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1. Introduction

Let P be an irreducible recurrent transition function on a denumerable space
S with strictly positive invariant measure a. For a kernel A, a function/ and a
measure μ on S, we define Af(x)=^l A(x, y)f(y), μA(x)=Σ μ(y)A(y, x)> μ-f=

y y

Σ μ(y)f(y) and μ 1 = Σ μOO ^ kernel A on S is called a zuetfβ potential kernel

if 4 / is bounded and satisfies (P-I)Af =f for all null charge /. A left (right)
equilibrium potential for a weak potential kernel A and a set E is the potential
P= μA(g=Af) satisfying μ=0(f =0)on S—E, /x 1 = 1 (α / = l ) and v=constant
X α(#:= constant) on E. The constant is denoted by C(Έ) (C*(Έ)) and is called
the left {right) capacity of the set E with respect to (a, A). Its charge μ(f) is
called the left (right) equilibrium charge. The existence of the equilibrium charge
and various properties concerning its capacity were discussed in [3], [5] and [6].

In this paper we shall be concerned with the probablistic representation of
the equilibrium charge and its capacity for some weak potential kernel. The
argument depends on the notion of the approximate chain introduced by Hunt
[2]. For a given transient transition function Q on S, a random chain (X> a, b)
on a σ-finite measure space (Ω, B, P) is called an approximate Q-chain if for every
finite set E, (X, a, b) is reduced to a £)-chain by the hitting time σE of (X, a, b)
for E and satisfies P[σE= — oo]=0. As was remarked by Hunt, this definition is
equivalent to his original definition. In the following the approximate chains
are denoted by (X, a, b) and distinguished only by the measure P. Particularly
if a(ω) = 0 a.e. and P[X0=z]=I(x, z) then we shall use Px in place of P.
Moreover the hitting time of (X, a, b) for a finite set E is denoted by σE. It is
known that for any ^-excessive measure η, there corresponds an approximate
£)-chain on (Ω, B, P) satisfying η(x)=E[ Σ I{x) (XJω))] where IE is

the indicator function of the set E and E is the expectation with respect to P.
We shall call (X, a, b) (P) the approximate jj-chain (measure) canonically
associated with η. It was shown by T. Watanabe [4] that the transient capacity,
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in the sense of Kemeny and Snell [3], of a finite set E is equal to P[σE<oo]

where P is the measure canonically associated with a. We shall derive a similar

representation in the recurrent case. From the representation, similar result to

[3] concerning the capacity and the equilibrium potential for a wide class of weak

potential kernels follows easily.

2. Probablistic representation of the capacity

In the following E denotes a finite subset of S and c a fixed state of S, and

for simplicity we shall assume that a(c)—l. Define cP(x> y)=P(x, y)—I(x, c)

P(c, y), cP(x, y)=P(x, y)-P(x, c)I(c, y), eG(x, y ) = g J^i*, j) and eG(x, y)=

Σ cPn(x, y). Since c is accessible from x by the Markov chain with transition

function P, it follows that cG(x, c ) = l . Also by Derman-Harris relation ([5]) CG

(c, x)=a(x). The weak potential kernel A is represented as

(2.1) A(x, y) = -cG(x, y)+h(x) a(y)+π(y)+I(c, y)

(x, c))a(y)+π(y),

where h and π are a function and a measure on S respectively. As is shown

in the proposition 2.1, the equilibrium potential is uniquely determined. But

for the existence it is necessary to restrict the kernel A as follows.

In this paper, following [3], we shall restrict to the case that the kernel A is

representable as (2.1) by h and π satisfying (i) h(c)=π(c)=Of (it) π( )+I(c, •)

is a cP-excessive measure and (iii) h( •)+/(•, c) is a CP-excessive function.

Proposition 2.1. Left (right) equilibrium potential and hence left (right)

capacity with respect to (a, A) is uniquely determined.

