

Title	Correction to : "Maximal solutions of the scalar curvature equation on open Riemannian manifolds",
Author(s)	Kato, Shin
Citation	Osaka Journal of Mathematics. 1996, 33(2), p. 587-588
Version Type	VoR
URL	https://doi.org/10.18910/6623
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kato, S.
 Osaka J. Math.
 33 (1996), 587–588

**CORRECTION TO "MAXIMAL SOLUTIONS OF
 THE SCALAR CURVATURE EQUATION ON
 OPEN RIEMANNIAN MANIFOLDS"**

This Journal Vol. 31 (1994), 355–371.

SHIN KATO

(Received November 17, 1995)

In the proofs of Lemmas 2.1 and 2.2, the author used the “fact” that any compact Riemannian manifold with boundary can be deformed conformally to zero scalar curvature. However, this is not true in general, and the lemmas are incorrect.

The assertions of Lemmas 2.1 and 2.2 hold if we assume that the given manifold (M, g) satisfies the following condition:

(P₀) For any relatively compact domain $\hat{\Omega}$ of M ,

there exists a positive smooth function ψ_0 defined on $\hat{\Omega}$ satisfying $L_g\psi_0 \geq 0$. Indeed, if we define $\hat{g} := \psi_0^{q-1}g|_{\hat{\Omega}}$ with ψ_0 given by the condition (P₀), then we have $S_{\hat{g}} \geq 0$. Now, to prove Lemmas 2.1 and 2.2 with (P₀), we have only to replace the displayed inequalities in the proofs by the following ones:

(Lemma 2.1.)

$$L_g\eta = L_g(\psi_0\xi) = \psi_0^q L_{\hat{g}}\xi = \psi_0^q (a_n \lambda_1(-\Delta_{\hat{g}}) + S_{\hat{g}})\xi > 0 \quad \text{in } \hat{\Omega},$$

(Lemma 2.2.)

$$\begin{aligned} & \left\{ a_n \Delta_{\hat{g}} - S_{\hat{g}} + f_0 \psi_0^{1-q} \frac{u^q - u_0^q}{u - u_0} \right\} (\psi_0^{-1} u - \psi_0^{-1} u_0) \leq 0 \quad \text{in } \Omega, \\ & -S_{\hat{g}} + f_0 \psi_0^{1-q} \frac{u^q - u_0^q}{u - u_0} \leq 0 \quad \text{in } \Omega. \end{aligned}$$

Therefore, Lemmas 2.1 and 2.2, Theorem I, Proposition 2.3, and the first assertions of Theorems II and III are valid under the assumption (P₀), and Theorem IV is valid under the assumption $\lambda_1(L_{\hat{g}}) \geq 0$.

On the other hand, Lemma 3.1, the second assertions of Theorems II and III, Theorem V and Proposition 4.2 are correct without any additional assumptions, because the stronger condition (P) (as in Lemma 3.1) is satisfied in these cases.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan