

Title	IRIS-4Dで2次元情報を3次元空間へ展開する方法 : 噴 霧火炎中の燃料油滴の飛行速度計測結果の可視化
Author(s)	出口, 弘; 小林, 一男; 赤松, 史光 他
Citation	大阪大学大型計算機センターニュース. 1994, 91, p. 27-36
Version Type	VoR
URL	https://hdl.handle.net/11094/66042
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

| R | S - 4 D で 2 次元情報を 3 次元空間へ

展開する方法

~噴霧火炎中の燃料油滴の飛行速度計測結果の可視化~

大阪大学大型計算機センター研究開発部 出口 弘,小林一男 deguchi@center.osaka-u.ac.jp 大阪大学工学部機械工学科燃焼工学講座 赤松史光,田端誠司,中部主敬 akamatsu@combu.mech.eng.osaka-u.ac.jp

1. まえがき

研究や開発に携わる者にとって、現象 が軸対称2次元領域で起こると仮定して 数値解析あるいは実験計測を行なう機会 は比較的多い.この場合,得られる情報 は計算または測定対象場中の主方向対称 軸を含む1枚の平面上にプロットされる ことになる.もちろん、この2次元図自 体はそれだけで十分な説得力を有してお り、プレゼンテーションによく用いられ ている、しかし、可視化ツールが豊富に なってきた昨今において、 デモンスト レーション力の観点から見れば3次元カ ラーイメージに比して見劣りすることは 否めない. そこで、得られた2次元デー タを、3次元空間に展開して視覚に訴え る仮想的な3次元イメージに加工するこ とを試みた.ここでは、その一例とし て、レーザードップラー流速計(LDV) で計測された噴霧火炎中での油滴飛行速 度の情報をPower IRIS-4D/310VGXに搭載 されているExplorerを用いて可視化する 方法を紹介する.

図1 噴霧火炎バーナ

2. 噴霧火炎中での油滴速度の計測

噴霧火炎は車両用ディーゼルエンジンのほかにも工業的に多用されており、その燃焼形態や火炎 構造を明らかにすることは、燃焼の高効率化および自然環境保全の面から非常に重要な課題となっ ている、噴霧火炎は液体燃料を霧状に微粒化して燃焼させるため、燃料油滴と燃焼用空気との相互 作用が燃焼形態に大きな影響を及ぼす、そこで、LDVを用いて、噴霧火炎中での燃料油滴の時間 平均的な速度場を測定した。

図1に実験用バーナポート部の詳細を火炎の直接写真とともに示す.バーナは内径52.7mmの噴 霧バーナポート,保炎用水素拡散パイロットバーナおよび火炎安定用空気ポートを有する3重円管 構造になっている.燃料の白燈油はバーナポートの上流440mmに設置された二流体噴射弁で微粒化

大阪大学大型計算機センターニュース

される.実験条件は,非燃焼時の燃焼用空気流量 1.2 L/s,燈油-空気質量流量比0.045kg/kg,霧化用 空気圧力0.4MPaとした.

座標系はバーナポート中心を原点に、バーナ軸 下流方向に h (mm)を、半径方向に r (mm)をとり、 5mm等間隔で h =40~130 mm, r =0~45mmの 範囲にある合計19×10= 190点で計測を行った.

1 1次元流れ場計測用LDVによる2次 元流れ場の計測方法

計測対象となったレーザ用トレーサ粒子 i につ いて,バーナ軸(h軸)を含む 1 枚の平面上で, h軸から右上方45°(α 軸)方向の速度を a_i ,左 上方45°(β 軸)方向の速度を b_i とし,それらを その時間平均値 \overline{a} , \overline{b} と変動成分 a'_i , b'_i との 和で表せば,それぞれ,

$$a_i = \overline{a} + a'_i$$

$$b_i = \overline{b} + b'_i$$
(1)

と書ける.