Proof. Let g1—Af and g2=Af2 be two equilibrium potentials of the set

E. Then, since fx—f2 is a null charge supported in E and g1—g2= constant on

E, f=f2 follows at once from the semi-reinforced maximum principle [4]υ.

The uniqueness of the left equilibrium potential follows similarly.

Corollary. // S is the set of all integers of dimension 1 or 2 and if P(xy y)=

P(0, y—x)y A(xy y)=A(0, y-x) for all x, y in S then C(E+x)=C(E), where

Proof. Let μ be the left equilibrium charge of the set E. Under the

condition of the corollary, a is equal to 1 from [6] and hence for any

1) Semi-reinforced maximum principle: For every real number m and null charge/, if
on {/>0} then Aϊ^m—f- on S.
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C{E) = βA(y) = Σ μ(z+x-x)A(z+x, y+x)
z<=B

= Σ μx(*)A(z, y+x),

where μx{z)=μ{z—x). Since the measure μx is supported in E-\-x and μx 1 = 1,
the right hand side of the above equality is equal to C(E-\-x).

Now we shall construct the equilibrium charge with respect to (α, A).
Since π( )-\-I(c,•) and a are cP-excessive, there are the approximate cP-chains
canonically associated with them. Let P* and Pa be the measure canonically
associated with them, respectively. Define

μE\X) = i

[0 otherwise

and μE similarly.

Proposition 2.2. For any χ(=S

(2.2) π(x)+I(c, x) ^μ*E cG(x) and a(x) ^μ% cG{x).
In particular, if x^E then

(2.3) π(x)+I(cy x) = μ*E cG(x) and a(x) = μE cG(x).

Proof. From the definition of P*, for any Λ : G 5

c, x) =

Σ

where E* is the expectation with respect to P*. In particular when ^^iE1, the
equality holds.

Proposition 2.3. For any finite set E, 0 ^ / 4 - 1 ^ 1 and
7/2 particular, if c(=E then μEΊ = μ%Ί = l.

Proof. If c^E, by letting x=c in (2.3) we obtain the equalities. In the
general case, take a finite set F containing E (J {c}. It then follows that μE' 1 ^
μ£ 1 = 1 and μE ^μF 1 = 1. The strict positivity of μ% 1 follows from

^ ( μ ! l) cG(x, Λ;) for χ(=E.

Set ΛΓ(̂ ) = ( 1 - ^ 1)//.S 1, i ; ^ ) = A:(£) μE{x) and

Theorem 2.1. Γλe measure μE-\-vE is the left equilibrium charge and C(E)
is the left capacity of E with respect to (α, A).

Proof. Obviously μE+vE is a measure supported in E and satisfying
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(μE+UE)-l = l.

(μE+vE)A(x) = - V s cG(x)+[(μΈ+*>E)'h]a(x)

= [-K(E)+(μE+VE).h]a(x) = C(£) α(*),

by (2.3).

Next, we shall construct the right equilibrium charge with respect to (a, A).
Since h('x)=h(x)+I(x, c) is a 'P-excessive function, cPh' defined by cPh\x, y)=
cP{xiy)hf(y)jhf{x) if h'(x)>0, = 0 otherwise, is also a transient transition function
on S. Let Pi be the measure defining the Markov chain starting at x with
transition function cPh\ eE(x) be the escape probability of the Markov chain
from the set E> that is,

fP% [Xn^E for all n^l] if x<=E

[θ otherwise

and τE be the last exit time of the approximate chain (X, a, b) from Ey that is,

ifXH^Efi

otherwise.

Γsup {n; Xn^E} if Xn^E for some n
τE(ω) = \

Define Pi and e\ as above for A'=l.

Proposition 2.2'. For β«j JCGS

(2.4) h'(x) ̂  c G/ β (^) and 1 ^

/w particular, if x^E then

(2.5) ^ ( Λ ) - cG/£(x) β W i 1

where fE(x)=h\x)e%{x).

