

Title	The K_*-localizations of Wood and Anderson spectra and the real projective spaces
Author(s)	Yosimura, Zen-ichi
Citation	Osaka Journal of Mathematics. 1992, 29(2), p. 361–385
Version Type	VoR
URL	https://doi.org/10.18910/6593
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

THE K_{*}-LOCALIZATIONS OF WOOD AND ANDERSON SPECTRA AND THE REAL PROJECTIVE SPACES

ZEN-ICHI YOSIMURA

(Received May 9, 1991)

0. Introduction

Let *E* be an associative ring spectrum with unit. For any *CW*-spectra *X* and *Y* we say that *X* is *quasi* E_* -equivalent to *Y* (see [15] or [16]) if there exists a map $f: Y \rightarrow E_{\wedge}X$ such that the composite map $(\mu_{\wedge}1)(1_{\wedge}f): E_{\wedge}Y \rightarrow E_{\wedge}X$ is an equivalence where $\mu: E_{\wedge}E \rightarrow E$ denotes the multiplication of *E*. Let *KO*, *KU* and *KT* be the real, the complex and the self-conjugate *K*-spectrum respectively (see [3] or [7]). It is known that there is no difference among the KO_{*} -, KU_{*} - and KT_{*} -localizations ([11], [5] or [13]). So we denote by S_{K} the K_{*} -localization of the sphere spectrum $S=\Sigma^{0}$. These spectra *KO*, *KU*, *KT* and S_{K} are all associative ring spectra with unit.

In [15] we studied the quasi K_* -equivalences, especially the quasi KO_* equivalence, and in [16] and [17] we determined the quasi KO_* -types of the real projective spaces RP^* and the stunted real projective spaces RP^*/RP^* . In this note we will be interested in the quasi S_{K*} -equivalence in advance of the quasi KO_* -equivalence. According to the smashing theorem [6, Corollary 4.7] (or [13]), for any CW-spectrum X the smash product $S_{K\wedge}X$ is actually the K_* -localization of X. Hence we notice that two CW-spectra X and Y have the same K_* -local type if and only if X is quasi S_{K*} -equivalent to Y.

For any map $f: X \to Y$ its cofiber is usually denoted by C(f). Let $\eta: \Sigma^1 \to \Sigma^0$ be the stable Hopf map of order 2. The KO-homologies of the cofibers $C(\eta)$ and $C(\eta^2)$ are well known as follows: $KO_iC(\eta) \cong \pi_i KU \cong Z$ or 0 according as *i* is even or odd, and $KO_iC(\eta^2) \cong \pi_i KT \cong Z$, Z/2, 0 or Z according as $i \equiv 0, 1, 2$ or 3 mod 4. A CW-spectrum X is said to be a Wood spectrum if it is quasi KO_* -equivalent to the cofiber $C(\eta)$, and an Anderson spectrum if it is quasi KO_* equivalent to the cofiber $C(\eta^2)$ (see [12], [15] or [18]).

Let $\bar{\eta}: \Sigma^1 SZ/2 \to \Sigma^0$ and $\tilde{\eta}: \Sigma^2 \to SZ/2$ be an extension and a coextension of η with $\bar{\eta}i = \eta$ and $j\tilde{\eta} = \eta$, where SZ/2 denotes the Moore spectrum of type Z/2 constructed by the cofiber sequence $\Sigma^0 \to \Sigma^0 \to SZ/2 \to \Sigma^1$. Choose two maps $\bar{h}: \Sigma^3 SZ/2 \to C(\bar{\eta})$ and $\bar{k}: \Sigma^5 SZ/2 \to C(\bar{\eta})$ with $\bar{j}\bar{h} = \tilde{\eta}\bar{j}$ and $\bar{j}\bar{k} = \tilde{\eta}\bar{\eta}$ where $\bar{j}: C(\bar{\eta}) \to \Sigma^2 SZ/2$ denotes the bottom cell collapsing. Using a fixed Adams' K_* -equiva-

Z. YOSIMURA

lence $A_2: \Sigma^8 SZ/2 \rightarrow SZ/2$ in [2] we can introduce four kinds of maps $f_t (t \ge 1)$ as follows:

$$\begin{aligned} \alpha_{4r} &= jA_2^r \, i \colon \Sigma^{8r-1} \to \Sigma^0 \,, \qquad \qquad \mu_{4r+1} &= \bar{\eta}A_2^r \, i \colon \Sigma^{8r+1} \to \Sigma^0 \,, \\ a_{4r+2} &= \bar{h}A_2^r \, i \colon \Sigma^{8r+3} \to C(\bar{\eta}) \quad \text{and} \quad m_{4r+3} &= \bar{k}A_2^r \, i \colon \Sigma^{8r+5} \to C(\bar{\eta}) \,. \end{aligned}$$

Setting $\overline{\alpha}_{4r} = jA_2^r$, $\overline{\mu}_{4r+1} = \overline{\eta}A_2^r$, $\overline{a}_{4r+2} = \overline{h}A_2^r$ and $\overline{m}_{4r+3} = \overline{k}A_2^r$, we can also introduce four kinds of maps f_{-t} ($t \ge 1$) as follows:

$$\begin{aligned} \alpha_{-4r} \colon \Sigma^{-8r-1} C(\overline{\alpha}_{4r}) \to \Sigma^0 , & \mu_{-4r-1} \colon \Sigma^{-8r-3} C(\overline{\mu}_{4r+1}) \to \Sigma^0 , \\ a_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}_{4r+2}) \to \Sigma^0 \quad \text{and} \quad m_{-4r-3} \colon \Sigma^{-8r-7} C(\overline{m}_{4r+3}) \to \Sigma^0 \end{aligned}$$

of which each cofiber $C(f_{-t})$ coincides with $\Sigma^{-2t}C(f_t)$.

In §1 and §3 we will determine the K_* -local types of Wood and Anderson spectra as our results (Theorems 1.7 iii) and 3.4 ii)):

Theorem 1. Let X be a Wood spectrum whose rationalization $X_{\wedge}SQ$ is $(\Sigma^0 \vee \Sigma^{2t})_{\wedge}SQ$ for some odd integer $t \ge 1$. Then X has the same K_* -local type as the following cofiber $C(\mu_t)$ or $C(m_t)$ according as t=4r+1 or 4r+3.

Theorem 2. Let X be an Anderson spectrum whose rationalization $X_{\wedge}SQ$ is $(\Sigma^0 \vee \Sigma^{2t+1})_{\wedge}SQ$ for some odd integer t. Assume that $t \neq -1$. Then X has the same K_{*}-local type as the following cofiber $C(\eta \mu_t)$ or $C(\eta m_t)$ according as $t = \pm (4r+1)$ or $\pm (4r+3)$.

For the Moore spectrum $SZ/2^t$ of type $Z/2^t$ we denote by $i_t: \Sigma^0 \to SZ/2^t$ and $j_t: SZ/2^t \to \Sigma^1$ with the subscript "t" the bottom cell inclusion and the top cell projection. Abbreviating the cofiber $C(i_{t-1}\bar{\eta})$ to be V_{2^t} we have a cofiber sequence $\Sigma^0 \xrightarrow{2^{t-1}i} C(\bar{\eta}) \xrightarrow{i_{V,t}} V_{2^t} \xrightarrow{j_{V,t}} \Sigma^1$. In §4 the K_* -local types of the real projective spaces RP^n $(2 \le n \le \infty)$ will be determined as our main result (Theorem 4.6 ii)):

Theorem 3. The real projective space $\Sigma^1 RP^n$ has the same K_* -local type as the following elementary spectrum: $SZ/2^{4r}$, $C(i_{4r}\mu_{4r+1})$, $V_{2^{4r+1}}$, $C(i_{V,4r+1}a_{4r+2})$, $V_{2^{4r+2}}$, $C(i_{V,4r+2}m_{4r+3})$, $SZ/2^{4r+3}$, $C(i_{4r+3}\alpha_{4r+4})$ according as $n=8r, 8r+1, \dots, 8r+7$. In addition, $\Sigma^1 RP^\infty$ has the same K_* -local type as $SZ/2^\infty$ (cf. [8, Theorem 4.2] or [13, Theorem 9.1]).

In order to prove the above theorems we will need the following powerful tool due to Bousfield [7, Theorems 7.11 and 7.12].

Theorem 4. Let Y be a certain CW-spectrum satisfying either of the following two conditions: i) KU_*Y is either free or divisible and $\operatorname{Hom}(\pi_i Y \otimes Q, \pi_{i+1}Y \otimes Q) = 0$ for each i; ii) $KU_1Y = 0$ (or $KU_0Y = 0$). Assume that a CWspectrum X is quasi KO_* -equivalent to Y, and the real Adams operations ψ_R^k in

 KO_*X and KO_*Y behave as the same action for each $k \neq 0$ when KO_*X is identified with KO_*Y as a KO_* -module. Then X is quasi S_{K*} -equivalent to Y, thus X has the same K_* -local type as Y (cf. [7, 9.8]).

In §1 we will mainly deal with CW-spectra X satisfying the following property:

(I) $KU_0X \simeq Z$ with $\psi_c^k = 1$ and $KU_1X = 0$; (I_{2m}) $KU_0X \simeq Z/2m$ with $\psi_c^k = 1$ and $KU_1X = 0$; or

(II)_t $KU_0X \cong Z \oplus Z$ with $\psi_c^k = A_{k,t}$ and $KU_1X = 0$.

Here $A_{k,t} = \begin{pmatrix} 1/k^t & 0 \\ 1-k^t/2k^t & 1 \end{pmatrix}$, which operates on $(Z \oplus Z) \otimes Z[1/k]$ as left action. After investigating the behavior of the real Adams operation ψ_R^k for CW-spectra X with the above property we will determine their K_* -local types (Theorems 1.2 and 1.7). In §2 and §3 we will next deal with CW-spectra X satisfying the following property:

 $(II_{2m})_t$ $KU_0X \cong Z \oplus Z/2m$ with $\psi_c^k = A_{k,t}$ and $KU_1X = 0$; or

(III)_t $KU_0X \cong Z$ with $\psi_c^k = 1$ and $KU_1X \cong Z$ with $\psi_c^k = 1/k^t$.

As in §1 we will also determine the K_* -local types of such *CW*-spectra X (Theorems 2.6 and 3.4). In §4 we will finally deal with the symmetric squares SP^2S^n of the *n*-spheres and the real projective *n*-spaces RP^n . After investigating the behavior of the Adams operations ψ_C^k and ψ_R^k for the spaces SP^2S^n and RP^n , we will determine their K_* -local types (Theorem 4.6) by applying Theorems 1.2, 1.7 and 2.6.

In the forthcoming paper [19] we will completely determine the K_* -local types of the stunted real projective spaces RP^n/RP^m $(0 \le m < n \le \infty)$ along our line.

1. K_* -local types of Wood spectra

1.1. Let X be a CW-spectrum with $KU_0X \cong Z$ and $KU_1X=0$. For such a CW-spectrum X we may assume that the stable complex Adams operation ψ_C^k acts identically on $KU_0X \otimes Z[1/k]$ for each $k \neq 0$. Thus X satisfies the following property:

(I) $KU_0X \cong Z$ in which $\psi_c^k = 1$ and $KU_1X = 0$.

Whenever a CW-spectrum X satisfies the property (I), it is quasi KO_* -equivalent to either of Σ^0 and Σ^4 (see [7, Theorem 3.2] or [15, Theorem I.2.4]). In this case it is easily seen that the stable real Adams operation ψ_R^k acts always on $KO_i X \otimes Z[1/k]$ ($0 \le i \le 7$) for each $k \ne 0$ as follows:

(1.1) $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.

The Moore spectrum SZ/2m of type Z/2m is constructed as the cofiber of multiplication by 2m on Σ^0 . Thus we have a cofiber sequence $\Sigma^0 \xrightarrow{2m} \Sigma^0 \xrightarrow{i} SZ/2m$ $\xrightarrow{j} \Sigma^1$. Let $\overline{\eta}_{2m}: \Sigma^1 SZ/2m \rightarrow \Sigma^0$ and $\widetilde{\eta}_{2m}: \Sigma^2 \rightarrow SZ/2m$ be an extension and a coextension of η satisfying $\overline{\eta}_{2m} i = \eta$ and $j\widetilde{\eta}_{2m} = \eta$ respectively, where $\eta: \Sigma^1 \rightarrow \Sigma^0$ denotes the stable Hopf map of order 2. The maps $\overline{\eta}_2$ and $\widetilde{\eta}_2$ are often abbreviated to be $\overline{\eta}$ and $\overline{\eta}$. Consider the two cofiber sequences

 $\Sigma^1 SZ/2 \xrightarrow{\tilde{\eta}} \Sigma^0 \xrightarrow{\tilde{i}} C(\bar{\eta}) \xrightarrow{\tilde{j}} \Sigma^2 SZ/2 \text{ and } \Sigma^2 \xrightarrow{\tilde{\eta}} SZ/2 \xrightarrow{\tilde{i}} C(\tilde{\eta}) \xrightarrow{\tilde{j}} \Sigma^3$

in which the cofibers $C(\bar{\eta})$ and $C(\bar{\eta})$ are denoted by P'_2 and P_2 respectively in [15, I.4.1]. Between these cofibers there holds a Spanier-Whitehead duality as $C(\bar{\eta}) = \Sigma^3 DC(\bar{\eta})$. By observing [15, Propositions I.4.1 and I.4.2] we verify that

(1.2) both $C(\bar{\eta})$ and $\Sigma^{-3}C(\bar{\eta})$ satisfy the property (I), and they are quasi KO_* -equivalent to Σ^4 .

