
Title 固有値計算のベクトル化と並列化

Author(s) 平井, 國友

Citation 大阪大学大型計算機センターニュース. 1998, 108,
p. 84-86

Version Type VoR

URL https://hdl.handle.net/11094/66271

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



固有値計算のベクトル化と並列化

奈良県立医科大学 平井園友
khirai@nmu-gw.naramed-u.ac.jp 

私の専門は物性理論であり，主に電子構造の計算にスーパーコンピュータを用いている．

この際，数十から数百個の行列の固有値および固有ベクトルを繰り返し計算しなければなら

ない．行列の次元はそれほど大きくないが (1000程度），ワークステーション等では計算はか

なり苦しい状況にある．このため，スーパーコンピュータでの固有値計算のベクトル化と並

列化，すなわち，大きな次元の行列の固有値と固有ベクトルがSX-4でどの程度能率良く計

算できるかという点に興味がある．そこで， SX-4での固有値計算のベクトル化と並列化に

ついて少し調べてみた．まだ系統的に十分調べたわけではないので，少し初歩的な事柄につ

いて報告する．

まず最初に，行列の次元とベクトル化について述べる．用いた計算プログラムは行列要素

を計算しその行列のすべての固有値と固有ベクトルを求めるものであり，ベクトル化につい

てはほとんど配慮していない．計算は CPU数が 1の場合であり， f77sxコマンドでコンパイ

ルしている（オプションはデフォルトのまま）．以下はその結果であり，実行時オプションと

して "setenvF _PROGINF DETAIL"を指定して得られだ情報の一部を表にしたものである．

Table 1: 行列の次元とベクトル化

次元 MFLOPS値 平均ベクトル長 ベクトル演算率 バンクコンフリクト率

100 104.7 51.9 90.8 1.6 

200 205.8 77.2 94.2 8.4 

300 290.1 98.1 95.6 4.8 

400 309.2 114.8 96.4 26.2 

500 407.7 131.1 96.9 6.8 

600 429.4 142.8 97.2 17.0 

800 309.1 165.5 97.7 53.7 

1000 543.3 184.1 98.0 21.8 

1200 465.4 199.3 98.2 40.2 

1600 340.4 194.8 98.4 61.7 

2000 516.0 208.9 98.5 44.5 

800 566.9 165.5 97.7 0.5 

1200 700.8 199.3 98.2 0.4 

1600 788.3 194.8 98.4 0.4 

2000 881.5 208.9 98.5 0.4 

ここで，バンクコンフリクト率はバンクコンフリクト時間のベクトル命令実行時間に対する

割合（％）である．表の上半分では，このバンクコンフリクト率がかなり大きい，特に次元が

大阪大学大型計算機センターニュース -84- Vol. 28 No.1 1998-5 



800や1600では非常に大きい．この理由は，これらの計算では行列要素を格納する配列Aを

以下のように していたためである．

parameter(n=200) 

dimension a(n,n) 

このため次元nが8や16,32, …の倍数になると，バンクコンフリクトが頻繁に起こって

しまう．そこで，

pararneter(n=200,n1=n+1) 

dimension a(n1,n) 

と変更した結果が表の下半分である（プログラムも少し修正しなければならない）．バンクコ

ンフリクトがほとんどなくなっているのが分かる．バンクコンフリクトがなくなると実行時

間はその分少なくなるので， MFLOPS値は当然大きくなる．バンクコンフリクトをなくせ

ば，次元が増すと MFLOPS値は徐々に増加してゆく傾向が見える（いずれは飽和すると思

われる）．一方，平均ベクトル長やベクトル演算率はバンクコンフリクトには全く関係しな

い．バンクコンフリクトに十分注意する必要があることを再認識した．

次に，並列化について述べる．ただし，ここで述べる並列化は数個の行列の固有値を並列

して計算するという意味ではない．並列化によってベクトル長が1個のCPUのベクトル長で

ある 256の4倍や 8倍に実質上長くなることを期待している．そこで，これまでと同じプロ

グラムを CPU数を 4として，すなわち， f77sxコマンドでオプション "-multi-reserve=4 

-f opp par f or=4"を指定してコンパイル，実行時オプションとして "setenvF _RSVTASK 4" 

