖による編微分を表している。また、 B迅0)、 B (0) 
～ふf

・・・・・はBN、BN,/; …の自然座標ど、 7J、くの原点における値を表し、定数である。したがって、上

式から Bマトリクスは

些ぽ、 7J、()=且NCO)+且N,f CO)ど＋且N,n (Q)71+旦N,r;(Q)(+2且N,fnCO)ど7J

+2]応 nr:(O)r;(+2B応 aCO)ば
(4) 

となる。上式右辺第2項以降が剛性マトリクスのランク落ちを抑える効果を持つ項きある。な

お、本研究では、ひずみの展開及び体積積分において、ヤコビマトリクスならびにヤコビアン

を要素内で一定と近似している。このような仮定のもとで、式(3)をよく知られた仮想仕事の原

理式に導入することにより、剛性マトリクス K1MNと安定化マトリクス K細の具体形を得る。

fMN = VBTM (0) D恥 (0)

ぎ~N= (1/3) {旦¥!,i;(0)ど旦、N,t;(O)+旦泊，7/(O)Q旦N,71 (Q) +且冒TM,(CO)Q旦、N,(CO)}V

+(4/9)也M,びCO)翌N,/;71 CO)+旦M河げ(0)聾 ,71cCO)+且Mぶ (0)Q旦応応o)}v 

(5) 

ここでVは要素の体積、 Dは応力ひずみマトリクスを表す。

積分法と発生する ZEMの関係を調べるために、 8節点6面体isoi::arametric要素を対象とし
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て、変形拘束のない状態で、完全積分 CFO,RI、SRI、RIとLiuら3)の安定化マトリクスを導入

した手法 CRIS)を適用して得られた剛性マトリクスの固有値と固有値ベクトルを用いて、 ZEM

のみを求めた。その結果、 FI、SRI、RISでは、 ZEMは剛体変形モードのみを表すのに対して、

RIではいわゆるアワーグラス状の変形モードを含んでいた。このことから、RISでは積分点が

1つであるがSRIの場合と同様の性質を持つことがわかる。

2• 2 安定化マトリクスを導入した剛塑性有限要素法

ここでは、ペナルティ形剛塑性有限要素法に安定化マトリクスを導入することにより剛塑性

有限要素解析の解析効率の向上と解析の安定化を図る。ペナルティ形剛塑性有限要素方程式は

一般につぎのように表すことができる~)

{ (gS,+遠） dVA=信:fdS (6) 

" 

Q=B冗 B,E=BTAA屯

-~----~-—→『--
ここで、 g=2 a/3瓦aは相当応力、すは相当ひずみ速度で、偏差応力を必ひずみ速度を£と

したとき、託(3/2)!匹逗＇、亡 (2/3){望£。_,.gはcij=o Ci号）、 cii= 1 Ci= 1 -s)、cii=

2 Ci =4-6)を成分とする正方マトリクス、 c=c-•, Jはペナルティ量、 fは節点力、 Aは1とO

を成分とするベクトルである。この有限要素方程式は節点変位速度dに関する非線形方程式で

あるので、摂動展開して高次の項を省略し、つぎのように線形化して解析される。

《{g9,+旦+Cg/a) c婦砂鱈}dV△5t=£-{ Cgf+巧 dV
f:J = Q d , /J = Ed (7) - __ , __、～～～

上式に、式(4)を代入することにより、安定化マトリクスを導入したペナルティ形剛塑性有限要

素方程式を得る。

〔g(£'十旦5)+I1?_+Cg/a)C8g/8f)J!,f門V△4_ =,£-Cg色厄） V

/3'= cc'+cりd------ (8) 

ここで、 8節点6面体要素に対するマトリクス£¥ごの成分の具体形は以下のようになる6)0

g冨＝飼 CO)c恥 CO)

QMN5= (1/3) {巨Mぶ(0)豆Bパ CO)+足,M, / (Q)£ 且N,n CO)+且MべT(Q)豆且、NべCO)}

+(4/9) {且M,l;nTCO)£ 且、N,l;n CO)+且M可げ(0)£旦,N,nぐCO)+且M,(どT(Q)£ 旦N,(/;CO)} 

(9) 
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このように、安定化マトリクスが加わり元の剛塑性有限要素方程式(7)より若干複雑な形式に