Let X be a CW-spectrum with $KU_0X \approx Z/2m$ and $KU_1X=0$. In this case we assume that the Adams operation ψ_C^k acts identically in KU_0X for each $k \neq 0$. Thus we here deal with a CW-spectrum X satisfying the following property:

(I_{2m})
$$KU_0X \cong Z/2m$$
 in which $\psi_c^k = 1$ and $KU_1X = 0$.

Consider the cofibers $C(i\bar{\eta})$ and $C(\tilde{\eta}j)$ of the composite maps $i\bar{\eta}: \Sigma^1 SZ/2 \rightarrow SZ/m$ and $\tilde{\eta}j: \Sigma^1 SZ/m \rightarrow SZ/2$, which are denoted by V_{2m} and V'_{2m} respectively as in [15, I.4.4]). Between them we have a Spanier-Whitehead duality as $V'_{2m} = \Sigma^3 DV_{2m}$. Since there exist cofiber sequences

$$\Sigma^0 \xrightarrow{mi} C(\bar{\eta}) \xrightarrow{i_V} V_{2m} \xrightarrow{j_V} \Sigma^1 \text{ and } \Sigma^2 \xrightarrow{i'_V} V'_{2m} \xrightarrow{j'_V} C(\tilde{\eta}) \xrightarrow{m\tilde{j}} \Sigma^3$$
,

it follows from [15, Corollaries I.4.6 and I.5.4] that

(1.3) both V_{2m} and $\Sigma^{-2} V'_{2m}$ satisfy the property (I_{2m}) , and $\Sigma^2 V'_{2m}$ is quasi KO_* -equivalent to V_{2m} , whose KO-homology $KO_iV_{2m} \simeq Z/m$, 0, Z/2, Z/2, Z/4m, Z/2, Z/2, 0 according as $i=0, 1, \dots, 7$.

Notice that a CW-spectrum X is quasi KO_* -equivalent to one of the four elementary spectra SZ/2m, $\Sigma^4 SZ/2m$, V_{2m} and $\Sigma^4 V_{2m}$ whenever it satisfies the property (I_{2m}) (see [15, Theorem II.2 or Theorem I.5.2]).

Lemma 1.1. Let W and Y be CW-spectra satisfying the property (I), and g: $W \rightarrow Y$ be a map whose cofiber C(g) satisfies the property (I_{2m}) . Then the cofiber C(g) is quasi KO_* -equivalent to $W_{\wedge}SZ/2m$ or $W_{\wedge}V_{2m}$ according as W is quasi KO_{*}-equivalent to Y or not. In the latter case the Adams operation ψ_R^k acts normally in KO_iC(g) \cong KO_iW_{\wedge}V_{2m} ($0 \le i \le 7$) for each $k \ne 0$ as follows: $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.

Proof. The induced homomorphism $g_*: KO_iW \to KO_iY$ is trivial in dimension i=1, 2, 5 or 6 because $g_*: KU_0W \to KU_0Y$ is multiplication by 2m on Z. Therefore it is immediate that $KO_6C(g)=0$ if both W and Y are quasi KO_* -equivalent to Σ^0 , and $KO_2C(g)\cong Z/2$ and $KO_1C(g)=0$ if W and Y are quasi KO_* -equivalent to Σ^0 and Σ^4 respectively. Thus C(g) is quasi KO_* -equivalent to SZ/2m in the first case, and it is quasi KO_* -equivalent to V_{2m} in the second case. In the other two cases we can similarly observe the quasi KO_* -type of C(g). When C(g) is quasi KO_* -equivalent to either of V_{2m} and Σ^4V_{2m} , it is easily checked that $\psi_R^k=1$ or k^2 in $KO_iC(g)$ for each $k \neq 0$ according as i=0 or 4.

Since the maps $\overline{\eta}: \Sigma^1 SZ/2 \to \Sigma^0$ and $\widetilde{\eta}: \Sigma^2 \to SZ/2$ have order 4 [4, (4.2)], we can choose maps

$$\overline{\eta}_{4m/2}$$
: $\Sigma^2 SZ/2 \rightarrow SZ/4m$ and $\widetilde{\eta}_{4m/2}$: $\Sigma^2 SZ/4m \rightarrow SZ/2$

with $j\bar{\eta}_{4m/2} = \bar{\eta}$ and $\tilde{\eta}_{4m/2} i = \bar{\eta}$. Denote by U_{2m} and U'_{2m} their cofibers $C(\bar{\eta}_{4m/2})$ and $C(\bar{\eta}_{4m/2})$ respectively. Between them there holds a Spanier-Whitehead duality as $U'_{2m} = \Sigma^4 D U_{2m}$. Using the cofiber sequences

$$C(\bar{\eta}) \xrightarrow{m\bar{\lambda}} \Sigma^0 \xrightarrow{i_U} U_{2m} \xrightarrow{j_U} \Sigma^1 C(\bar{\eta}) \text{ and } \Sigma^3 \xrightarrow{m\bar{\lambda}} C(\tilde{\eta}) \xrightarrow{i'_U} U'_{2m} \xrightarrow{j'_U} \Sigma^4$$

with $\lambda i = 4$ and $j \lambda = 4$, we can easily show by the aid of Lemma 1.1 that

(1.4) both U_{2m} and $\Sigma^1 U'_{2m}$ satisfy the property (I_{2m}) , and they are quasi KO_* -equivalent to $\Sigma^4 V_{2m}$.

If a CW-spectrum X satisfies the property (I_{2m}) , then the smash product $X_{\wedge}C(\bar{\eta})$ does the same property, but it is quasi KO_* -equivalent to $\Sigma^4 X$ because of (1.2). Whenever X=SZ/2m, V_{2m} , $\Sigma^{-2}V'_{2m}$, U_{2m} or $\Sigma^{-3}U'_{2m}$, the Adams operation ψ_R^k behaves normally in KO_iX and $KO_iX_{\wedge}C(\bar{\eta})$ $(0 \le i \le 7)$ for each $k \ne 0$ as follows:

(1.5) $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.

Because the X=SZ/2m case is well known, and the other four cases are immediately shown by Lemma 1.1.

Let X be a CW-spectrum satisfying the property:

(I₂[∞]) $KU_0X \cong Z/2^{\infty}$ in which $\psi_c^k = 1$ and $KU_1X = 0$.

Such a CW-spectrum X is quasi KO_* -equivalent to either of $SZ/2^{\infty}$ and

 $\Sigma^4 SZ/2^{\infty}$ (see [7, Theorem 3.3]). In this case it is easily seen that the Adams operation ψ_R^k behaves always in KO_iX ($0 \le i \le 7$) for each $k \ne 0$ as follows:

(1.6) $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.

Use (1.1), (1.5) or (1.6) to apply Theorem 4 for CW-spectra X with the property (I), (I_{2m}) or $(I_{2^{\infty}})$. Then we obtain

Theorem 1.2. i) Let X be a CW-spectrum satisfying the property (I). Then it has the same K_* -local type as either of Σ^0 and $C(\overline{\eta})$.

ii) Let X be a CW-spectrum satisfying the property (I_{2m}) . Assume that the real Adams operation ψ_R^k behaves normally in KO_*X in the sense of (1.5). Then X has the same K_* -local type as one of the following spectra SZ/2m, $SZ/2m_{\wedge}C(\bar{\eta})$, V_{2m} and U_{2m} .

iii) Let X be a CW-spectrum satisfying the property $(I_{2^{\infty}})$. Then X has the same K_* -local type as either of $SZ/2^{\infty}$ and $SZ/2^{\infty} \wedge C(\overline{\eta})$.

1.2. Let X be a CW-spectrum with $KU_0X \cong Z \oplus Z$ and $KU_1X=0$. For such a CW-spectrum X we may assume that $X_{\wedge}SQ = (\Sigma^{2t} \vee \Sigma^0)_{\wedge}SQ$ for some integer $t \ge 0$. In this case the complex Adams operation ψ_c^k on $KU_0X \otimes Z[1/k]$ is represented as the matrix $C^{-1}A_{k,t,0}C$ for each $k \ne 0$ where the matrix $C \in GL$ (2, Q) associated with the Chern character is independent of k and $A_{k,t,0} = {1/k^t \ 0}{0 \ 1}$. When t is odd, we may regard that the conjugation ψ_c^{-1} on $KU_0X \cong Z \oplus Z$ is expressed by either of the matrices ${-1 \ 0}{0 \ 1}$ and ${-1 \ 0}{-1 \ 1}$ (see [7, Proposition 3.7] or [15, I.2.1]). This observation implies easily that the Adams operation ψ_c^k in KU_0X for each $k \ne 0$ can be expressed by the following matrix

$$A_{k,t,0} = \begin{pmatrix} 1/k^t & 0 \\ 0 & 1 \end{pmatrix}$$
 or $A_{k,t} = \begin{pmatrix} 1/k^t & 0 \\ 1 - k^t/2k^t & 1 \end{pmatrix}$

according as $\psi_c^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$, whenever t is odd.

Let X be a CW-spectrum satisfying the following property:

(II)_{t,0} $KU_0X \cong Z \oplus Z$ in which $\psi_c^k = A_{k,t,0}$ and $KU_1X = 0$.

Then X is quasi KO_* -equivalent to one of the wedge sums $\Sigma^0 \vee \Sigma^0$, $\Sigma^0 \vee \Sigma^4$ and $\Sigma^4 \vee \Sigma^4$ when t is even, and it is quasi KO_* -equivalent to one of the wedge sums $\Sigma^2 \vee \Sigma^0$, $\Sigma^2 \vee \Sigma^4$, $\Sigma^6 \vee \Sigma^0$ and $\Sigma^6 \vee \Sigma^4$ when t is odd (see [7, Theorem 3.2] or [15, Theorem I.2.4]). By an easy argument using the long exact sequence induced by the Bott cofiber sequence $\Sigma^1 KO \rightarrow KO \rightarrow KU \rightarrow \Sigma^2 KO$ we can show that in the case when t is even the Adams operation ψ_R^* behaves always in $KO_i X$

 $(0 \le i \le 7)$ for each $k \ne 0$ as follows (cf. [2, Proposition 7.14]):

(1.7) i) If X is quasi KO_* -equivalent to either of $\Sigma^0 \vee \Sigma^0$ and $\Sigma^4 \vee \Sigma^4$, then $\psi_R^k = A_{k,t,0}, k^2 A_{k,t,0}$ or 1 according as i=0, 4 or otherwise.

ii) If X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4$, then $\psi_R^k = A_{k,t,\epsilon}$, $k^2 A_{k,t,\epsilon'}$ or 1 according as i=0, 4 or otherwise where $(\mathcal{E}, \mathcal{E}')=(0, 0), (0, 1)$ or (1, 0) and $A_{k,t,1}=A_{k,t}$.

Let X be a CW-spectrum satisfying the following property:

(II)_t $KU_0 X \cong Z \oplus Z$ in which $\psi_c^k = A_{k,t}$ and $KU_1 X = 0$.

Then X is quasi KO_* -equivalent to one of the wedge sums $\Sigma^0 \vee \Sigma^0$, $\Sigma^0 \vee \Sigma^4$ and $\Sigma^4 \vee \Sigma^4$ when t is even, but it is only quasi KO_* -equivalent to the cofiber $C(\eta)$ when t is odd (see [7, Theorem 3.2] or [15, Theorem I.2.4]). Thus X is always a Wood spectrum in the case when t is odd. By a similar argument to (1.7) we can also show that the Adams operation ψ_R^k behaves always in $KO_i X (0 \le i \le 7)$ for each $k \ne 0$ as follows:

(1.8) i) If X is quasi KO_* -equivalent to either of $\Sigma^0 \vee \Sigma^0$ and $\Sigma^4 \vee \Sigma^4$, then $\psi_R^k = A_{k,t}$, $k^2 A_{k,t}$ or 1 according as i=0, 4 or otherwise.

ii) If X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4$, then $\psi_R^k = A_{k,t,\varepsilon}$, $k^2 A_{k,t,2-\varepsilon}$ or 1 according as i=0, 4 or otherwise where $\varepsilon=0$ or 2 and $A_{k,t,j} = \begin{pmatrix} 1/k^t & 0\\ 1-k^t/2^jk^t & 1 \end{pmatrix}$.

iii) If X is a Wood spectrum, then $\psi_R^k = 1$, $1/k^{t-1}$, k^2 or $1/k^{t-3}$ according as i=0, 2, 4 or 6.