Proof. Since P^[τE> — oo] = cGh' e%(x) from [2] and E is a transient
set with respect to P£, we have 1 ̂  cGh' eh

E{x) for j c e S . From this, (2.4) follows
at once. (2.5) follows similarly.

Proposition 2.3'. For any finite set E, O^α / ^ ^ 1 and
particular, if c^E then a fE=a eE= 1.

The proof is similar to the proposition 2.3 by noting P%[τE>
F > _ O O ] {or

Set tf*(^=(l-α /s)/α-«i, ^W-^*(^)4W and C*(E)=π-(fB+gB)
-K*(E).

Theorem 2A'. The function fE-{-gE w ^ r^Aί equilibrium charge and
C*(E) is the right capacity of E with respect to (a> A).
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The proof is similar to the theorem 2.1.

Proposition 2.4. μE l = a eE and μ% h=a fE.

Proof. Let cP
E(x, y) (cPE(x, y)) be the probability of the Markov chain

starting at x, with transition function CP (CP) and returning to E at y if xe= E and
J E £ , = 0 otherwise. From (2.3) we obtain that μE(x)=(π+I(c, •)) (I-CP

E)
(x)=π(I-cP

E)(x)+I(c, x) and μE(x)=a(I-cF
)E)(x). Similarly / ^ )

= (I-cPE)h/(x)=(I-cPE)h(x)+I(xy c) and ei(*)=(J—CP*)1(*) follow from
(2.5). Since cP

E(xy y)=cPE(xy y) for x^c and j>4=£, the proposition follows.

Theorem 2.2. For any finite set E, C(E)=C*(E).

Proof. From (2.3) and (2.5)

= μE-(CGfE)+fE(c)(μE.l-l)-μE(c)a.fE

Since /£(c)(/Lt£ l —l)=/it£(c)(l — α / £ ) = 0 from proposition 2.3 and proposition
2.3', π fE—μΈ'h holds. Similarly /i£-l=we|;+/i£(c) and a'fE=μ"E h+fE

(c) hold. Then by the definition of the capacity

C(E) = μE h+VB h-K(E) = μΈ-h

+K(E)(a fE-\-fE(c)) = μE.h-K(E)K*{E)a-eE

-K(E)fE(c) = μE'h-K{E)K*{E)a-eE.

Similarly C*(E)=π'fE-K*(E)K(E)μE \. Hence from proposition 2.4, C{E)
=C*{E) follows.

Theorem 2.3. C{E) = £T[h(Xσj\-p^tr*<OQ]Plσ£= o o ] P ^ = - o o ] .

Proof. Obviously M J A = ^*[Λ(XffB)]. If c $ £ then

Generally C(E') is not necessarily non-negative, but if c^E then C(£) is
non-negative since in this case the second term of the left hand side in theorem
2.3 is equal to 0. From this fact and the corollary to the proposition 2.1, it follows
that C(E) is always non-negative when P is a random walk, that is, if S, P and A
satisfy the condition of the corollary to the proposition 2.1.

Theorem 2.4. C(E) is a non-negative, monotone increasing and alternating
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set function on the class of finite subsets of S containing c.

Proof. For every finite set E containing cy C{E)=Eηt[h{XσE)] = μ1^

Since h' is a *P-excessive function, the inequality

holds [1]. Hence

cHE{)Fh+cHE(]Fh^cHEh+cHFh,

where CHE and CHE are the reduite defined by CP and CP respectively. The

above inequality combined with the equality μE=μF CHE C^ClF), shows that

C(E [jF)+C{E n F)

^μE»F(cHEh+cHFh) = C(E)+C(F).

Also, since cHFh!^Lh! and hence cHFh<^h, it follows that

C(E)=μFcHE-htίμF-h=C(F)

for EaF.

REMARK. For the monotony of C(E), it is not necessary to assume that

each set E contains c.
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