
Title SX4のモニター活動報告書 : MPIの性能評価

Author(s) 日置, 慎治

Citation 大阪大学大型計算機センターニュース. 1998, 108,
p. 125-134

Version Type VoR

URL https://hdl.handle.net/11094/66275

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



SX4のモニター活動報告書

MPIの性能評価

帝塚山大学 日置慎治

私はハイパフォーマンスコンピューティングに興味がありますので、

このモニターになり、以下の点を中心に調べて見ましたので順を追って

報告します。

1) SX4単体（つまり lPE)の性能を調べる

2)単体の性能をあげるための方法を調べる。

3)並列計算をさせる方法を調べる。

特に、メッセージ通信をあらわに利用したt.PI/SXを使った場合について。

4)並列計算における性能評価を行なう。

5)おわりに

大阪大学大型計算機センターニュース -125 - Vol. 28 No. 1 1998-5 



1) SX4単体（つまり 1PE)の性能を調べる

単体での行列積の性能評価を行なった。（単精度、 3行3列複素行列）

コンパイルは f77を使い、オプションは指定せずに行ないました。

結果は以下の通りとなりました。

SU(3) Matrix (3x3 Unitary Matrix)叩 Itipl icat ioo benchnark 

ベクトル長

MFLOPS値

考察：

100 250 1000 10000 

I 148 1531 1590 1587 

a)ベクトル長が250程度でも 10000の時のOOllol--L上、カタログ性能(2000MFI ops)の

7畷程度出ている。

これはある程度満足のいく性能である。

b)参考までに f90でコンパイル（オプションなし）してみると、何故か f77に比べ

て

1害肝劉変遅かった。

大阪大学大型計算機センターニュース
-126 - Vol. 28 Nu 1 1998-5 



2)単体の性能をあげるための方法を調べる。

報告） l圧E単精度は遅い！

上記性能はオプションなしのf77を使ったのですが

例えばこれに、 -eNをつけて、倍精度にしてやると

vec. length 100 250 1000 10000 

MFLOPS値 1280 1600 1708 1719 

になります。倍精度にするだけで1激以上の出比向上が見られます。

これは、 SX4の内部では常に倍精度で計算するため、単精度にこだわると

常に単精度＜ヽ倍精度の変換が必要となり余分なすーバーヘッドとなることが

原因と考えられます。

教訓）単精度にこだわるな！

（えっ？こだわっていないって？、でも僕のように

何も知らずに単精度のソースを使っている人って結構いるんじゃない？）

報告）ーfloat1オプション

大阪大学大型計算機センターニュース -127 - Vol. 28 No.I 1998-5 



単精度にこだわるが1圧Eにはこだわらないとすると、

-f loatlで1国形式単精度にしたら

vec. length 100 250 1000 10000 

研L⑱値 1290 1662 1730 1733 

となり、先の倍精度と同じ程度の性能が得られました。

教訓） l圧E単精度にこだわるな！（くどいかな？）

報告）オプションを選べばf90は遅くない！

上で、 f90はf77に比べて、遅い！と書いたのですが、これはオプションなしの

場合でした。 extendreorderというオプションをつけるとにより、

f77と同程度以上に速くなる事がわかりました。

大阪大学大型計算機センターニュース
-128- Vol. 28 Nu 1 1998 -5 



ベクトル長を 25 6に固定して比べてみたのが以下の結果です。

f77 f90 

コンパイル時間（秒） 1.5 11. 0 

刷 ops値

no opt ion 1568 1374 

一
16阻 1485 

-f loat1 1686 1568 

-0 extendreorder 1744 

教訓） f90は遅くない！（でもこのオプション知ってました？）

3)並列計算をさせる方法を調べる。

特に、メッセージ通信をあらわに利用したWI/SXを使った場合について。

私は自分の研究分野が素粒子原子核物理の

「格子色力学モンテカルロシミュレーションによるハドロン物理の研究」

なものですから、このシミュレーションを大規模かつ高速に行なう必要が

あり、このために様々なコンピュータを使って来ました。

大阪大学大型計算機センターニュース -129 - Vol.28No.1 1998-5 



そのような時に、いつも気にかかっていたのが

「使う計算機毎にソースを変更しないと動かないあるいは性能が出ない」

という事でした。これでけちっとも効率的な計算とは言えないと思っていました。

そこで、利用する計算機つまりプラットフォームに依存しないコードを作ろうと

思い立ち、並列計算機も想定した上で、①園Plというパッケージを作りました。

この経緯については、

「大阪大学大型計算機センターニュースVol.26 No. 4 1997—1 p106」

にありますので参考にしてください。また、 0C園Plについては

U凡 http://insam.sci .hi roshima-u. ac. jp)匹 I/

に醐月と、各種マシン」でのベンチマークがありますので見てください。

さて、ここでは①直可を用いて実際の計算を行なうに当たっての方法を調べて

見ました。現在の所、ソースは依存性がなくても、実行するための方法は

やはりマシン毎（というかOSあるいは環境毎）に違っているのが現状です。