For any map $\alpha_{2s/j}: \Sigma^{4s-1} \to \Sigma^0$ whose e_c -invariant $e_c(\alpha_{2s/j}) \equiv 1/2^j \mod 1$, we notice that the Adams operation ψ_c^k in $KU_0 C(\alpha_{2s/j}) \cong Z \oplus Z$ is represented by the matrix $A_{k,2s,j}$ as given in (1.8) ii) for each $k \equiv 0$ [2, Proposition 7.5]. Consider the maps

(1.9)
$$\alpha_{2s}: \Sigma^{4s-1} \to \Sigma^0, \ i\alpha_{2s/2}: \Sigma^{4s-1} \to C(\overline{\eta}) \text{ and } \alpha_{2s/2} \ \tilde{j}: \Sigma^{4s-4} C(\tilde{\eta}) \to \Sigma^0$$

where $s \ge 1$ and $\alpha_{2s/1}$ is abbreviated as α_{2s} .

Proposition 1.3. The cofibers $C(\mu_{2s})$, $C(i\alpha_{2s/2})$ and $C(\alpha_{2s/2}j)$ satisfy the property (II)_{2s}, and they are quasi KO_{*}-equivalent to the wedge sum $\Sigma^{4s} \vee \Sigma^{0}$, $\Sigma^{4s} \vee \Sigma^{4}$ and $\Sigma^{4s-4} \vee \Sigma^{0}$ respectively.

Proof. The first half is easy, and the latter half is immediate bacause $\pi_{4s-1}KO=0$.

1.3. Let us fix an Adams' K_* -equivalence $A_2: \Sigma^8 SZ/2 \rightarrow SZ/2$ [2]. We first consider the composite maps $A_2^r i: \Sigma^{8r} \rightarrow SZ/2$ and $jA_2^r: \Sigma^{8r-1}SZ/2 \rightarrow \Sigma^0$ $(r \ge 0)$.

Lemma 1.4. The cofibers $\Sigma^{-8r-1}C(A_2^r i)$ and $C(jA_2^r)$ satisfy the property (I), and they are quasi KO_* -equivalent to Σ^0 .

Proof. Since the Adams' K_* -equivalence $A_2: \Sigma^8 SZ/2 \rightarrow SZ/2$ induces an isomorphism in KU-homology, we obtain that $KU_1 C(A_2^r i) \cong KU_1 \Sigma^{8r+1} \cong Z$, $KU_0 C(jA_2^r) \cong KU_0 \Sigma^0 \cong Z$ and $KU_0 C(A_2^r i) = 0 = KU_1 C(jA_2^r)$. Moreover it follows that $\Sigma^{-1}C(A_2^r i)$ and $C(jA_2^r)$ are both quasi KO_* -equivalent to Σ^0 but not to Σ^4 because $KO_6 C(A_2^r i) = 0 = KO_5 C(jA_2^r)$.

Lemma 1.5. Let X be a CW-spectrum satisfying the property (I).

i) Let $f: \Sigma^{2t-1}SZ/2 \to X$ be a map whose cofiber C(f) satisfies the property (I). For the composite map $fA_2^r i: \Sigma^{8r+2t-1} \to X$ its cofiber $C(fA_2^r i)$ satisfies the property $(II)_{4r+t}$, and it is quasi KO_* -equivalent to $\Sigma^{2t} \vee C(f)$ or $C(\eta)$ according as t is even or odd.

ii) Let $g: \Sigma^{2t}X \rightarrow SZ/2$ be a map whose cofiber $\Sigma^{2t-1}C(g)$ satisfies the property (I). For the composite map $jA'_2g: \Sigma^{8r+2t-1}X \rightarrow \Sigma^0$ its cofiber $C(jA'_2g)$ satisfies the property (II)_{4r+t}, and it is quasi KO_* -equivalent to $\Sigma^{-1}C(g) \vee \Sigma^0$ or $C(\eta)$ according as t is even or odd.

Proof. i) Consider the commutative diagram

$$\Sigma^{8r+2t-1} \xrightarrow{A_2^r i} \Sigma^{2t-1} SZ/2 \to \Sigma^{2t-1} C(A_2^r i) \to \Sigma^{8r+2t}$$

$$|| \qquad \qquad \downarrow f \qquad \qquad \downarrow F \qquad ||$$

$$\Sigma^{8r+2t-1} \xrightarrow{fA_2^r i} X \rightarrow C(fA_2^r i) \rightarrow \Sigma^{8r+2t}$$

$$\downarrow i_f \qquad \qquad \downarrow i_F$$

$$C(f) = C(f)$$

involving four cofiber sequences. It is obvious that $KU_0 C(fA_2^r i) \cong KU_0 \Sigma^{8r+2t}$ $\oplus KU_0 X \cong Z \oplus Z$ and $KU_1 C(fA_2^r i) = 0$. Observe that the induced homomorphism $F_*: KU_0 \Sigma^{2t-1}C(A_2^r i) \to KU_0 C(fA_2^r i)$ is given by $F_*(1)=(2, a)$ for some integer a. Since the integer a must be odd, we may take a to be 1. By an easy argument we can then show that $\psi_c^k = A_{k,4r+t}$ in $KU_0 C(fA_2^r i)$ for each $k \neq 0$. Since $\Sigma^{-1}C(A_2^r i)$ is quasi KO_* -equivalent to Σ^0 by Lemma 1.4 and C(f) is quasi KO_* -equivalent to either of Σ^0 and Σ^4 , the cofiber $C(fA_2^r i)$ becomes quasi KO_* -equivalent to the wedge sum $C(f) \lor \Sigma^{2t}$ in the case when t is even. On the other hand, it is exactly a Wood spectrum in the case when t is odd, because $\psi_c^{-1} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$ on $KU_0 C(fA_2^r i)$.

ii) is similarly shown by a dual argument.

Consider the composite map $\tilde{\eta}\bar{\eta}$: $\Sigma^3 SZ/2 \rightarrow SZ/2$. Since $KO_7 C(\tilde{\eta}\bar{\eta}) \simeq KO_3$

 $SZ/2 \simeq Z/2$ and $KO_6 C(\tilde{\eta}\bar{\eta}) \simeq KO_2 SZ/2 \simeq Z/4$, a routine argument with (1.2) shows that

(1.10) $\Sigma^{-2}C(\tilde{\eta}\bar{\eta})$ satisfies the property (I₄), and it is quasi KO_* -equivalent to $\Sigma^4 SZ/4$.

Since the composite maps $\bar{\eta}\tilde{\eta}j: \Sigma^3 SZ/2 \rightarrow \Sigma^1, i\bar{\eta}\tilde{\eta}: \Sigma^3 \rightarrow SZ/2, \bar{\eta}\tilde{\eta}\bar{\eta}: \Sigma^5 SZ/2 \rightarrow \Sigma^1$ and $\tilde{\eta}\bar{\eta}\tilde{\eta}: \Sigma^5 \rightarrow SZ/2$ are all trivial [4, §4], we can choose the following maps

(1.11)
$$\begin{split} & \bar{h} \colon \Sigma^3 SZ/2 \to C(\bar{\eta}) , \qquad \bar{h} \colon \Sigma^1 C(\tilde{\eta}) \to SZ/2 , \\ & \bar{k} \colon \Sigma^5 SZ/2 \to C(\bar{\eta}) \quad \text{and} \quad \tilde{k} \colon \Sigma^3 C(\tilde{\eta}) \to SZ/2 \end{split}$$

such that $j\bar{h} = \tilde{\eta}j$, $\tilde{h}\tilde{i} = i\bar{\eta}$, $j\bar{k} = \tilde{\eta}\bar{\eta}$ and $\tilde{k}\tilde{i} = \tilde{\eta}\bar{\eta}$. Among their cofibers there hold Spanier-Whitehead dualities as $C(\tilde{h}) = \Sigma^5 DC(\bar{h})$ and $C(\tilde{k}) = \Sigma^7 DC(\bar{k})$. Since $KU_0 C(\tilde{\eta}j) \cong KU_0 C(i\bar{\eta}) \cong KU_0 C(\tilde{\eta}\bar{\eta}) \cong Z/4$ by (1.3) and (1.10), we can easily observe that

(1.12) the cofibers $C(\bar{h})$, $\Sigma^{-5}C(\tilde{h})$, $C(\bar{k})$ and $\Sigma^{-7}C(\tilde{k})$ satisfy the property (I), and the first two and the last two are respectively quasi KO_* -equivalent to Σ^4 and Σ^0 ,

because $KO_1C(\bar{h}) = KO_7C(\tilde{h}) = KO_5C(\bar{k}) = 0$ and $KO_1C(\tilde{k}) \cong KO_3 SZ/2 \cong Z/2$.

By taking f in Lemma 1.5 i) as the map j, $\overline{\eta}$, \overline{h} or \overline{k} , and g in Lemma 1.5 ii) as the map i, $\overline{\eta}$, \overline{h} or \overline{k} , we can now introduce the following maps of order 2:

$$(1.13) \begin{array}{l} \alpha_{4r} = jA_{2}^{r}i: \Sigma^{8r-1} \to \Sigma^{0}, \\ \mu_{4r+1} = \bar{\eta}A_{2}^{r}i: \Sigma^{8r+1} \to \Sigma^{0}, \qquad \mu_{4r+1}^{\prime} = jA_{2}^{r}\tilde{\eta}: \Sigma^{8r+1} \to \Sigma^{0} \\ a_{4r+2} = \bar{h}A_{2}^{r}i: \Sigma^{8r+3} \to C(\bar{\eta}), \qquad a_{4r+2}^{\prime} = jA_{2}^{r}\tilde{h}: \Sigma^{8r}C(\tilde{\eta}) \to \Sigma^{0} \\ m_{4r+3} = \bar{k}A_{2}^{r}i: \Sigma^{8r+5} \to C(\bar{\eta}), \qquad m_{4r+3}^{\prime} = jA_{2}^{r}\tilde{k}: \Sigma^{8r+2}C(\tilde{\eta}) \to \Sigma^{0}. \end{array}$$

Among their cofibers we may regard that there hold Spanier-Whitehead dualities as $C(f'_t) = \sum^{2t} DC(f_t)$ for $f_t = \alpha_{4r}$, μ_{4r+1} , a_{4r+2} or m_{4r+3} where $r \ge 0$ and $\alpha'_{4r} = \alpha_{4r}$.

Combining Lemma 1.5 with (1.2) and (1.12) we obtain

Proposition 1.6. Set $f_t = \alpha_{4r}$, μ_{4r+1} , μ'_{4r+1} , a_{4r+2} , a'_{4r+2} , m_{4r+3} or m'_{4r+3} $(r \ge 0)$. Then each cofiber $C(f_i)$ satisfies the property $(II)_i$. Moreover $C(\alpha_{4r})$, $C(a'_{4r+2})$ and $\Sigma^4 C(a_{4r+2})$ are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^0$, and $C(\mu_{4r+1})$, $C(\mu'_{4r+1})$, $C(m_{4r+3})$ and $C(m'_{4r+3})$ are all Wood spectra.

Use Proposition 1.6 combined with (1.8) to apply Theorem 4. Then we obtain the following result, which contains Theorem 1.

Theorem 1.7. Let X be a CW-spectrum satisfying the property (II), with $t \ge 0$.

i) If X is quasi KO_{*}-equivalent to $\Sigma^0 \vee \Sigma^0$, then it has the same K_{*}-local

type as $C(\alpha_{4r})$ or $C(a'_{4r+2})$ according as t=4r or 4r+2.

ii) If X is quasi KO_{*}-equivalent to $\Sigma^4 \vee \Sigma^4$, then it has the same K_{*}-local type as $C(\alpha_{4r})_{\wedge}C(\bar{\eta})$ or $C(a_{4r+2})$ according as t=4r or 4r+2.

iii) If X is a Wood spectrum, then it has the same K_* -local type as $C(\mu_{4r+1})$ or $C(m_{4r+3})$ according as t=4r+1 or 4r+3.

2. K_* -local types of spectra with the property $(II_{2m})_t$

2.1. Consider the cofibers $C(i\eta)$, $C(\bar{\eta}_{2m})$ and $C(\eta^2 \bar{\eta}_{2m})$ of the maps $i\eta: \Sigma^1 \rightarrow SZ/2, \bar{\eta}_{2m}: \Sigma^1 SZ/2m \rightarrow \Sigma^0$ and $\eta^2 \bar{\eta}_{2m}: \Sigma^3 SZ/2m \rightarrow \Sigma^0$, which are denoted by M_{2m} , P'_{2m} and R'_{2m} respectively in [15, I.4.1]. Recall that $KU_0M_{2m} \simeq Z \oplus Z/2m$ on which $\psi_{\overline{c}}^{-1} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$, $KU_0P'_{2m} \simeq Z \oplus Z/m$ on which $\psi_{\overline{c}}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $KU_0R'_{2m} \simeq Z \oplus Z/2m$ on which $\psi_{\overline{c}}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $KU_0R'_{2m} \simeq Z \oplus Z/2m$ on which $\psi_{\overline{c}}^{-1} = 1$, and $KU_1M_{2m} = KU_1P'_{2m} = KU_1R'_{2m} = 0$ [15, Proposition I.4.1]. Note that $\Sigma^{-2}P'_{4m}$ is quasi KO_* -equivalent to M_{2m} , whose KO_{2m} homology $KO_i M_{2m} \simeq Z/2m$, $0, Z \oplus Z/2, Z/2, Z/4m$, 0, Z, 0 according as $i=0, 1, \cdots, 7$ (see [15, Proposition I.4.2 and Corollary I.5.4]).