これを用いて速度ベクトルの合成を行えば、バーナ軸(h軸)方向および半径(r軸)方向の時間平均値 \overline{V}_{h} , \overline{V}_{c} と変動成分 $V'_{h,i}$, $V'_{c,i}$ は、それぞれ、以下のように表せる(図2参照).

$$\overline{V}_{h} = \frac{1}{\sqrt{2}}(\overline{a}+\overline{b}) \qquad V'_{h,i} = \frac{1}{\sqrt{2}}(a'_{i}+b'_{i})$$

$$\overline{V}_{r} = \frac{1}{\sqrt{2}}(\overline{a}-\overline{b}) \qquad V'_{r,i} = \frac{1}{\sqrt{2}}(a'_{i}-b'_{i})$$
(2)

これから、速度変動成分の相互相関 V', V', を求めると次式となる.

$$V'_{h,i}V'_{r,i} = \frac{1}{2}(a'_i + b'_i)(a'_i - b'_i) = \frac{1}{2}(a'_i - b'_i)^2$$
(3)

よって、その時間平均値 V', V', は、

$$\overline{V_{h}'V_{r}'} = \overline{V_{h,i}'V_{r,i}'} = \frac{1}{2}(a_{i}^{\prime 2} - b_{i}^{\prime 2})$$

$$= \frac{1}{2}(\overline{a_{i}^{\prime 2}} - \overline{b_{i}^{\prime 2}})$$
(4)

と表される.

また、油滴の速度変動の強さの目安として、乱れエネル ギに類似した量 k_a を次式で定義した、ただし、トレーサ 粒子の旋回方向速度成分は計測していないので、式(4)に は含ませていない、したがって、 k_a はh-r平面内の変 動速度ベクトルの絶対値の2乗平均値となっている、

$$k_{d_{i}} = \frac{1}{2} (V_{h,i}^{\prime 2} + V_{r,i}^{\prime 2}) = \frac{1}{4} [(a_{i}^{\prime} + b_{i}^{\prime})^{2} + (a_{i}^{\prime} - b_{i}^{\prime})^{2}] = \frac{1}{2} (a_{i}^{\prime 2} + b_{i}^{\prime 2})$$
(5)

このとき、その時間平均値k」は次式となる.

$$\overline{k_d} = \overline{k_{d_i}} = \frac{1}{2} (a_i^{\prime 2} + b_i^{\prime 2}) = \frac{1}{2} (\overline{a_i^{\prime 2}} + \overline{b_i^{\prime 2}})$$
(6)

以上のことから、流れ場が定常である場合、 α 方向と β 方向の速度を別々に1次元測定しても式 (2)、(4)、(6)を用いて時間平均的なバーナ軸方向速度成分、半径方向速度成分、速度変動の相互相 関、 k_a 値を算出することができる.なお、ここでのLDV計測用トレーサ粒子は噴霧油滴そのも のなので、上述の諸量は油滴粒径による分別を行わず、計測時間内にLDV検査体積を通過するN 個の油滴にわたって計測された測定値を平均することにし、その値をもって時間平均値と見なし た.それゆえ、式中に現われる \overline{a} , \overline{b} , $\overline{a'_i}^2$, $\overline{b'_i}^2$ は次式により求めた.

$$\overline{a} = \frac{\sum_{i=1}^{N} a_i}{N}, \qquad \overline{b} = \frac{\sum_{i=1}^{N} b_i}{N}$$

$$\overline{a'^2} = \frac{\sum_{i=1}^{N} a_i'^2}{N} = \frac{\sum_{i=1}^{N} (a_i - \overline{a})^2}{N}, \quad \overline{b'^2} = \frac{\sum_{i=1}^{N} b_i'^2}{N} = \frac{\sum_{i=1}^{N} (b_i - \overline{b})^2}{N}$$
(7)

ここで、Nは1測定点における測定データ個数であり、今回の測定では2000個とした.データは (r座標、h座標、 \overline{V}_{r} , \overline{V}_{h} , \overline{V}_{h}^{*} , \overline{K}_{d})を1組としてファイルに格納される.