を指定して実行し， CPU数が 1の場合との違いを調べる．結果を以下の表に示す．

Table 2: 行列の次元と並列化

次元 MFLOPS値 平均ベクトル長 ベクトル演算率 CPU時間

800 566.9 165.5 97.7 10.1 

1200 700.8 199.3 98.2 26.7 

1600 788.3 194.8 98.4 54.0 

2000 881.5 208.9 98.5 91.5 

800 948.7 185.0 97.9 6.0 (1.5) 

1200 1181.5 219.9 98.4 15.8 (3.3) 

1600 1295.6 210.0 98.5 32.9 (6.2) 

2000 1407.1 223.8 98.7 57.3 (9.8) 

ここで，表の上半分は比較のための CPU数が 1の場合の結果(Table1の下半分と同じ計算）

であり，下半分がCPU数が4の場合である.CPU数が4の場合のCPU時間は課金対象CPU

時間，すなわち， 1台以上で実行した時間である.CPU時間の括弧内の数字は 2台以上で実

大阪大学大型計算機センターニュース
-85- Vol. 28 No.I 1998-5 



行した時間であり， 3台以上で実行した時間と 4台以上で実行した時間は 2台以上で実行し

た時間とほぽ同程度である．これらの数値も "setenvF _PROGINF DETAIL"を指定すれば得

られる．また， MFLOPS値は実行時間換算した値であり， CPU数が1の場合の l.6rvl.7倍

程度になっている（この倍率は次元にはあまり依らない）．したがって，並列化は十分有効で

あるといえる．

ここで注意しなければならないのは，この結果から直接固有値計算の並列化の有効性につ

いて速断してはならないということである．以上の結果は用いた計算プログラムにかなり依

存している．実は，この計算プログラムでは行列要素の計算があまりベクトル化されていな

ぃ．このため，固有値計算それ自体は並列化によって非常に有利になっているにもかかわら

ず，全体的には並列化がそれほどは有利になっていないのである．このことは 1台以上で

行した時間と 2台以上で実行した時間から判断できる．おそらく， 2台以上で実行した時間

が概ね固有値計算の時間であり， 1台以上で実行した時間から 2台以上で実行した時間を差

し引いた時間が行列要素計算等のループ長の短い部分の計算時間と推測される．この点をよ

り明確にするために， CPU数を変えた結果（行列の次元は 1600)を以下の表に示す．ただし，

その数値は ASLライブラリの実対称行列の全固有値・全固有ベクトルを求める DCSMAAサ

ブルーチンを用いたもので， Table2の数値よりも優っている.DCSMAAはベクトル化およ

び並列化に対する配慮がある程度なされているようである．

Table 3: CPU数と並列化の効率

CPU数 MFLOPS値 平均ベクトル長 ベクトル演算率 CPU時間

1 1040.9 192.4 99.0 48.4 

4 1898.7 208.3 99.2 26.5 (6.2) 

8 2132.5 208.3 99.2 23.6 (3.3) 

16 2260.2 208.3 99.2 22.3 (1.9) 

表より， CPU数を 2倍にすると 2台以上で実行した時間がほぽ半減すること，また， 1台以

上で実行した時間から 2台以上で実行した時間を差し引いた時間はほぼ20程度で変化しない

ことが分かる．これらのことから，上で述べた推測がほぽ正しいことが分かる．したがって，

行列要素計算等のループ長の短い部分をできるだけベクトル化できるように改良すれば，並

列化がさらに有効になってくると予想される．また，上の例では， CPU数を増しても CPU

時間はそれほど小さくならず， CPU時間の換算係数を考えると， CPU数は 4が最適である．

しかし，この最適な CPU数もベクトル化への改良の度合によって変わるはずである．

結論として，固有値計算それ自体の並列化は十分有効である．実際問題としては，行列要

素計算等の部分のベクトル化がかえって重要になり，各自がプログラムを改良する必要があ

るといえる．また， CPU数には最適な数値があり，その数値を調べることも重要である．

大阪大学大型計算機センターニュース -86- Vol. 28 N(ll 1998-5 