Let X be a CW-spectrum satisfying the following property:

 $(II_{2m})_t$ $KU_0X \cong Z \oplus Z/2m$ in which $\psi_c^k = A_{k,t}$ and $KU_1X = 0$.

Then X is quasi KO_* -equivalent to one of the following elementary spectra $\Sigma^{4i} \vee \Sigma^{4j} SZ/2m$, $\Sigma^{4i} \vee \Sigma^{4j} V_{2m}$ and $\Sigma^{4j} R'_{2m}$ for i, j=0 or 1 when t is even, and it is quasi KO_* -equivalent to either of M_{2m} and $\Sigma^4 M_{2m}$ when t is odd.

Lemma 2.1. Let X, Y and W be CW-spectra satisfying the property (I). Let $f: \Sigma^{2t-1} X \to Y$ and $g: W \to Y$ be maps whose cofibers C(f) and C(g) satisfy the properties (II)_t and (I_{2m}) respectively. Then the cofiber $C(i_g f)$ of the composite map $i_g f: \Sigma^{2t-1} X \to Y \to C(g)$ satisfies the property (II_{2m})_t. Moreover it is quasi KO_{*}-equivalent to $\Sigma^{2t} X \lor C(g)$ when t is even, and it is quasi KO_{*}-equivalent to M_{2m} or $\Sigma^4 M_{2m}$ according as W is quasi KO_{*}-equivalent to Σ^0 or Σ^4 when t is odd.

Proof. Use the commutative diagram

$$W = W$$

$$\sum^{2t-1}X \xrightarrow{f} Y \xrightarrow{g} V \xrightarrow{f} C(f) \xrightarrow{g} X^{2t}X$$

$$\parallel \qquad \downarrow i_g \qquad \downarrow i_g \qquad \parallel$$

$$\sum^{2t-1}X \xrightarrow{g} C(g) \xrightarrow{f} C(i_g f) \xrightarrow{f} \Sigma^{2t}X$$

involving four cofiber sequences. Obviously $KU_0 C(i_g f) \cong KU_0 \Sigma^{2t} X \oplus KU_0$ C(g) in which $\psi_C^k = A_{k,t}$ and $KU_1 C(i_g f) = 0$. When t is even, $C(i_g f)$ is quasi KO_* -equivalent to the wedge sum $\Sigma^{2t} X \vee C(g)$ since $\Sigma^{2t-1} X$ is quasi KO_* -equivalent to Σ^3 or Σ^7 and Y is quasi KO_* -equivalent to Σ^0 or Σ^4 . On the other

hand, $C(i_g f)$ is quasi KO_* -equivalent to either of M_{2m} and $\Sigma^4 M_{2m}$ when t is odd. However we notice that $KO_3 C(i_g f) \cong KO_2 W$ because C(f) is a Wood spectrum in the case when t is odd.

Let X be a CW-spectrum with $(II_{2m})_{2s+1}$, which is quasi KO_* -equivalent to either M_{2m} or $\Sigma^4 M_{2m}$. Using the long exact sequence induced by the Bott cofiber sequence $\Sigma^1 KO \rightarrow KO \rightarrow KU \rightarrow \Sigma^2 KO$ we can easily show that the Adams operation ψ_R^k behaves always in $KO_i X$ ($0 \le i \le 7$) for each $k \ne 0$ as follows:

(2.1) $\psi_R^k = 1/k^{2s}, k^2, 1/k^{2s-2}$ or 1 according as i=2, 4, 6 or otherwise.

Lemma 2.2. Let X, Y and W be CW-spectra satisfying the property (I). Let $f: \Sigma^{4s-1}X \to Y$ and $g: W \to Y$ be maps whose cofibers C(f) and C(g) satisfy the properties $(II)_{2s}$ and (I_{2m}) respectively. Assume that the Adams operation ψ_R^k behaves normally in $KO_*C(g)$ in the sense of (1.5). Then the Adams operation ψ_R^k acts normally in $KO_iC(i_e f)$ ($0 \le i \le 7$) for each $k \ne 0$ as follows:

i) If both $\Sigma^{4s}X$ and Y are quasi KO_* -equivalent to either of Σ^0 and Σ^4 , then $\psi_R^k = A_{k,2s}$, $k^2A_{k,2s}$ or 1 according as i=0, 4 or otherwise.

ii) If $\Sigma^{4s}X$ and Y are respectively quasi KO_* -equivalent to Σ^0 and Σ^4 , then $\psi_R^k = A_{k,2s,2}$, $k^2A_{k,2s,0}$ or 1 according as i=0, 4 or otherwise.

iii) If $\Sigma^{4s}X$ and Y are respectively quasi KO_{*}-equivalent to Σ^{4} and Σ^{0} , then $\psi_{R}^{k} = A_{k,2s,0}$, $k^{2}A_{k,2s,2}$ or 1 according as i=0, 4 or otherwise.

Proof. Use the cofiber sequence $W \xrightarrow{G} C(f) \xrightarrow{i_G} C(i_g f) \xrightarrow{j_G} \Sigma^1 W$ appeared in the proof of Lemma 2.1 where C(f) and $C(i_g f)$ are quasi KO_* -equivalent to $\Sigma^{4s}X \lor Y$ and $\Sigma^{4s}X \lor C(g)$ respectively. Since W is quasi KO_* -equivalent to either of Σ^0 and Σ^4 , the map i_G induces epimorphisms $i_{G^*} \colon KO_iC(f) \to KO_iC(i_g f)$ in dimensions i=0, 1, 4 and 5. By using (1.8) i) and ii) we can immediately observe the behavior of ψ_R^k in $KO_iC(i_g f)$ for i=0, 1, 4 or 5. We will next show that $\psi_R^k=1$ in $KO_iC(i_g f)$ for i=2 or 6. It is obvious that $KO_2C(i_g f)$ is isomorphic to $KO_2C(g), KO_2C(f)$ or $KO_2C(f) \oplus KO_2C(g)$ according as $\Sigma^{4s}X, W$ or Y is quasi KO_* -equivalent to Σ^4 . Therefore it is easy to see that $\psi_R^k=1$ in $KO_2C(i_g f)$ in these three cases. Assume that $\Sigma^{4s}X, W$ and Y are all quasi KO_* -equivalent to Σ^0 . Then we have the following commutative diagram

Z. YOSIMURA

with exact rows and columns, where C(g) is quasi KO_* -equivalent to SZ/2m by Lemma 1.1. Then a routine computation shows that $\psi_R^k = 1$ in $KO_2C(i_g f)$ as desired, because $\psi_R^k = 1$ in $KO_2C(f)$ and $KO_2C(g)$. Similarly as to KO_6 $C(i_g f)$.

We remark that the Adams operation ψ_R^k acts normally in $KO_*C(i_g f)_{\wedge}C(\bar{\eta})$ as stated in the above lemma if it behaves normally in $KO_*C(g)_{\wedge}C(\bar{\eta})$ in the sense of (1.5).

Take f in Lemma 2.1 as the map α_{4r} , μ_{4r+1} , a_{4r+2} , a'_{4r+2} or m_{4r+3} given in (1.13) and g in Lemma 2.1 as the map $2m: \Sigma^0 \to \Sigma^0$, $m\overline{\lambda}: C(\overline{\eta}) \to \Sigma^0$, $2m: C(\overline{\eta}) \to C(\overline{\eta})$ or $mi: \Sigma^0 \to C(\overline{\eta})$ whose cofiber is SZ/2m, U_{2m} , $SZ/2m_{\Lambda}C(\overline{\eta})$ or V_{2m} . Then we can introduce the composite maps $i_g f_t$ ($t \ge 0$) as follows:

$$\begin{split} i\alpha_{4r} \colon \Sigma^{8r-1} \to SZ/2m , & i_U \alpha_{4r} \colon \Sigma^{8r-1} \to U_{2m} , \\ i\mu_{4r+1} \colon \Sigma^{8r+1} \to SZ/2m , & i_U \mu_{4r+1} \colon \Sigma^{8r+1} \to U_{2m} , \\ (2.2) & ia'_{4r+2} \colon \Sigma^{8r}C(\tilde{\eta}) \to SZ/2m , & i_U a'_{4r+2} \colon \Sigma^{8r}C(\tilde{\eta}) \to U_{2m} , \\ & (i_{\wedge}1) a_{4r+2} \colon \Sigma^{8r+3} \to SZ/2m_{\wedge}C(\bar{\eta}) , & i_V a_{4r+2} \colon \Sigma^{8r+3} \to V_{2m} , \\ & (i_{\wedge}1) m_{4r+3} \colon \Sigma^{8r+5} \to SZ/2m_{\wedge}C(\bar{\eta}) , & i_V m_{4r+3} \colon \Sigma^{8r+5} \to V_{2m} . \end{split}$$

Applying Lemmas 2.1 and 2.2 and (2.1) with the aid of Proposition 1.6, (1.3), (1.4) and (1.5), we obtain

Proposition 2.3. For each composite map $i_g f_t (t \ge 0)$ given in (2.2), its cofiber $C(i_g f_t)$ satisfies the property $(II_{2m})_t$, and the Adams operation ψ_R^k behaves normally in $KO_*C(i_g f_t)$ as stated in Lemma 2.2 i) when t is even, or as stated in (2.1) when t is odd. Moreover $C(i\alpha_{4r})$, $C(ia'_{4r+2})$ and $\Sigma^4C((i_{\wedge}1) a_{4r+2})$ are quasi KO_* -equivalent to $\Sigma^0 \lor SZ/2m$, and $C(i_U\alpha_{4r})$, $C(i_Ua'_{4r+2})$ and $\Sigma^4C(i_Va_{4r+2})$ are quasi KO_* -equivalent to $\Sigma^0 \lor \Sigma^4 V_{2m}$. On the other hand, $C(i_{\mu_{4r+1}})$, $C(i_Vm_{4r+3})$, $\Sigma^4C(i_U\mu_{4r+1})$ and $\Sigma^4C((i_{\wedge}1) m_{4r+3})$ are all quasi KO_* -equivalent to M_{2m} .

2.2. Let $f: \Sigma^{2t-1} X \to Y$ be a map of order 2. Then we have extensions

$$\begin{split} f_{2m} \colon \Sigma^{2t-1} X_{\wedge} SZ/2m \to Y , \quad f_{U,4m} \colon \Sigma^{2t-1} X_{\wedge} U_{4m} \to Y \quad \text{and} \\ f_{V,4m} \colon \Sigma^{2t-1} X'_{\wedge} V_{4m} \to Y \quad \text{when} \quad X = X'_{\wedge} C(\bar{\eta}) \end{split}$$

such that $\bar{f}_{2m}(1_{\wedge}i)=f$, $\bar{f}_{U,4m}(1_{\wedge}i_U)=f$ and $\bar{f}_{V,4m}(1_{\wedge}i_V)=f$ because U_{4m} and V_{4m} are constructed as the cofibers of the maps $2m\,\bar{\lambda}\colon C(\bar{\eta})\to\Sigma^0$ and $2m\,\bar{i}\colon\Sigma^0\to C(\bar{\eta})$ respectively.

Lemma 2.4. Let X and Y be CW-spectra satisfying the property (I), and $f: \Sigma^{2t-1}X \rightarrow Y$ be a map of order 2 whose cofiber C(f) satisfies the property $(II)_t$ $(t \neq 0)$.

(i) The cofiber $C(f_2)$ satisfies the property (I), and it is quasi KO_{*}-equivalent

to Y or $\Sigma^4 Y$ according as t is even or odd.

ii) For $\overline{\varphi}_{4m} = \overline{f}_{4m}$, $\overline{f}_{U,4m}$ or $\overline{f}_{V,4m}$ each cofiber $\Sigma^{-2t}C(\overline{\varphi}_{4m})$ satisfies the property $(\text{II}_{2m})_{-t}$. Whenever t is odd, all of $C(\overline{f}_{4m})$, $\Sigma^4C(\overline{f}_{U,4m})$ and $C(f_{V,4m})$ are quasi KO_* -equivalent to P'_{4m} or $\Sigma^4P'_{4m}$ according as $\Sigma^{2t}X$ is quasi KO_* -equivalent to Σ^2 or Σ^6 .