2.2 3次元データへの展開

ここでは、2.1節で得られたデータを3次元データに展開する方法を述べる.図3に示すよう にバーナポート中心を原点としx,y,z座標をとる.ここで,z座標はバーナ軸と一致してお り、紙面に垂直で紙面の裏から表方向(バーナ下流方向)を正とする.2次元データ(r座標,h 座標, $\nabla_{\mathbf{r}}$, $\nabla_{\mathbf{h}}$, $\overline{\nabla_{\mathbf{h}}} \nabla_{\mathbf{r}}$, \overline{K}_{a}) を3次元データ(x座標, y座標, z座標, \overline{u} , \overline{v} , \overline{w} , $\overline{\nabla}_{\mathbf{r}}$, $\overline{\nabla}_{\mathbf{h}}$, $\overline{\nabla_{\mathbf{r}}}$, $\overline{V}_{\mathbf{h}}$, $\overline{\nabla_{\mathbf{r}}}$, \overline{K}_{3D}) に変換する際, 軸対称2次元流を仮定しているため同一半径上のスカラー量は同じ値をとり, 周方向速度成分がないことを考慮すると, 角度 θ に対して以下の関係式が成り立つ,

$$x = r\cos\theta, \quad y = r\sin\theta, \quad z = h,$$

$$\overline{u} = \overline{V_r}\cos\theta, \quad \overline{v} = \overline{V_r}\sin\theta, \quad \overline{w} = \overline{V_h}, \quad (8)$$

$$\overline{V'_h V'_{r,3D}} = \overline{V'_h V'_r}$$
, $\overline{k_{3D}} = \overline{k_d}$

ここで, θ は0°~360°の範囲で0°から10°ごとの値をとるようにしたため, 合計37×19×10=7030 組のデータが出来ることになる.

3. IRIS-4D による可視化

前章で得られた3次元データをいよいよ可視化する.そのファイル形式は以下のようなフォーマットでアスキーコードの文字列として表現した.

01	5向の分割	数(37)) h 方向(のデータ数(19) r方	向のデー	タ数(10)		
х	у	z	u	v	w	\overline{V}_{r}	V _h 7	V' _h V' _{r 3D}	\overline{k}_{3D}
37	19	10							
0	0	40	21991	0	7.78171	21991	7.78171	434032	2.62147
0	0	40	216569	0381869	7.78171	21991	7.78171	434032	2.62147
					•				
					•				
					•				
					•		0 05100	10010	1 0500
5	0	100	.251023	0	8.67408	.251023	8.67408	13312	1.0528
4.92404	.86824	100	.247209	.0435897	8.67408	.251023	8.67408	13312	1.0528
4.69846	1.7101	100	.235884	.0858549	8.67408	.251023	8.67408	13312	1.0528
					•				
					•				
					•				
					•				050100
42.2861	-15.3911	130	2.34422	853238	8.29578	2.49467	8.29578	.122959	.859123
44.3163	-7.81439	130	2.45677	433207	8.29578	2.49467	8.29578	.122959	.859123
45	0	130	2.49467	0	8.29578	2.49467	8.29578	.122959	.859123

3.1 入力モジュールの作成

まず最初に /usr/explorer/bin/dscribe と入力して, DataScribe を立ち上げる. Template メニューから Template を選び, Direction を Input, Type を Ascii として入力テンプレートを作り, テンプレート名を filename とした.

次に, Template メニューから Template を選び, Direction を Output, TYPE を Explorer として 出力テンプレートを5個作り, テンプレートの名前をそれぞれ UVW, U'V', K, VR, VH とし た. (本来 U'V' という名前は前述の物理量と対応するように VH'VR' とすべきものである.)

3.1.1 入力テンプレート

入力モジュールはファイルからデータの書いてある順に読み込んでいくので、入力テンプ

A filename A · /* LivW Image: Set thr Image: Set thr Image: Set thr Image: Set thr	<u>e</u> •
Set thr • 3D Curvi UVW	
Set thr • 3D Curvi UVW	
94 / Y 201007025 (-C.177)	
Integer n_theta Integer n_theta	3
Integer n_h Long nDataVar4	3
Integer n_r Long nCoordVar4	3 vojec
3D Array Array4	<u>•</u>
/ n theta Set	<u>-228</u> •
1 P n h	
	, ; , T
<u>/ UV</u>	60
	6 9
	<u> </u>
A VH	0 0

図 4(a) データスクライブの編集(その1)

レートにデータの並びに合わせてそのデータ型のグリフ(アイコン)を順に並べて作っていく.