なっているが、前節において述べたように、いずれの項も自然座標の原点において評価できる

ので効率よく各マトリクスを計算できる。

2• 3 有限要素熱伝導方程式

Updated Lagrange表示の局所形のエネルギ平衡方程式の弱形式表示に、塑性変形に伴って発

生する非可逆仕事 a=aaii恥 Ca=0.951>)を熱源として導入することによりつぎの有限要索

熱伝導方程式が得られる叫

jvpc五 dVi_+JV咆厨V1-,=信adV-{fQdS 
(10) 

ここで、 p、Cは材料の密度と比熱、 T、Tは温度及び温度の変化率で、それぞれ要素節点に

おける温度t及び温度の変化率tとT=</>t、T=釦によって関係付けられる。また、温度勾配
～～ 

はg=Etで表される。 Q=h CToo-T)は物体の表面から流入する熱流を表す。 hは熱伝達率、
’ 

瞑は外気温度、には熱伝導率である。式 (8)の速度場は仕事 0を介して式 (10)の温度場と連

成している。解析にあたり、熱伝導有限要素微分方程式はHoubolt法9)により差分表示したも

のを用いた。

以上の剛塑性有限要素方程式 (8)及び熱伝導方程式 (10)の解析の高速化を図るために並列

処理プログラムを作成した。
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3. 解析速度の検討と数値シミュレーション結果の概要

3• 1 粘塑性解析と解析の安定・高速化の検討

上記剛塑性有限要素法による解析結果の性質を検討するために、これを基本的な 3次元問題

の解析に適用し、その結果を他の積分法を導入して得た結果と比較する。解析対象は一辺が2

Hの立方体プロックで、端面固着状態でz方向に圧縮を受けている。変形の対称生からプロッ

クの 1/8を図 1(a)に示すように 8節点6面体要素を用いてモデル化した。プロックの材料は、

ひずみ及びひずみ速度依存性体とし、その相当応力 5、相当ひずみ 5、相当ひずみ速度宕関係

を次式のように仮定する。

万=Oy (も/c。)n (も／む） m (11) 

ここで Oyは名=0のときの降伏応力、 mはひずみ速度感度指数、 nは加工硬化指数である。

さらに e。、むはそれぞれ基準ひずみと基準ひずみ速度である。これらの材料定数の値をまと

めて表 1に示している。なお、変形解析の梢度と効率を左右する時間ステップの大きさ△tを、

表 1 各種定数の値

E。constant 0,002 

さ。 constant 0.0024 11sec 

的 yield stress at 23゚C 400.0 Mpa 

p density 7.87 g/c而

C specific heat 04605 J/g•C 

T。 initial temperature 23.0 C゚

Too temperature of air 23.0 C゚

k, thermal conductivity 0.5986 ,Ycms℃ 

h heat transfer coefficient 0.00042.j/c品 s゚c

1ステップあたり公称ひずみが0.005になるように決定した。解の収束は、全節点の変位速度

ベクトルの修正量△dが△釘△d (1()7を満足するときと考えた。この場合体積一定の条件、
-'""'  

カのつり合い条件が十分な精度で満足されていることを確認している。図 1(b)に刀=h/H=

0。8CH、hはプロックの変形前後の高さ）における変形形状と相当塑性ひずみ分布を示す。

SRIとRISによる結果の一致は良好である。これに反し、 RIによる結果には要素の変形⑫財t

があり好ましくない結果である。ただ、平面ひずみの場合の結果6)と比較して、 要素の変形の
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y
 

x
 

RIS SRI RI 

(a) (b) 