Proof. Consider the following commutative diagram

$$\begin{array}{rcl} \Sigma^{2t}X &=& \Sigma^{2t}X\\ && \downarrow\lambda && \downarrow 2m\\ \Sigma^{2t-1}X &\xrightarrow{f} Y \to C(f) \to & \Sigma^{2t}X\\ &\downarrow 1_{\wedge}i & || &\downarrow & \downarrow\\ \Sigma^{2t-1}X_{\wedge}SZ/2m \xrightarrow{F} Y \to C(f_{2m}) \to & \Sigma^{2t}X_{\wedge}SZ/2m \end{array}$$

involving four cofiber sequences. The induced homomorphism $\lambda_*: KU_0\Sigma^{2t}X \to KU_0C(f)$ is given by $\lambda_*(1) = (2m, m) \in KU_0C(f) \cong KU_0\Sigma^{2t}X \oplus KU_0Y \cong Z \oplus Z$, since $\psi_c^k = A_{k,t}$ in $KU_0C(f)$. Hence it is immediate that $KU_0C(f_{2m}) \cong Z \oplus Z/m$ and $KU_1C(f_{2m}) = 0$. Moreover the Adams operation ψ_c^k in $KU_0C(f_{2m})$ is represented as the matrix $\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} A_{k,t} \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} = k^{-t}A_{k,-t}$. In other words, $\psi_c^k = 1$ in $KU_0C(f_2) \cong Z$ and $\psi_c^k = A_{k,-t}$ in $KU_0\Sigma^{-2t}C(f_{2m}) \cong Z \oplus Z/m$ unless m=1.

Assume that Y is quasi KO_* -equivalent to Σ^0 . Then it is obvious that $KO_7 \Sigma^{2t} X_{\wedge} SZ/2 = 0$ because $KO_7 C(\bar{f}_2) = 0 = KO_6 Y$. Therefore $\Sigma^{2t} X_{\wedge} SZ/2$ becomes quasi KO_* -equivalent to SZ/2 or $\Sigma^2 SZ/2$ according as t is even or odd. This implies easily that $C(\bar{f}_2)$ is quasi KO_* -equivalent to Σ^0 or Σ^4 according as t is even or odd. When Y is quasi KO_* -equivalent to Σ^4 , a similar result can be shown. Since C(f) is a Wood spectrum when t is odd, it is immediate that $KO_1C(\bar{f}_{2m}) \cong KO_0\Sigma^{2t}X$. Hence $C(\bar{f}_{2m})$ is quasi KO_* -equivalent to Σ^2 or $\Sigma^4P'_{2m}$ according as $\Sigma^{2t}X$ is quasi KO_* -equivalent to Σ^2 or Σ^6 .

We can similarly prove as for $C(f_{U,4m})$ and $C(f_{V,4m})$.

Since $[\Sigma^3 SZ/2, C(\bar{\eta})] \cong [\Sigma^1 C(\tilde{\eta}), SZ/2] \cong Z/2$ (use [4, §4]), the maps \bar{h} : $\Sigma^3 SZ/2 \rightarrow C(\bar{\eta})$ and $\tilde{h}: \Sigma^1 C(\tilde{\eta}) \rightarrow SZ/2$ have order 2. So there exist maps

$$\bar{h}_{2m/2}: \Sigma^4 SZ/2 \to SZ/2m_{\wedge}C(\bar{\eta}) \text{ and } \tilde{h}_{2m/2}: \Sigma^1 SZ/2m_{\wedge}C(\tilde{\eta}) \to SZ/2$$

satisfying $(j_{\wedge}1) \bar{h}_{2m/2} = \bar{h}$ and $\tilde{h}_{2m/2}(i_{\wedge}1) = \tilde{h}$. We now set

$$\overline{\alpha}_{4r} = jA_2^r \colon \Sigma^{8r-1}SZ/2 \to \Sigma^0 , \qquad \overline{\mu}_{4r+1} = \overline{\eta}A_2^r \colon \Sigma^{8r+1}SZ/2 \to \Sigma^0 ,$$

(2.3)
$$a_{4r+2} = hA_2^r \colon \Sigma^{8r+3}SZ/2 \to C(\bar{\eta}), \quad \overline{m}_{4r+3} = kA_2^r \colon \Sigma^{8r+5}SZ/2 \to C(\bar{\eta}),$$

 $a_{4r+2}^r = jA_2^r \tilde{h}_{2/2} \colon \Sigma^{8r}SZ/2_{\wedge}C(\bar{\eta}) \to \Sigma^0.$

Then Lemma 2.4 i) combined with Proposition 1.6 shows that

(2.4) the cofibers $C(\overline{\alpha}_{4r})$, $C(\overline{\mu}_{4r+1})$, $C(\overline{a}_{4r+2})$, $C(\overline{m}_{4r+3})$ and $C(\overline{a}'_{4r+2})$ satisfy the property (I), and the first, the forth and the last are quasi KO_* -equivalent to Σ^0 and the other two are quasi KO_* -equivalent to Σ^4 .

Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2 and $\overline{f}: \Sigma^{2t-1}X_{\wedge}SZ/2 \to Y$ be its extension with $\overline{f}(1_{\wedge}i)=f$. Then there exists a map $\varphi: \Sigma^{-2t-1}C(\overline{f})\to X$ of order 2 whose cofiber $C(\varphi)$ coincides with $\Sigma^{-2t}C(f)$. Hence we can choose the following maps of order 2:

$$(2.5) \qquad \begin{array}{l} \alpha_{-4r} \colon \Sigma^{-8r-1} C(\overline{\alpha}_{4r}) \to \Sigma^{0} , \qquad \mu_{-4r-1} \colon \Sigma^{-8r-3} C(\overline{\mu}_{4r+1}) \to \Sigma^{0} , \\ a_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}_{4r+2}) \to \Sigma^{0} , \quad m_{-4r-3} \colon \Sigma^{-8r-7} C(\overline{m}_{4r+3}) \to \Sigma^{0} , \\ b_{-4r-2} \colon \Sigma^{-8r-5} C(\overline{a}_{4r+2}') \to \Sigma^{-3} C(\widetilde{\eta}) \end{array}$$

of which each cofiber $C(f_{-t})$ coincides with $\Sigma^{-2t}C(f_t)$ where $f_t = \alpha_{4r}, \mu_{4r+1}, a_{4r+2}, m_{4r+3}$ or b_{4r+2} $(r \ge 0)$ with $b_{4r+2} = a'_{4r+2}$.

Take f in Lemma 2.1 as the above map α_{-4r} , μ_{-4r-1} , a_{-4r-2} , m_{-4r-3} or b_{-4r-2} , and g in Lemma 2.1 as the map $2m: \Sigma^0 \to \Sigma^0$, $m\bar{\lambda}: C(\bar{\eta}) \to \Sigma^0$, $2m: C(\bar{\eta}) \to C(\bar{\eta})$ or $m\bar{\lambda}: \Sigma^3 \to C(\tilde{\eta})$. Then we obtain the following composite maps $i_g f_{-t}$ $(t \ge 0)$:

$$i\alpha_{-4r}: \Sigma^{-8r-1} C(\overline{\alpha}_{4r}) \to SZ/2m, \qquad i_U \alpha_{-4r}: \Sigma^{-8r-1} C(\overline{\alpha}_{4r}) \to U_{2m}, \\ i\mu_{-4r-1}: \Sigma^{-8r-3} C(\overline{\mu}_{4r+1}) \to SZ/2m, \qquad i_U \mu_{-4r-1}: \Sigma^{-8r-3} C(\overline{\mu}_{4r+1}) \to U_{2m}, \\ (2.6) \quad ia_{-4r-2}: \Sigma^{-8r-5} C(\overline{a}_{4r+2}) \to SZ/2m, \qquad i_U a_{-4r-2}: \Sigma^{-8r-5} C(\overline{a}_{4r+2}) \to U_{2m}, \\ \quad im_{-4r-3}: \Sigma^{-8r-7} C(\overline{m}_{4r+3}) \to SZ/2m, \qquad i_U m_{-4r-3}: \Sigma^{-8r-7} C(\overline{m}_{4r+3}) \to U_{2m}, \\ \quad (i_{\wedge}1) \ b_{-4r-2}: \Sigma^{-8r-5} C(\overline{a}'_{4r+2}) \to \Sigma^{-3}SZ/2m_{\wedge}C(\tilde{\gamma}) \quad \text{and} \\ \quad i'_U b_{-4r-2}: \Sigma^{-8r-5} C(\overline{a}'_{4r+2}) \to \Sigma^{-3}U'_{2m}. \end{cases}$$

By making use of Lemmas 2.1 and 2.2 and (2.1) we obtain

Proposition 2.5. For each composite map $i_g f_{-i}$ ($t \ge 0$) given in (2.6), its cofiber $C(i_g f_{-i})$ satisfies the property $(II_{2m})_{-i}$, and the Adams operation ψ_R^k behaves normally in $KO_*C(i_g f_{-i})$ as stated in Lemma 2.2 i) when t is even, or as stated in (2.1) when t is odd. Moreover $C(i\alpha_{-4r})$, $C(i\alpha_{-4r-2})$ and $\Sigma^4C((i_{\wedge}1) b_{-4r-2})$ are quasi KO_* -equivalent to $\Sigma^0 \lor SZ/2m$, and $C(i_{\nu}\alpha_{-4r})$, $C(i_{\nu}a_{-4r-2})$ and $\Sigma^4C(i'_{\nu}b_{-4r-2})$ are quasi KO_* -equivalent to $\Sigma^0 \lor \Sigma^4 V_{2m}$. On the other hand, $C(i\mu_{-4r-1})$, $C(im_{-4r-3})$, $\Sigma^4C(i_{\nu}\mu_{-4r-1})$ and $\Sigma^4C(i_{\nu}m_{-4r-3})$ are all quasi KO_* -equivalent to M_{2m} .

By virtue of Propositions 2.3 and 2.5 we can apply Theorem 4 to show the followong result.

Theorem 2.6. Let X be a CW-spectrum satisfying the property $(II_{2m})_t$.

i) Assume that X is quasi KO_* -equivalent to $\Sigma^0 \vee SZ/2m$. If the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 2.2

i), then X has the same K_* -local type as $C(i\alpha_{4r})$, $C(i\alpha'_{4r+2})$, $C(i\alpha_{-4r})$ or $C(ia_{-4r-2})$ according as t=4r, 4r+2, -4r or -4r-2 ($r \ge 0$).

ii) Assume that X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^4 V_{2m}$. If the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 2.2 i), then X has the same K_* -local type as $C(i_U\alpha_{4r}), C(i_U\alpha_{4r+2}), C(i_U\alpha_{-4r})$ or $C(i_Ua_{-4r-2})$ according as t=4r, 4r+2, -4r or -4r-2 $(r \geq 0)$.

iii) Assume that X is quasi KO_* -equivalent to M_{2m} . Then X has the same K_* -local type as $C(i\mu_{4r+1})$, $C(i_Vm_{4r+3})$, $C(i\mu_{-4r-1})$ or $C(im_{-4r-3})$ according as t=4r+1, 4r+3, -4r-1, -4r-3 $(r \ge 0)$.

iv) Assume that X is quasi KO_* -equivalent to $\Sigma^4 M_{2m}$. Then X has the same K_* -local type as $C(i_U \mu_{4r+1})$, $C((i_{\wedge} 1) m_{4r+3})$, $C(i_U \mu_{-4r-1})$ or $C(i_U m_{-4r-3})$ according as t=4r+1, 4r+3, -4r-1 or -4r-3 $(r \ge 0)$.

In the above theorem we may replace the map $i_U: \Sigma^0 \to U_{2m}$ by the map $i'_V: \Sigma^0 \to \Sigma^{-2} V'_{2m}$, and also the maps $\mu_{4r+1}: \Sigma^{8r+1} \to \Sigma^0$, $i_V m_{4r+3}: \Sigma^{8r+5} \to V_{2m}$ and $(i_{\wedge}1) m_{4r+3}: \Sigma^{8r+5} \to SZ/2m_{\wedge}C(\bar{\eta})$ by $\mu'_{4r+1}: \Sigma^{8r+1} \to \Sigma^0$, $im'_{4r+3}: \Sigma^{8r+2} C(\tilde{\eta}) \to SZ/2m$ and $i'_V m'_{4r+3}: \Sigma^{8r+2} C(\tilde{\eta}) \to \Sigma^{-2} V'_{2m}$ respectively. Thus

(2.7) i) $C(i'_V f_t)$ has the same K_* -local type as $C(i_U f_t)$ for $f_t = \alpha_{\pm 4r}, \mu_{\pm (4r+1)}, a'_{4r+2}, a_{-4r-2}, m'_{4r+3}$ or m_{-4r-3} .

ii) $C(i\mu_{4r+1})$ and $C(i_U\mu_{4r+1})$ have the same K_* -local types as $C(i\mu_{4r+1})$ and $C(i_U\mu_{4r+1})$ respectively.

iii) $C(im'_{4r+3})$ and $C(i'_{V}m'_{4r+3})$ have the same K_* -local types as $C(i_{V}m_{4r+3})$ and $C((i_{\wedge}1) m_{4r+3})$ respectively.