まず、ファイルの始めにデータの個数(37, 19, 10)を書いておいたので、最初にこれを 読み込む部分を作る.パレットから Set をドラッグし、その名前を thr とする.このデータ は整数で書かれているので、Set 右丸をクリックして開き、その中にパレットから Integer を3つドラッグする.データの並びに合わせて、一番上の Integer から、n_theta、n_h および n_r と名前を付け換える.

ファイルの次の行からは 3 次元の格子座標とその点での計測値が書かれているので、 3 次 元の配列で読み込む. パレットから 3D Array を入力テンプレート中の Set の下にドラッグ し、Array4 と名付ける. そして、 3D Array Array4 の右丸をクリックして開き,座標系のイ ンデックス N1, N2, N3 をデータ個数の情報を読み込んだ n_theta, n_h および n_r に書 き換える. この順序が 3D Array Array4 のデータを読み込む順序となるのでデータファイル の並びに対応している必要がある. (すなわち、2.2節で述べた様に、実験データをまず θ を、次に h、最後に r を変化させて 3 次元格子データに変換したので、N1 を n_theta, N2 を n_h, N3 を n_r とするのである.) その後、Array4 のデフォルトの型を表している Integer 上にパレットから Set をドラッグし、配列の型を Set にする (図 4 (a)参照).

その Set の右丸をクリックして開き、その中に座標(x, y, z)と速度(\overline{u} , \overline{v} , \overline{w}) を読み込むための Vector 2つと、 ∇_r , $\overline{\nabla}_h$, $\overline{\nabla'_h \nabla'_r}_{3D}$ および \overline{K}_{3D} を読み込むための Float 4つをドラッグする. 名前はそれぞれ、XYZ、UVW、VR、VH、U'V'、K とした. そして Vector XYZ および UVW の右丸をクリックして、ベクトルの次元を3(1-N を 1-3)に、 パレットから Float をドラッグしてベクトルの要素の型を Float にする(図4(b)参照).

N. Genaum			
a server.	<u>a •</u>	/ 10W.	2.
from the second se		Providence and a second s	
[21] Set 0 m		12 30 Curvi UVW	
integer n_theta		Long nDim-1 3	
Minteger a_h		Long nDataVar4 3	
Integer n_r		Long nCoordVar4 3	
1 30 Array Array4	•1	Vector dans4 d	4
STI Set		30 Array data4	
Mill Vietor 120/7		30 Array coord4	4 H
· 1 (2) El El El		1	
i internet		An	> • i
, 3	B	E	
Vector UVW	•	Show UV	. 1
1 🚺 Floa	u	Filogr Inflicts [3	
1			
3		Stang intervelot 1	-
Float VR		Long (Rebudyes) is	
Float VH	[]	Intel Accol. I Courted	4
Float UV		3D Array datas	4
Float K		: 1881 3D Arrest Levent5	
	H		
		nopiani na tanàna amin'ny faritr'ora dia mandritra dia mandritra dia mandritra dia mandritra dia mandritra dia m	
			Ť
		# \A4	

図 4(b) データスクライブの編集(その2)

 Pages a 	a	
	a • // •///	<u> </u>
prog _ / .		
Set the e	13130 Carvi 10VW	
30 Array Array4 - 51 - 1	Long nDim4 3	·
[21] 361	Long nDataVar4 3	J
Vector 3 1 XYZ	Long nCoordVar4 3	
Vector 10VW	e Vector clinis4	
M Float VR	30 Array data4	
Hoet - 7 and VH to A Darit And A Darit	3D Array coord4	e
Roat UV and an art of		
Float K		
	DataScribe Set Component Dialog	
	Name Dayz	6 0
	Selection elements:	(
	W W7 .1	6 0
	In ALL	C
		6 0
	VR	iaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
		<u>e •</u>
	lia uvia	
	к	
M Elements ST 15AU		