図 1. 立方体ブロックの圧縮変形

(a)有限要素モデル， (b)変形形状と相当塑性ひずみの等高線

特異性が少ないのは変形が3方向に起こるためであると考えられる。 3種類の解析の効率を検

討するために刀=0。 8までの変形解析に必要とする計算時間、全繰り返し数、全ステップ数

を表2に示す。これより、RISによると SRIの計算時間を約 1/3に短縮できることがわかる。

表2. 計算条件のまとめ (CPUはRISのCPUを単位としている）

積分法 C p u 全繰り返し数 全ステップ数

SR I 2. 7 1 6 8 1 8 0 

RI S 1. 0 0 6 1 0 8 0 

R I 0. 7 6 7 3 5 8 0 

また、有限要素形状に不安定を伴わないので、収束までの繰り返し回数も少なくて済む。以上

により、 RISを用いた解析は効率ならびに梢度が良いことが確認された。

つぎに、この有限要素解析プログラムを94形まで並列化処理した状態で 3次元変形の解析

を行う。解析対象は、 z方向に圧縮を受ける端面が固着された長方形孔を有する円柱である。

変形の対称性を考慮して図 2(a)に示すように円柱の 1/8を図示の 8節点6面体要素 750個を

用いてモデル化した。 刀=h/H= 0. 7 CH,hは円柱の変形前後の高さ）までの解析ステップ数

は80で、それに要した計算時間は約8分 CSX2)である。同図(b)に変形形状ならびに相当塑性

ひずみ分布を示す。これより、外面はいずれも 2重バルジを示し、厚さが小さい部分では内外

大阪大学大型計算機センターニュース -22 - Vol. 19 No. 3 1989-11 



刀=0.9 か=0.8
(b) 

刀=0.7

図2. 円孔を有する円柱の圧縮変形

(a)有限要素モデル， (b)変形形状と相当塑性ひずみの等高線

面とも外向きに張り出し、厚さが大きい部分では内面は内向きに張り出している。これらの張

り出しが大きい部分でひずみが大きくなっている。このような解析が、短時間できるようにな

ったことにより、剛塑性有限要素法の 3次元変形のシミュレーション手法としての実用性は大

幅に向上したと考える。次に並列処理による計算効率の改善を検討するために、 3種類の 3次

元問題の解析を行なった。図 3にスカラー処理の場合の計算時間と並列処理した場合の計算時

20 

匹

10 

- Seal ar comp 
ど＝
Para! I el comp 

2.0 2.5 3.0 3.5 

Log 10 (degree of freedom) 

図3. 有限要素モデルの自由度と並列計算による高速化率E

大阪大学大型計算機センターニュース -23 - Vol.19 No. 3 1989-11 



間の比Eとモデルの自由度の関係を示す。いずれの解析もSX2による。図に見られるように、

多自由度になると解析速度を20倍程度に高速化できる。 また、高速化は自由度の増加ととも

に著しくなる傾向にあることも注目される。前述の解析により RISではSRIの解析速度を約3

倍に高速化できたので、最終的には、 SRIによる従来の解析に対して、 60倍の計算速度が実現

できたことになる。また、 RISでは 1点積分であるのでSRIの場合に比べて要素剛性マトリク

スの計算に必要な計算機容最も約1/8に抑えることができることも特記すべきであろう。

3• 2 3次元熱剛塑性変形の解析

上記のように、開発した 3次元剛塑性解析プログラムの解析効率はよい。ここでは、同様に

並列化処理した 3次元熱剛塑性解析プログラムによって直方体プロックの変形の局所化過程を

シミュレートした結果を示す。計算効率については特に言及しないが、 3.1項と同程度の高

速化が実現されている。熱剛塑性問題の解析は、ある時間増分△tの間になされた塑性仕事を熱

に変換し、それを熱発生量として熱伝導解析を行ない、△t後の温度場を求める。求められた温

度場を使い、次の時間増分△tまで変形解析を行なう。 以上の操作を所定の変形が完了するま

で繰り返し続行する。変形解析の梢度と効率を左右する時間ステップの大きさ△tを、 1ステッ

プあたり公称ひずみ増分が0.005になるように決めた。

z
 

..J 
3
 ＝
 

W
I
L
 

X 

図4. 直方体ブロックの有限要素分割モデル

図4に示すように変形の対称性を考慮して直方体プロックの 1/8を8節点 6面体要素によ

りモデル化し解析した。また、発生した熱は自由表面からのみ空気との熱伝導によって放熱さ

れるとし、他の面は断熱壁とした。プロックは温度、ひずみ及びひずみ速度依存性体とし、そ

の相当応力 6、相当ひずみ瓦相当ひずみ速度ま温度T関係式(11)を次式のように修正する

ことにより表した。

a= ay CT) Cも1/c。汗（も／む） m (12) 
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ここで、 Oy CT) は文献 10) に基づいて本解析の温度域 (23~T~150 ℃)において減少関数と

なるように定められた。

ay CT)= 0.002144T2-1.4161 T+ 432.44 (MPa) (13) 