When X is quasi KO_* -equivalent to $\Sigma^4 \vee \Sigma^4 SZ/2m$ or $\Sigma^4 \vee V_{2m}$, we can obtain a similar result corresponding to the above theorem i) or ii). In fact, if the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 2.2 i), then X has the same K_* -local type as the cofiber appeared in Theorem 2.6 i) or ii) smashed with $C(\bar{\eta})$ (see the remark following Lemma 2.2). In particular, by means of Propositions 2.3 and 2.5 again we obtain that

(2.8) $C((i_{\wedge}1) a_{4r+2}), C(i_{V}a_{4r+2}), C((i_{\wedge}1) b_{-4r-2}) \text{ and } C(i'_{U}b_{-4r-2}) \text{ have the same } K_{*}$ local types as $C(ia'_{4r+2})_{\wedge}C(\bar{\eta}), C(i_{U}a'_{4r+2})_{\wedge}C(\bar{\eta}), C(ia_{-4r-2})_{\wedge}C(\bar{\eta}) \text{ and } C(i_{U}a_{-4r-2})_{\wedge}C(\bar{\eta}) \text{ respectively.}$

3. K_* -local types of Anderson spectra

3.1. Let X be a CW-spectrum with $KU_0X \cong KU_1X \cong Z$. For such a CW-spectrum X we may assume that $X_{\wedge}SQ = (\Sigma^0 \vee \Sigma^{2t+1})_{\wedge}SQ$ for some integer t. In this case X satisfies the following property:

(III)_t $KU_0X \cong Z$ with $\psi_c^k = 1$ and $KU_1X \cong Z$ with $\psi_c^k = 1/k^t$.

If X satisfies the property $(III)_{2s+1}$, then it is quasi KO_* -equivalent to one of the

following spectra $\Sigma^0 \vee \Sigma^3$, $\Sigma^0 \vee \Sigma^7$, $\Sigma^4 \vee \Sigma^3$, $\Sigma^4 \vee \Sigma^7$ or $C(\eta^2)$ (see [7, Theorem 3.2] or [15, Theorem I.3.4]).

Lemma 3.1. Let X and Y be CW-spectra satisfying the property (I) and $f: \Sigma^{2t-1}X \to Y$ be a map whose cofiber C(f) satisfies the property $(II)_t$. Then the cofiber $C(\eta f)$ of the composite map $\eta f: \Sigma^{2t}X \to Y$ satisfies the property $(III)_t$, and it is quasi KO_* -equivalent to $Y \vee \Sigma^{2t+1}X$ or $C(\eta^2)$ according as t is even or odd.

Proof. Obviosuly $KU_0 C(\eta f) \cong KU_0 Y \cong Z$ and $KU_1 C(\eta f) \cong KU_1 \Sigma^{2t+1} X \cong Z$. In the case when t is even, $C(\eta f)$ is quasi KO_* -equivalent to the wedge sum $Y \vee \Sigma^{2t+1} X$ since C(f) is quasi KO_* -equivalent to $Y \vee \Sigma^{2t} X$. On the other hand, $C(\eta f)$ is just an Anderson spectrum in the case when t is odd, because $KO_2C(\eta f)=0=KO_6C(\eta f)$.

Let X be an Anderson spectrum satisfying the property $(III)_{2s+1}$. Then we can easily observe that the Adams operation ψ_R^k behaves always in KO_iX $(0 \le i \le 7)$ for each $k \ne 0$ as follows:

(3.1) $\psi_R^k = 1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i=3, 4, 7 or otherwise.

Lemma 3.2. Let X and Y be CW-spectra satisfying the property (I) and f: $\Sigma^{4s-1}X \rightarrow Y$ be a map whose cofiber C(f) satisfies the property $(II)_{2s}$. Then the Adams operation ψ_R^k acts normally in $KO_iC(\eta f)$ ($0 \le i \le 7$) for each $k \ne 0$ as follows: $\psi_R^k = 1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i=1, 4, 5 or otherwise.

Proof. Use the cofiber sequence $\Sigma^1 C(f) \to C(\eta f) \to C(\eta)_{\wedge} Y \to \Sigma^2 C(f)$ where C(f), $C(\eta f)$ and $C(\eta)_{\wedge} Y$ are quasi KO_* -equivalent to $Y \vee \Sigma^{4s} X$, $Y \vee \Sigma^{4s+1} X$ and $C(\eta)$ respectively. Then the result follows immediately from (1.8) i) and ii).

Take f in Lemma 3.1 as the map $\alpha_{\pm 4r}$, $\mu_{\pm (4r+1)}$, $a_{\pm (4r+2)}$, $m_{\pm (4r+3)}$, a'_{4r+2} or b_{-4r-2} given in (1.13) or (2.5). Using Lemmas 3.1 and 3.2 and (3.1) by virtue of Proposition 1.6 we obtain

Proposition 3.3. Set $f_t = \alpha_{\pm 4r}$, $\mu_{\pm(4r+1)}$, $a_{\pm(4r+2)}$, $m_{\pm(4r+3)}$, a'_{4r+2} or $b_{-4r-2}(r \ge 0)$. Then each cofiber $C(\eta f_t)$ satisfies the property (III)_t, and the Adams operation ψ_R^k behaves normally in $KO_*C(\eta f_t)$ as stated in Lemma 3.2 when t is even, or as stated in (3.1) when t is odd. Moreover the cofibers $C(\eta f_t)$ for $f_t = \alpha_{\pm 4r}$, a'_{4r+2} and a_{-4r-2} are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^1$, but $C(\eta a_{4r+2})$ and $C(\eta b_{-4r-2})$ are quasi KO_* equivalent to $\Sigma^4 \vee \Sigma^5$. On the other hand, the cofibers $C(\eta f_t)$ for $f_t = \mu_{\pm(4r+1)}$ and $m_{\pm(4r+3)}$ are Anderson spectra.

By applying Theorem 4 combined with Proposition 3.3 we can show the following result, which contains Theorem 2.

Theorem 3.4. Let X be a CW-spectrum satisfying the property $(III)_t$ with

 $t \neq -1.$

i) Assume that X is quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^1$. If the Adams operation ψ_R^k behaves normally in KO_*X for each $k \neq 0$ as stated in Lemma 3.2, then X has the same K_* -local type as $C(\eta \alpha_{4r})$, $C(\eta a_{4r+2})$, $C(\eta \alpha_{-4r})$ or $C(\eta a_{-4r-2})$ according as t=4r, 4r+2, -4r or -4r-2 ($r \geq 0$).

ii) When X is an Anderson spectrum, then it has the same K_* -local type as $C(\eta\mu_{4r+1}), C(\eta m_{4r+3}), C(\eta\mu_{-4r-1})$ or $C(\eta m_{-4r-3})$ according as t=4r+1, 4r+3, -4r-1 or -4r-3 ($r\geq 0$) where $t \neq -1$.

3.3. As duals of M_{2m} , P'_{2m} and R'_{2m} appeared in §2 we next consider the cofibers $C(\eta j)$, $C(\tilde{\eta}_{2m})$ and $C(\tilde{\eta}_{2m}\eta^2)$ of the maps $\eta j:SZ/2m \to \Sigma^0$, $\tilde{\eta}_{2m}: \Sigma^2 \to SZ/2m$ and $\tilde{\eta}_{2m}\eta^2: \Sigma^4 \to SZ/2m$, which are denoted by M'_{2m}, P_{2m} and R_{2m} respectively in [15, I.4.1]. Then there hold Spanier-Whitehead dualities as $M'_{2m} = \Sigma^2 DM_{2m}$, $P'_{2m} = \Sigma^3 DP_{2m}$ and $R'_{2m} = \Sigma^5 DR_{2m}$. Hence $KU^0M'_{2m} \approx Z \oplus Z/2m$ on which $\psi_c^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $KU^1P_{2m} \approx Z \oplus Z/m$ on which $\psi_c^{-1} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$, $KU^1R_{2m} \approx Z \oplus Z/2m$ on which $\psi_c^{-1} = (1 + 1)$, $KU^1R_{2m} \approx Z \oplus Z/2m$ on which $\psi_c^{-1} = 1$, and $KU^1M'_{2m} = KU^0P_{2m} = KU^0R_{2m} = 0$ (cf. [15, Proposition I.4.1]). Note that Σ^1P_{4m} is quasi KO_* -equivalent to M'_{2m} , whose KO-homology $KO_iM'_{2m} \approx Z, Z/4m, Z/2, Z/2, Z, Z/2m, 0, 0$ according as $i=0, 1, \dots, 7$ (see [15, Proposition I.4.2 and Corollary I.5.4]).

Let X be a CW-spectrum satisfying the following property:

$$(II_{2m})_t^*$$
 $KU^0X \cong Z \oplus Z/2m$ in which $\psi_c^k = A_{k,t}$ and $KU^1X = 0$.

If KU_iX is finitely generated for each *i*, then the property $(II_{2m})_i^*$ implies that $KU_0X \cong Z$ with $\psi_c^k = k^t$ and $KU_{-1}X \cong Z/2m$ with $\psi_c^k = 1$. Under the assumption that X is finite, we note that X satisfies the property $(II_{2m})_i^*$ if and only if its Spanier-Whitehead dual DX does the property $(II_{2m})_i$. As a dual of Lemma 2.1 we have

Lemma 3.5. Let X, Y and W be CW-spectra satisfying the property (I). Let $f: \Sigma^{2t-1}X \rightarrow Y$ and $g: X \rightarrow W$ be maps whose cofibers C(f) and C(g) satisfy the properties (II)_t and (I_{2m}) respectively. Then for the composite map $fj_g: \Sigma^{2t-2}C(g) \rightarrow$ $\Sigma^{2t-1}X \rightarrow Y$ the cofiber $\Sigma^{-2t}C(fj_g)$ satisfies the property (II_{2m})^{*}. Moreover $C(fj_g)$ is quasi KO_{*}-equivalent to the wedge sum $Y \vee \Sigma^{2t-1}C(g)$ when t is even. On the other hand, under the assumption that $C(fj_g)$ is finite, it is quasi KO_{*}-equivalent to M'_{2m} or $\Sigma^4 M'_{2m}$ according as $\Sigma^{2t}W$ is quasi KO_{*}-equivalent to Σ^2 or Σ^6 when t is odd.

Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2. Then we have coextensions

$$\widehat{f}_{2m}: \Sigma^{2t}X \rightarrow Y_{\wedge}SZ/2m$$
, $\widehat{f}_{V,4m}: \Sigma^{2t}X \rightarrow Y_{\wedge}V_{4m}$ and
 $\widehat{f}_{U,4m}: \Sigma^{2t}X \rightarrow Y'_{\wedge}U_{4m}$ when $Y = Y'_{\wedge}C(\overline{\eta})$

such that $(1_{\wedge}j) \tilde{f}_{2m} = f$, $(1_{\wedge}j_V) \tilde{f}_{V,4m} = f$ and $(1_{\wedge}j_U) \tilde{f}_{U,4m} = f$. As a dual of Lemma 2.4 we have

Lemma 3.6. Let X and Y be CW-spectra satisfying the property (I), and $f: \Sigma^{2t-1}X \rightarrow Y$ be a map of order 2 whose cofiber C(f) satisfies the property $(II)_t$ $(t \neq 0)$.

i) The cofiber $\Sigma^{-2t-1}C(\tilde{f}_2)$ satisfies the property (I), and it is quasi KO_* -equivalent to X or $\Sigma^4 X$ according as t is even or odd.

ii) For $\tilde{\varphi}_{4m} = \tilde{f}_{4m}$, $\tilde{f}_{V,4m}$ or $\tilde{f}_{U,4m}$ each cofiber $\Sigma^{-1} C(\tilde{\varphi}_{4m})$ satisfies the property $(II_{2m})^*_{-t}$. Under the assumption that these cofibers are finite, all of $C(\tilde{f}_{4m})$, $\Sigma^4 C(\tilde{f}_{V,4m})$ and $C(\tilde{f}_{U,4m})$ are quasi KO_* -equivalent to P_{4m} or $\Sigma^4 P_{4m}$ according as Y is quasi KO_* -equivalent to Σ^0 or Σ^4 whenever t is odd.

As a dual of (2.3) we set

$$\begin{aligned} \widetilde{\alpha}_{4r} &= A_2^r \, i \colon \Sigma^{8r} \to SZ/2 \,, \qquad \qquad \widetilde{\mu}_{4r+1}^r = A_2^r \, \widetilde{\eta} \colon \Sigma^{8r+2} \to SZ/2 \,, \\ (3.2) \quad \widetilde{a}_{4r+2}^r &= A_2^r \, \widetilde{h} \colon \Sigma^{8r+1} \, C(\widetilde{\eta}) \to SZ/2 \,, \qquad \qquad \widetilde{m}_{4r+3}^r = A_2^r \, \widetilde{k} \colon \Sigma^{8r+3} \, C(\widetilde{\eta}) \to SZ/2 \,, \\ \quad \widetilde{a}_{4r+2}^r &= \widetilde{h}_{2/2} \, A_2^r \, i \colon \Sigma^{8r+4} \to SZ/2_{\wedge} C(\overline{\eta}) \,. \end{aligned}$$

Since $\Sigma^{-2t-1}C(\tilde{f}'_{t}) = DC(\tilde{f}_{t})$ for $f_{t} = \alpha_{4r}, \mu_{4r+1}, a_{4r+2}, m_{4r+3}$ or $a'_{4r+2} (r \ge 0)$ with $\alpha'_{4r} = \alpha_{4r}$ and $a'_{4r+2} = a_{4r+2}$, (2.5) implies that

(3.3) each cofiber $\Sigma^{-2t-1}C(\hat{f}'_t)$ satisfies the property (I) for \hat{f}'_t given in (3.2), and $C(\tilde{\alpha}_{4r}), \Sigma^2 C(\tilde{\mu}'_{4r+1}), C(\tilde{a}'_{4r+2}), \Sigma^2 C(\tilde{m}'_{4r+3})$ and $\Sigma^4 C(\tilde{a}_{4r+2})$ are all quasi KO_* -equivalent to Σ^1 .