図 4(c) データスクライブの編集(その3)

さらに、Set の中の緑色ボタン(正式名: Component Menu Button)上でマウスの右ボタンでドラッグして <New> を選択し、DataScribe Set Component Dialog を出す. その Name

19 :	🗙 filename	a • 1 / 1000 e • 1
	Set thr	● 3D Curvi UVW •
	3D Array Array4	• Long . [nDim4 11] 3 565 (75-3]
	n theta	Set
	. 1 🚰 n.h - 🖽	22 V
	<u>n r</u>	H Vector dims4
	1. S.	DataScribe Array Component Dialog
		Name XXXXZZ
		From To Stride
		k 1 k nj
		1 1 n_h 1
		i 1 n theta 1 e •
	the first states	
	5	20
	1 - 16252	Selection element:
		OK Cancel
		OK Cancel 2

図 4(d) データスクライブの編集(その4)

にそれぞれ xyz, uvw, vr, vh, u'v', kと名前を付け, 対応する要素の所のみ緑色のスイッ チを ON にする. 例えば XYZ の場合, Name を xyz とし, 一番上の XYZ の所のみ緑色 にして, 最後に OK をクリックする (図4(c)参照).

Set を閉じた後、同様に 3D Array Array4 の中の緑色ボタン上でマウスの右ボタンでド ラッグして <New> を選択し、DataScribe Array Component Dialog を出す. そして、xyz, uvw, vr, vh, u'v', k のそれぞれの要素に対して XXYYZZ, UUVVWW, VVRR, VVHH, U'U'V'V', KK と名付ける. 例えば XYZ の場合, Name を XXYYZZ とし、Selection element のオプションスイッチを押し、エレメントの中から xyz を選び、最後に OK をク リックする (図4(d)参照). この名前 (XXYYZZ 等) でそれぞれの値を、入力テンプレー トから出力テンプレートに引き渡すことになる.

Component Menu Button を使って行なっていることは, 座標データ, 速度ベクトルおよび その他の物理量を要素とする3次元配列から, 座標データ, 速度ベクトルおよびその他の物 理量それぞれだけを要素とする3次元配列を作り出しているのである.

3.1.2 出力テンプレート

5つの出力テンプレート (UVW, U'V', K, VR, VH) は, それぞれ速度ベクトル (\overline{u} , \overline{v} , \overline{w}), 変動速度の相互相関 ($\overline{V'_h}V'_{r,3D}$), $\overline{K_d}$ 値($\overline{K_{3D}}$), h軸およびr軸方向 の速度ベクトル ($\overline{V_r}$, $\overline{V_h}$)の3次元不定形格子データを出力する. パレットからそれぞれ の出力テンプレートに 3D Curv をドラッグし, 右丸をクリックして開き, 各要素の次元を 入力する. 3D Curv UVW の nData Var には3, nCoordVar には3, 3D Curv U'V', K, VR, VH の nData Var にはそれぞれ1, nCoordVar にはそれぞれ3を入力する (図4(b)参 照).

3.1.3 入出力テンプレートの接続と保存

入力テンプレートの出力ポートパッドから各要素を選択して、それらを、以下のように出 カテンプレートの入力ポートパッドの各要素に接続する.これらの接続操作はマウスの右ボ タンで行なう.

入力テンプレートの	出力テンプレー	トの
出力ポートパッド	入力ポートパッ	r"
次元(データの個数)		
thr	 UVW	dims4
	U'V'	dims5
	К	dims6
	VR	dims7
	VH	dims8
座標データ		
XXYYZZ	 UVW	cood4
	U'V'	cood5
	K	cood6
	VR	cood7
	VH	cood8
各データ		
UUVVWW	 UVW	data4
U'U'V'V'	 U'V'	data5
KK	 К	data6
VVRR	 VR	data7
VVHH	 VH	data8

完成したモジュールは File メニューの Save As で read_ldva と名付けて保存する.