長くなると読みづらくなるので、要点をまとめることにします。

とりあえず、「速報 1997./.22No.267 p7」を参考に刃uest/rnpi /mp i-samp I e/ 

の下のMakefileを参考にして、やりはじめました。

つまづき)-G localオプションを付け忘れていたため、各PEで独立だと

思っていた変数が実は共有されていた。

共有メモリ型計算機の場合には変数は共通なのが当たり前のようですが、

MPIを分散メモリで使って来たために全然こういった事には注意を払いませんでした。

教訓） MPI利用の時には -Glocalに注意せよ！

大阪大学大型計算機センターニュース -130- Vol. 28 No.I 1998-5 



報告） MPI/SXについて「速報 1997.7.22No.267 p7」を見ると、

「実行方法は(2)のthread方式で行なってください」

とわざわざ書いてあるので、素人の僕はそれを信用して threadで

行ない夜した。すると、思ったような性能が出ませんでした。

それには以下の3つの要因が関係している事が分かりました。

あ）簡単のためsxの組み込み乱数を使った。

実は thread同士で乱数の種を共有するため、乱数の部分はどうしても

同時実行はできなかった。

い）測定をインタラクティブに行なっていた

インタラクティブ実行の場合、物理タスク数が1に制限されているので

どうあがいても並列計算にはならないのだった。

う）通信性能が悪いので、フリーのWIQ-1をコンパイルして通信部分にこれを

使った場合とWI/SXを比較すると断然WIQ-1の方が速かった。

教訓） thread実行はあまり嬉しくない！

プロセス実行では課金がうまくできないというか損をするということで

thread実行をすすめてあったわけですが、聞く所によると現在のOSでは

プロセスしかないそうなので、（本当ですか？）

この問題は今や昔のものとなってしまいました。

上記のうち、う）にかんしてはMPI田のデフォルトが

プロセスだったため様々な threadの制約から逃れたのが性能の差となって

見えていたようです。実際は（同じプロセス実行すると）

MPI/SX > MPIQ-iとなりました。

大阪大学大型計算機センターニュース -131 - Vol. 28 No.I 1998-5 



4)並列計算における性能評価を行なう。

上記パッケージ①園Plを用いて並列計算ベンチマークを行なった。

畑 1はそのまま実行するだけで、全体の計算性能と通信性能を別々に

出力するよう設計されているので、初I心者でも並列計算機の性能を見るために

簡単に使えるものとなっている。

PE数 2
 
4
 
8
 

計算出能(microsec/I ink) 3. 89 1. 98 1. 03 0. 55 

通信性能（記/sec) - 1158 1176 515 

見積性能（町ops) 1465 2879 5534 10364 

lPE当たりの性能(M=I ops) 1465 1440 1384 1296 

コンパイルオプションは

-P rrulti -G local -float1 -1/usr/includeーlmpi

実行は

mpisx -p 8 -e ./qcd 

などとして行なった。

ここでの計算阻詣とはもっとも基本となる自由度1つに対する計算を行なうために

必要な時間をマイクロ秒で表したものであり、これが小さい程高速計算ということ

に

大阪大学大型計算機センターニュース
- 132 - Vol. 28 No. 1 1998-5 



なる。通信性能は読んで字のごとくである。

なお、上の全体性能を ~lops に換算すると、大雑把に見積もって、

上記「見積出能」になり、これを 1PE当たりに換算したのが一番下の数字である。

結果を見ると明らかであるが、 8PEまではほぼスケーラブルな性能向上が見られた。

（ここでの「ほぼ」は我々のアプリのレベルでは十分使いものになると言う意味であ

る）

8PEの時には何故か通信性能が半分になっているが、全体の時間からすると

1割にも満たない時間なので、全体として見ればスケーラビリティには

それほど影響していない。

この通信性能の低下原因について、また、これ以上のPE数におけるベンチマークに

付いては今後行なって行きたいと考えている所である。

したがって、今年度もモニターとして活動させて頂きたいと考えております。

5)おわりに

一年間SX4のベンチマークを細々とやって来たのですが、一番困ったのは

やはりマニュア）頃頁と田町0の不足でした。

大阪大学大型計算機センターニュース -133 - Vol. 28 No. 1 1998 -5 



最初何を調べていいのか？

どこに聞いていいのか？

どうやってコンパイルするのか？

実行はどうやって？

有効なオプションは？

などがまったく手探りの状態でした。もちろん、速報やニュースあるいは直接

出向いてマニュアルを隅から隅まで読めばいいのでしょうけど、なかなかできない

ことなのです。そう思ってメーリングリストに何度が質問を出したのですが、

助けられたこともありましたが、大抵の場合は誰からも返事がなく、ちょっと

淋しい思いもしました。

ようやく 1年を経て、いろんな情報を集めた結果、ここまでの報告をする事が

できました。せっかく集めた情報ですから、今後SX4を使い始める時に少しでも

参考になればと思い、自分のWebPageに載せることにしました。

現在はまだこの報告の内容だけが載っている状態ですが、今後いろんな事を

発見次第、随時更新していく予定ですので参考にしてください。

U凡 http://tupc3472.tezukayama-u.ac.jp/sx4/

です。

大阪大学大型計算機センターニュース -134- Vol. 28 No. I 1998-e 