Let $f: \Sigma^{2t-1}X \to Y$ be a map of order 2 and $\hat{f}: \Sigma^{2t}X \to Y_{\wedge}SZ/2$ be its coextension with $(1_{\wedge}j)\hat{f}=f$. Then there exists a map $\psi: Y \to C(\hat{f})$ of order 2 whose cofiber $C(\psi)$ coincides with $\Sigma^{1}C(f)$. So we can choose the following maps of order 2:

(3.4) $\begin{aligned} \alpha'_{-4r} \colon \Sigma^{0} \to C(\tilde{\alpha}_{4r}) , & \mu'_{-4r-1} \colon \Sigma^{0} \to C(\tilde{\mu}'_{4r+1}) , \\ a'_{-4r-2} \colon \Sigma^{0} \to C(\tilde{a}'_{4r+2}) , & m'_{-4r-3} \colon \Sigma^{0} \to C(\tilde{m}'_{4r+3}) \quad \text{and} \\ b'_{-4r-2} \colon C(\bar{\eta}) \to C(\tilde{a}_{4r+2}) \end{aligned}$

of which each cofiber $C(f'_{-t})$ coincides with $\Sigma^1 C(f'_t)$ where $f'_t = \alpha_{4r}, \mu'_{4r+1}, a'_{4r+2}, m'_{4r+3}$ and b'_{4r+2} $(r \ge 0)$ with $b'_{4r+2} = a_{4r+2}$. Since the maps f'_{-t} given in (3.4) are respectively dual to those f_{-t} given in (2.5), we have Spanier-Whitehead dualities as $C(f'_{-t}) = \Sigma^1 D C(f_{-t})$ for $f_{-t} = \alpha_{-4r}, \mu_{-4r-1}, a_{-4r-2}, m_{-4r-3}$ or b_{-4r-2} $(r \ge 0)$.

Dually to (2.2) and (2.6) we obtain the composite maps $f_t j_g$ and $f_{-t} j_g$ $(t \ge 0)$ as follows:

$$\begin{array}{ll} \alpha_{4r} j \colon \Sigma^{8r-2} SZ/2m \to \Sigma^0 , & \alpha_{4r} j_V \colon \Sigma^{8r-2} V_{2m} \to \Sigma^0 , \\ (3.5) \quad \mu'_{4r+1} j \colon \Sigma^{8r} SZ/2m \to \Sigma^0 , & \mu'_{4r+1} j_V \colon \Sigma^{8r} V_{2m} \to \Sigma^0 , \end{array}$$

$$\begin{split} a_{4r+2}j \colon \Sigma^{8r+2}SZ/2m &\to C(\bar{\eta}) , \qquad a_{4r+2}j_V \colon \Sigma^{8r+2}V_{2m} \to C(\bar{\eta}) \\ a'_{4r+2}(j_{\wedge}1) \colon \Sigma^{8r-1}SZ/2m_{\wedge}C(\tilde{\eta}) \to \Sigma^0 , \qquad a'_{4r+2}j'_V \colon \Sigma^{8r}V'_{2m} \to \Sigma^0 , \\ m'_{4r+3}(j_{\wedge}1) \colon \Sigma^{8r+1}SZ/2m_{\wedge}C(\tilde{\eta}) \to \Sigma^0 , \qquad m'_{4r+3}j'_V \colon \Sigma^{8r+2}V'_{2m} \to \Sigma^0 , \\ \alpha'_{-4r}j \colon \Sigma^{-1}SZ/2m \to C(\tilde{\alpha}_{4r}) , \qquad \alpha'_{-4r}j_V \colon \Sigma^{-1}V_{2m} \to C(\tilde{\alpha}_{4r}) , \end{split}$$

$$\begin{split} \widetilde{\mu}'_{-4r-1} \, j \colon \Sigma^{-1} SZ/2m &\to C(\widetilde{\mu}_{4r+1}) \,, \qquad \mu'_{-4r-1} \, j_V \colon \Sigma^{-1} V_{2m} \to C(\widetilde{\mu}_{4r+1}) \,, \\ (3.6) \quad a'_{-4r-2} \, j \colon \Sigma^{-1} SZ/2m \to C(\widetilde{a}_{4r+2}) \,, \qquad a'_{-4r-2} \, j_V \colon \Sigma^{-1} V_{2m} \to C(\widetilde{a}_{4r+2}) \,, \\ m'_{-4r-3} \, j \colon \Sigma^{-1} SZ/2m \to C(\widetilde{m}_{4r+3}) \,, \qquad m'_{-4r-3} \, j_V \colon \Sigma^{-1} V_{2m} \to C(\widetilde{m}_{4r+3}) \,, \\ b'_{-4r-2}(j_{\wedge}1) \colon \Sigma^{-1} SZ/2m_{\wedge} C(\overline{\eta}) \to C(\widetilde{a}_{4r+2}) \quad \text{and} \\ b'_{-4r-2} \, j_U \colon \Sigma^{-1} U_{2m} \to C(\widetilde{a}_{4r+2}) \,. \end{split}$$

Then there hold Spanier-Whitehead dualities as

(3.7) i) $C(f'_t j) = \Sigma^{2t} DC(if_t)$ and $C(f'_t j_v) = \Sigma^{2t} DC(i'_v f_t)$ for $f_t = \alpha_{4r}, \mu_{4r+1}$ or $a'_{4r+2}(r \ge 0)$ where $\alpha'_{4r} = \alpha_{4r}$ and $a'_{4r+2} = a_{4r+2}$.

ii) $C(f'_t j'_V) = \Sigma^{2t} DC(i_V f_t)$ and $C(f'_t (j_{\wedge} 1)) = \Sigma^{2t} DC((i_{\wedge} 1) f_t)$ for $f_t = a_{4r+2}$ or $m_{4r+3}(r \ge 0)$.

iii) $C(f'_{-t}j) = \Sigma^1 DC(if_{-t})$ and $C(f'_{-t}j_V) = \Sigma^1 DC(i'_V f_{-t})$ for $f_{-t} = \alpha_{-4r}$, $\mu_{-4r-1}, a_{-4r-2} \text{ or } m_{-4r-3}(r \ge 0).$ iv) $C(b'_{-4r-2}(j_{\wedge}1)) = \Sigma^1 DC((i_{\wedge}1) b_{-4r-2})$ and $C(b'_{-4r-2}j_U) = \Sigma^1 DC(i'_U b_{-4r-2})$

$$(r \ge 0)$$

By making use of Lemma 3.5 we obtain the following result, which is a dual of Propositions 2.3 and 2.5.

Proposition 3.7. i) For each composite map $f_t j_g(t \ge 0)$ given in (3.5) the cofiber $\Sigma^{-2t}C(f_t j_g)$ satisfies the property $(II_{2m})_t^*$.

ii) For each composite map $f_{-t}j_g(t\geq 0)$ given in (3.6) the cofiber $\Sigma^{-1}C(f_{-t}j_g)$ satisfies the property $(II_{2m})_{-t}^*$.

iii) $C(\alpha_{4r}j)$, $\Sigma^4 C(a_{4r+2}j)$, $C(a'_{4r+2}(j_{\wedge}1))$, $\Sigma^{-1}C(\alpha'_{-4r}j)$, $\Sigma^{-1}C(a'_{-4r-2}j)$ and $\Sigma^3 C(b'_{-4r-2}(j_{\wedge}1))$ are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^{-1}SZ/2m$, and $C(\alpha_{4r}j_V)$, $\Sigma^4 C(a_{4r+2}j_V)$, $C(a'_{4r+2}j'_V)$, $\Sigma^{-1}C(\alpha'_{-4r}j_V)$, $\Sigma^{-1}C(a'_{-4r-2}j_V)$ and $\Sigma^3 C(b'_{-4r-2}j_U)$ are quasi KO_* -equivalent to $\Sigma^0 \vee \Sigma^{-1}V_{2m}$.

iv) $C(\mu'_{4r+1}j)$, $\Sigma^4 C(\mu'_{4r+1}j_V)$, $\Sigma^4 C(m'_{4r+3}j'_V)$, $C(m'_{4r+3}(j_{\wedge}1))$, $\Sigma^1 C(\mu'_{-4r-1}j)$, $\Sigma^5 C(\mu'_{-4r-1}j_V)$, $\Sigma^1 C(m'_{-4r-3}j)$ and $\Sigma^5 C(m'_{-4r-3}j_V)$ are all quasi KO_{*}-equivalent to M'_{2m} .

4. K_* -local types of the real projective spaces

4.1. Let RP^n be the real projective *n*-space and X_n denote the suspension spectrum $\Sigma^{-n}SP^2S^n$ whose *n*-th term is the symmetric square SP^2S^n of the *n*-sphere as in [16, §2]. The suspension spectra X_n and RP^n are related by the following commutative diagram

Z. YOSIMURA

involving four cofiber sequences [10]. Their KU-homologies and KU-cohomologies are well known ([1, Theorem 7.3] and [14, Theorem 3.3]):

(4.2) i) $KU_0X_{n+1} \approx Z$ or $Z \oplus Z$ and $KU_{-1}RP^n \approx Z/2^t$ or $Z \oplus Z/2^t$ according as n=2t or 2t+1, and $KU_1X_{n+1}=0=KU_0RP^n$.

ii) $KU^0X_{n+1} \cong Z$ or $Z \oplus Z$ and $KU^{-1}RP^n \cong 0$ or Z according as n is even or odd, and $KU^1X_{n+1} = 0$ and $KU^0RP^n \cong Z/2^t$ when n = 2t or 2t+1.

We here investigate the behavior of the Adams operation ψ_c^k for X_{n+1} and RP^n .

Lemma 4.1. i) $X_{n+1} = \Sigma^{-n-1} SP^2 S^{n+1}$ satisfies the property (I) or $(II)_{t+1}$ according as n=2t or 2t+1.

ii) $\Sigma^1 RP^n$ satisfies the property (I_{2^t}) or $(II_{2^t})_{t+1}$ according as n=2t or 2t+1. In addition, $\Sigma^1 RP^\infty$ satisfies the property (I_{2^∞}) .

Proof. It is sufficient to show that in both KU_0X_{n+1} and $KU_0\Sigma^1RP^n$, $\psi_C^k=1$ or $A_{k,t+1}$ according as n=2t or 2t+1. The n=0 case is evident because $X_1=\Sigma^0$ and $RP^0=\{pt\}$. Assume that $\psi_C^k=1$ in $KU_0X_{2t-1}\cong Z$ and $KU_{-1}RP^{2t-2}$ $\cong Z/2^{t-1}(t\geq 1)$. Consider the commutative diagram

with exact rows and columns. Then $KU_0X_{2t} \simeq KU_0\Sigma^{2t} \oplus KU_0X_{2t-1} \simeq Z \oplus Z$ and $KU_{-1}RP^{2t-1} \simeq KU_0\Sigma^{2t} \oplus KU_{-1}RP^{2t-2} \simeq Z \oplus Z/2^{t-1}$, in both of which ψ_c^k is expressed by a matrix $\binom{1/k^t \ 0}{c_{k,t} \ 1}$ for some rational number $c_{k,t}$. We here use another commutative diagram

$$\begin{array}{ccccccc} 0 & 0 \\ \downarrow & \downarrow \\ KU_0 \Sigma^{2t} &= & KU_0 \Sigma^{2t} \\ h_{2t*} \downarrow & \downarrow \\ 0 \rightarrow KU_0 \Sigma^0 \rightarrow & KU_0 X_{2t} \rightarrow & KU_{-1} RP^{2t-1} \rightarrow 0 \\ \parallel & \downarrow & \downarrow \\ 0 \rightarrow & KU_0 \Sigma^0 \rightarrow & KU_0 X_{2t+1} \rightarrow & KU_{-1} RP^{2t} \rightarrow 0 \\ \downarrow & \downarrow \\ 0 & 0 \end{array}$$

with exact rows and columns. Since the right vertical sequence is expressed into the form of $0 \rightarrow Z \rightarrow Z \oplus Z/2^{t-1} \rightarrow Z/2^t \rightarrow 0$, we may regard that the induced homomorphism $h_{2t*}: KU_0 \Sigma^{2t} \rightarrow KU_0 X_{2t}$ is given by $h_{2t*}(1)=(2, 1)$ where KU_0X_{2t} $\approx KU_0\Sigma^{2t} \oplus KU_0X_{2t-1}$. Since the Adams operation ψ_c^k commutes with h_{2t*} , it is easily computed that $c_{k,t}=1-k^t/2k^t$. Thus $\psi_c^k=A_{k,t}$ in both $KU_0X_{2t}\approx Z \oplus Z$ and $KU_{-1}RP^{2t-1}\approx Z \oplus Z/2^{t-1}$. Further it is immediate that $\psi_c^k=1$ in both $KU_0X_{2t+1}\approx Z$ and $KU_{-1}RP^{2t}\approx Z/2^t$.