なお、本解析で用いた各材料定数を表 1に、計算条件と後の結果の説明を簡潔にするために導

入した記号を表3に示す。

表 3. 記号の説明

isothermal diffusion & adiabatic m n 

al all a 22 a 33 0.0 0 1 

bl bll b 22 b 22 b 33 0.0 1 0.0 6 2 5 

cl ell C 22 C 33 0.0 5 

/11/1 0.2 0.2 2.0 2 0.0 

図5に端面の平均応力7を降伏応力ayCT。)で正規化した冗/ay、及びくびれ部の xz面に沿

う変位V/Wと端面の変位u/Lとの関係を示す。等温の場合 (a)はひずみ速度感度指数m値を

2.0 2.0 2,0 

Cl 

I 
ヽ
ら

;;; I' 
'----"'---I 

bl 
●I 

m=oo 

0.5 

0.0 
仇 02 

a) Isothermal 

A
A
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4

3

2

1

 

.
n
i
o
.
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5
0
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0,5 

0.0 乱

b)dlffusion 

1.0 

‘ヽ
ゞ

0.5 0.5 

0.4 

0.2 0.0 

乱
c)adlabatlc 

0.2 

図5. 端面の平均応力すと伸び Uの関係
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増加するに伴って荷重が上昇し、図中矢印で示した最大荷重点に対応した変位が若干大きくな

る。また、くびれ部の変位は、 m値が大きくなると減少し一様な変形に近づき、局所化が抑えら

れることがわかる。一方、熱発生と熱移動を考慮した場合 (b)では、荷重、変位ともに変形速

度とm値の影響を受けていることがわかる。変形速度が速いa33、b33、C33の場合、熱軟化

による荷重の低下傾向が著しい。一方、速度が遅いa11、b11、C11の場合においても変形に

よる熱発生が全体的な変形挙動に影響していることがわかる。変形速度を速くすると最大荷重

の発生は早くなり、くびれ部の変位量は大きくなる。断熱変形の場合 (c)は、端面変位速度が

速いa33、b33、C33は、熱移動を考慮した結果とほぼ一致するが、遅い a11、bll、Cllの

結果は大きく異なることがわかる。 m値が大きくなると熱発生量が大きくなり、 これらの差は

さらに大きくなる。したがって、材料の熱発生の影響を断熱変形として近似的に評価する場合

が多いが、このように比較的遅い変形の場合、断熱変形によって熱発生の影響を正確に検討す

るのは困難であろう。同じ解析条件で寸法が 10倍のプロックの変形挙動のシミュレーション

を行なった結果が "622である。 熱の移動を考慮した場合と断熱変形の場合よりも最大荷重の

発生が早く、荷重の低下は著しい。これは寸法が大きくなるに伴って発熱量に対する放熱面積

の相対的滅少ならびに熱の移動の絶対時間依存性によると考えられる。同様の結果がせん断帯

m=O.O 01 bl Cl ell C22 CJJ 

n)Jsothermol 
b)dlffuslon 

"" 022 "" 
"" "" b22 

bll b22 b33 b22 b33 c11 C33 

b)dlffuslon c) odlabollc 

図 6. 相当塑性ひずみの分布
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の発生を伴う 2次元問題において検討されている11)。一方、 u/L=0.2のときの荷重をみると、

寸法を 10倍にすることにより、 2次元の場合は 345!る6)、3次元の場合は 16%減少している。

このように熱の移動を伴う場合、寸法効果に十分な注意を払わなければならない。その他の結

果の詳細は文献12)を参照されたい。

4. あ と が き

安定化マトリクスを低減積分して得られた剛性マトリクスに加えることにより熱剛塑性変形

を効率よく解析する熱剛塑性有限要素法を開発しその解析処理を並列化したプログラムを作成

した。その結果、計算過程は安定し、通常の解析速度に比して約60倍の高速化が実現した。 さ

らに、要素剛性マトリクスの解析に必要とされる計算機容量も約 1/8に抑えることができた。

これより、 3次元の塑性加工過程の実用的なレベルでの解析が可能になった。例として、ひず

み速度、温度依存性3次元プロックに軸方向引張り変形を加えた場合の変形及び温度の連成問

題の解析を行ない、材料のひずみ速度依存性、温度依存性、変形速度、熱の伝導、寸法効果が

変形に及ぼす影響を明らかにした。
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