3.2 マップの作成

/usr/explorer/bin/explorer と入力して、Explorer を立ち上げた後、File メニューの Open を使って DataScribe で作成したファイル入力モジュール read_ldva を呼び出す. ここでは \overline{k}_{3D} 値の分布のカ ラー表示を例にとって、その縦断面内分布を表示させるための OrthoSlice と LatToGeom を2つずつ (バーナ中心軸を挟んで左右両側に展開するため2組必要であるため)と、 MinMax および GenerateColormap を、3次元等値線(ワイアフレーム)を描くための Contour、 カラー バーの値の表示のための Legendを、そして画像表示モジュール Render 2つをそれぞれモジュー ルライブラリからマップエディタ上にドラッグする.

これらのモジュールの入力および出力ポートパッドを、マウスの右ボタンを使って以下のように 接続する.

モジュール名/出力ポートパッド read_ldva/K -- Lattice モジュール名/入力ポートパッド OrthoSlice/Input --Lattice OrthoSlice<2>/Input --Lattice MinMax/Input -- Lattice Contour/Input -- Lattice

図 5 可視化マップと出力例

orthSlice/Slice -- Lattice orthSlice<2>/Slice -- Lattice

MinMax/Minimum

MinMax / Maximum

GenerateColormap / Colormap -- Lattice

LatToGeom/Output -- Geometory LatToGeom<2>/Output -- Geometory Contour/Contours -- Geometory Legend/Legend -- Geometory LatToGeom/Input -- Lattice LatToGeom<2>/Input -- Lattice

GenerateColormap/MinDomain Contor/MinLevel GenerateColormap/MaxDomain Contour/MaxLevel

LatToGeom/colormap -- Lattice(Opt) LatToGeom<2>/colormap -- Lattice(Opt) Contour/colormap -- Lattice(Opt) Legend/colormap -- Lattice(Opt)

Render / Input -- Geometory Render / Input -- Geometory Render <2> / Input -- Geometory Render / Screen -- Geometory Render <2> / Screen -- Geometory

ファイル入力モジュールにおいて加工した可視化したいデータファイルの名前を入力すれば, Render に図が出力されることになる.縦断面および横断面の位置は、それぞれの OrthoSlice のス ライダーで調節し、色付けの仕方は GenerateColormap モジュールで行なう. 再度利用出来るよう に、作成したマップは File メニューの Save All を選択して保存しておく.

今回作成したマップおよび k₃₀値の 2 次元および 3 次元に展開した出力結果を図 5 に示す.この 図から油滴の持つ速度変動のエネルギがバーナポート出口から急激に減少していることが分かる.

図6は上述の手法を踏襲して、 k_{ap}値の等値面および縦断面内分布と、さらに油滴速度ベクトル も同時に表示した例である(流れ方向は画面右上から左下である).なお、マウスを使って見せた い方向に図を回転させ、視覚に訴える図を得ることが出来る.また、Renderには3次元画像への光 を当てる方向などを変化させる機能が備わっているのでコントラストや色調などもそれに伴って変 わり、図の印象を好みに合わせて変えることが出来る.

4. まとめ

レーザードップラー流速計で計測された油滴飛行速度の2次元データを、3次元空間に展開して 仮想的な3次元イメージに加工することを試みた. Explorer上で一度この画像処理マップを作成し ておけば、データ配列は変わるものの、実験結果であれ、数値計算結果であれ、軸対称2次元デー タが3次元表示できる. 特に、等値面は空間的な形状を直ちに視覚に訴えてくれるのでデモンスト レーションに有効である. ここで扱った例は比較的単純な流れ場だったが、複雑な流れ場になる程 に威力を発揮するものと思われる.

参考文献

- 1. 出口 弘, 汎用可視化ツール*Explorer*の使い方, 大阪大学大型計算機センターニュース, <u>22</u>-2 (1992), p.66.
- 2. 小林一男, 蛋白質データベースをIRIS-4Dで可視化する方法, 大阪大学大型計算機センター ニュース, <u>22</u>-4 (1993), p.87.

図 6 K_{up}値の断面分布および等値面と油滴速度ベクトル