As a dual of Lemma 4.1 we have

Corollary 4.2. i) The Spanier-Whitehead dual DX_{n+1} satisfies the property (I) or (II)_{-t-1} according as n=2t or 2t+1. Thus $\psi_c^k=1$ or $A_{k,-t-1}$ in $KU^0X_{n+1} \cong Z$ or $Z \oplus Z$ according as n=2t or 2t+1.

ii) The Spanier-Whitehead dual DRP^{2t} satisfies the property (I_{2^t}) and Σ^{-1} DRP^{2t+1} does the property $(II_{2^t})_{i+1}^*$. Thus $\psi_c^k = 1$ in $KU^0RP^{2t} \cong KU^0RP^{2t+1} \cong Z/2^t$ and $\psi_c^k = k^{t+1}$ in $KU^{-1}RP^{2t+1} \cong Z$.

4.2. In [16, Theorem 2.7] we have determined the quasi KO_* -types of the symmetric square $X_n = \Sigma^{-n} SP^2 S^n$ of the *n*-sphere and the real projective *n*-space RP^n .

Theorem 4.3. i) X_{n+1} is quasi KO_* -equivalent to the following elementary spectrum: $\Sigma^0, C(\eta), \Sigma^4, \Sigma^4 \vee \Sigma^4, \Sigma^4, C(\eta), \Sigma^0, \Sigma^0 \vee \Sigma^0$ according as $n \equiv 0, 1, \dots, 7$ mod 8.

ii) $\Sigma^1 RP^n$ is quasi KO_{*}-equivalent to the following elementary spectrum: $SZ/2^{4r}, M_{2^{4r}}, V_{2^{4r+1}}, \Sigma^4 \vee V_{2^{4r+1}}, V_{2^{4r+2}}, M_{2^{4r+2}}, SZ/2^{4r+3}, \Sigma^0 \vee SZ/2^{4r+3}$ according as $n=8r, 8r+1, \dots, 8r+7$.

By virtue of Lemma 4.1 we can easily observe the behavior of the Adams operation ψ_R^k for X_{n+1} . In fact, (1.1) and (1.8) i) and iii) assert that the Adams operation ψ_R^k behaves in KO_iX_{n+1} ($0 \le i \le 7$) for each $k \ne 0$ as follows:

- (4.3) i) When *n* is even, $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.
- ii) When n=4s+1, $\psi_R^k=1$, $1/k^{2s}$, k^2 or $1/k^{2s-2}$ according as i=0, 2, 4 or 6.

Z. YOSIMURA

iii) When n=4s+3, $\psi_R^k=A_{k,2s+2}$, $k^2A_{k,2s+2}$ or 1 according as i=0, 4 or otherwise.

By the aid of (4.3) we next observe the behavior of the Adams operation ψ_R^k for RP^* .

Lemma 4.4. The Adams operation ψ_R^k acts normally in $KO_i \Sigma^1 RP^n (0 \le i \le 7)$ for each $k \ne 0$ as follows:

i) When n is even or infinite, $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.

ii) When n=4s+1, $\Psi_R^k=1/k^{2s}$, k^2 , $1/k^{2s-2}$ or 1 according as i=2, 4, 6 or otherwise.

iii) When n=4s+3, $\psi_R^k=A_{k,2s+2}$, $k^2A_{k,2s+2}$ or 1 according as i=0, 4 or otherwise.

Proof. i) In the $n = \infty$ case our result follows from Lemma 4.1 and (1.6). Use the cofiber sequence $\Sigma^0 \to X_{2t+1} \to \Sigma^1 RP^{2t} \to \Sigma^1$ in the n=2t case. Evidently (4.3) i) implies our result except $\psi_R^k = 1$ in $KO_1 RP^{8r+6} \cong KO_1 RP^{8r+8} \cong Z/2 \oplus Z/2$. As is observed in ii) and iii) below, $\psi_R^k = 1/k^{4r+2}$ in $KO_1 RP^{8r+5} \cong Z \oplus Z/2$ and $\psi_R^k = 1$ in $KO_1 RP^{8r+7} \cong Z/2 \oplus Z/2 \oplus Z/2$. By means of these results we can easily show the rest of our result.

ii) By Lemma 4.1 and Theorem 4.3 ii) we note that $\Sigma^1 RP^{4s+1}$ satisfies the property $(II_{2^{2s}})_{2s+1}$ and it is quasi KO_* -equivalent to $M_{2^{2s}}$. Our result is immediate from (2.1).

iii) Use the cofiber sequence $\Sigma^0 \to X_{4s+4} \to \Sigma^1 RP^{4s+3} \to \Sigma^1$. Then (4.3) iii) implies immediately our result except $\psi_R^k = 1$ in $KO_1 RP^{8s+7} \simeq Z/2 \oplus Z/2 \oplus Z/2$. Consider the commutative diagram

with n=8r+7. Since $\psi_R^k=1$ in $KO_1RP^{n-1} \simeq KO_2X_{n+1} \simeq Z/2 \oplus Z/2$, a routine computation shows that $\psi_R^k=1$ in $KO_1RP^n \simeq Z/2 \oplus Z/2 \oplus Z/2$ as in the proof of Lemma 2.2.

Under the assumption that CW-spectra X and Y are finite, X is quasi KO_* -equivalent to Y if and only if the Spanier-Whitehead dual DY is quasi KO_* -equivalent to DX (see [15, Corollary I.1.6]). Therefore Theorem 4.3 ii)

implies that

(4.4) the Spanier-Whitehead dual DRP^{n} is quasi KO_{*} -equivalent to the following elementary spectrum: $SZ/2^{4r}$, $\Sigma^{-1}M'_{2^{4r}}$, $\Sigma^{4}V_{2^{4r+1}}$, $\Sigma^{5} \vee \Sigma^{4}V_{2^{4r+1}}$, $\Sigma^{4}V_{2^{4r+2}}$, $\Sigma^{-1}M'_{2^{4r+2}}$, $SZ/2^{4r+3}$, $\Sigma^{1} \vee SZ/2^{4r+3}$ according as n=8r, 8r+1, ..., 8r+7 (cf. [9, Theorem 1]).

As a dual of Lemma 4.4 we can easily show

Lemma 4.5. The Adams operation ψ_R^k acts normally in $KO_i DRP^n \cong KO^{-i}RP^n$ $(0 \le i \le 7)$ for each $k \ne 0$ as follows:

i) When n is even, $\psi_R^k = k^2$ or 1 according as i=4 or otherwise.

ii) When n=4s+1, $\psi_R^k=k^{2s+2}$, k^2 , k^{2s+4} or 1 according as i=3, 4, 7 or otherwise.

ii) When n=4s+3, $\psi_R^k=k^{2s+2}$, k^2 , k^{2s+4} or 1 according as i=1, 4, 5 or otherwise.

For the Moore spectrum $SZ/2^t$ of type $Z/2^t$ the bottom cell inclusion $i: \Sigma^0 \rightarrow SZ/2^t$ and the top cell projection $j: SZ/2^t \rightarrow \Sigma^1$ are here written as i_t and j_t with emphasis. Similarly the maps $i_V: C(\bar{\eta}) \rightarrow V_{2^t}, j_V: V_{2^t} \rightarrow \Sigma^1, i_V': \Sigma^2 \rightarrow V_{2^t}'$ and $j_V': V_{2^t}' \rightarrow C(\tilde{\eta})$ are written as $i_{V,t}, j_{V,t}, i_{V,t}'$ and $j_{V,t}'$. By virtue of Lemmas 4.1 and 4.4 we may now apply Theorems 1.2, 1.7 and 2.6 with (2.8) to determine the K_* -local types of X_{n+1} and RP^n .

Theorem 4.6. i) The symmetric square $X_{n+1} = \Sigma^{-n-1}SP^2S^{n+1}$ of the n+1-sphere has the same K_* -local type as the following elementary spectrum: Σ^0 , $C(\mu_{4r+1})$, $C(\bar{\eta})$, $C(a_{4r+2})$, $C(\bar{\eta})$, $C(m_{4r+3})$, Σ^0 , $C(\alpha_{4r+4})$ according as n=8r, 8r+1, ..., 8r+7.

ii) The real projective n-space $\Sigma^1 RP^n$ has the same K_* -local type as the following elementary spectrum: $SZ/2^{4r}$, $C(i_{4r}\mu_{4r+1})$, $V_{2^{4r+1}}$, $C(i_{V,4r+1}a_{4r+2})$, $V_{2^{4r+2}}$, $C(i_{V,4r+2}m_{4r+3})$, $SZ/2^{4r+3}$, $C(i_{4r+3}\alpha_{4r+4})$ according as $n=8r, 8r+1, \cdots, 8r+7$. In addition, $\Sigma^1 RP^\infty$ has the same K_* -local type as $SZ/2^\infty$.

In order to determine the K_* -local type of the Spanier-Whitehead dual DRP^* the following result is useful (cf. [15, Corollary I.1.6]).

Lemma 4.7. Assume that CW-spectra X and Y are finite. Then X is quasi S_{K*} -equivalent to Y if and only if the Spanier-Whitehead dual DY is quasi S_{K*} -equivalent to DX.

Proof. It is sufficient to show the "only if" part. If X is quasi $S_{K^{*-}}$ equivalent to Y, then we get a K_{*} -equivalence $f: Y \rightarrow S_{K \wedge} X$. Choose an adjoint map $Df: DX \rightarrow DY_{\wedge}S_{K}$ such that $(1_{\wedge}e_{X})(f_{\wedge}1)=(e_{Y \wedge}1)(1_{\wedge}Df): Y_{\wedge}DX \rightarrow S_{K}$ where $e_{W}: W_{\wedge}DW \rightarrow \Sigma^{0}$ denotes the evaluation map for W=X or Y. Consider the diagram

Z. YOSIMURA

where vertical arrows are the duality isomorphisms. As is easily checked, the above diagram is commutative. Therefore the adjoint map $Df: DX \rightarrow DY_{\wedge}S_{K}$ becomes a K_{*} -equivalence because $f: Y \rightarrow S_{K\wedge}X$ is a K^{*} -equivalence, too. Thus DY is quasi $S_{K^{*}}$ -equivalent to DX.

Theorem 4.6 combined with Lemma 4.7, (1.4) and (3.7) implies

Theorem 4.8. The Spanier-Whitehead dual DRP^n of the real projective n-space has the same K_* -local type as the following elementary spectrum: $SZ/2^{4r}$, $\Sigma^{-8r-1}C(\mu'_{4r+1}j_{4r})$, $U_{2^{4r+1}}$, $\Sigma^{-8r-3}C(a'_{4r+2}j'_{V,4r+1})$, $U_{2^{4r+2}}$, $\Sigma^{-8r-5}C(m'_{4r+3}j'_{V,4r+2})$, $SZ/2^{4r+3}$, $\Sigma^{-8r-7}C(\alpha_{4r+4}j_{4r+3})$ according as n=8r, 8r+1, ..., 8r+7.

References

- [1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-622.
- [2] J.F. Adams: On the groups J(X)-IV, Topology 5 (1969), 21-71.
- [3] D.W. Anderson: A new cohomology theory, Thesis, Univ. of California, Berkeley, 1964.
- [4] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
- [5] A.K. Bousfield: The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377.
- [6] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
- [7] A.K. Bousfield: A classification of K-local spectra, J. Pure and Applied Algebra 66 (1990), 121–163.
- [8] D.M. Davis and M. Mahowald: Homotopy groups of some mapping telescopes, Annals of Math. Studies, Princeton, 113 (1987), 126–151.
- [9] M. Fujii: K_0 -groups of projective spaces, Osaka J. Math. 4 (1967), 141–149.
- [10] I.M. James, E. Thomas, H. Toda and G.W. Whitehead: On the symmetric square of an sphere, J. Math. and Mech. 12 (1963), 771-776.
- [11] W. Meier: Complex and real K-theory and localization, J. Pure and Applied Algebra 14 (1979), 59-71.
- [12] M. Mimura, S. Oka and M. Yasuo: K-theory and the homotopy types of some function spaces, preprint.
- [13] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351–414.
- [14] J.J. Ucci: On symmetric maps of spheres, Invent. Math. 5 (1968), 8-18.
- [15] Z. Yosimura: Quasi K-homology equivalences, I and II, Osaka J. Math. 27 (1990),

465-498 and 499-528.

- [16] Z. Yosimura: The quasi KO-homology types of the real projective spaces, Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174.
- [17] Z. Yosimura: The quasi KO-homology types of the stunted real projective spaces, J. Math. Soc. Japan 42 (1990), 445-466.
- Z. Yosimura: Quasi KO*-equivalences; Wood spectra and Anderson spectra, Math. J. Okayama Univ. 32 (1990), 165-185.
- [19] Z. Yosimura: The K_* -localizations of the stunted real projective spaces, preprint.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan