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1. Introduction

In this paper, we treat some diffusion equations with a nonlinear system of
boundary conditions, which appear in chemical engineering. Our concern is to
investigate the asymptotic behavior of solutions to the following initial boundary
value problem in I'x(0,0):

ou 0%u o 0%
a(x)a = s b(x}a; =52 for (x,z)elIx(0,00);
ou ov
0,2)= R, («(0,2),2(0,2)), —(0,2) = R,(#(0,2),(0,2)),
ox 0x
P) A
ou v
—(1,2)=0, —(1,z)=0 for ze(0,00);
0x Ox

u(x,0)=0¢,(x), v(x,0)=¢,(x) for xel

Here I and I denote (0,1) and [0,1], respectively; a(x) and b(x) are given
functions satisfying

aecC>(I), beC>(),
(A) a(x)>0, b(x)>0 for xe[0,1),
a(1)=5b(1)=0;

¢(x) (i=1,2) are nonnegative initial data; Ry(u,v) =k;Rq(u,v) (i=1,2), where k; (i=1,2)
are positive constants and

Ry(u,0)=u™"

with positive integers m and n.
The problem (P) was proposed by Kawano and Nakashio [5] to describe



374 M. IpA, Y. YAMADA AND S. YOTSUTANI

some chemical models in which reactions are taking place only on the interface
between two liquid phases flowing concurrently in contact. In their model, u and
v represent the concentrations of the chemical substances in consideration; a(x)
and b(x) are given by

a(x)=ao(1—x?), bx)=be(1-x?)

with some positive constants ay, b,. For the derivation of the model see [5].

We are interested in the asymptotic behavior of solutions to (P) as z — o0
from the mathematical viewpoint. In the study of their asymptotic behavior the
difficulty is how to deal with the nonlinear coupled boundary conditions, while it
is relatively easy to show the global existence of nonnegative solutions owing to
the monotonicity of R(u,v) (cf. Yamada and Yotsutani [8]). Shinomiya [7] has first
succeeded in showing the uniform convergence of solutions to the corresponding
equilibrium by finding a nice Lyapunov function. The authors [4] have improved
his results and derived the uniform convergence of the solutions together with all
their derivatives as z — oo by establishing a method to construct infinitely many
Lyapunov functions systematically. On the other hand, Nagasawa [6] has obtained
a partial answer to the rates of convergence by using a weighted LP-norm.

In the present paper, we will complete Nagasawa’s results, i.e., we will give
the rates of convergence for

o*u u
"u(':z)"“ao"w, a—zi(',z) 09 W',Z) 09

v ™
"I)(',Z)—'Uw”q), 5‘2—,‘('52) © 3 axaT{("z) ©

(k=1,2,3,---), where (u,,2,) is the equilibrium corresponding to (u(,z),»(-,z)). The
remarkable point here is that (u_,v,) depends on the initial data. The equilibrium
changes its essential character according to the sign of

1 1
E:=E||¢1a" 1 _I:;Ild)zb" 1

where |- ||, denotes L'(I)-norm (see Proposition 2.1). Because of this feature, the
rates of the convergence also vary depending on the sign of E. This fact makes
our analysis complicated.

The organization of this paper is as follows. §2 contains our main theorem. In
§3 we will give lemmas which are useful throughout the paper. In §4 we will
summarize some fundamental properties of solutions to (P). §§5, 6 and 7 are devoted
to the proof of our main theorem.
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NoOTATION

We will use the following notation throughout this paper. For U=(u,2), we
abbreviate R{u,v) to R(U) (i =0,1,2). For any vector-valued function U= Ul(x,z)=
(u(x,z),0(x,2)), its derivatives are denoted by

o ity gt
DLDiU=(D.Diu, D'Diy)= (——“ —i> .
0x'0z) 0x'0z’

For any vector-valued function U= U(x)=(u(x),(x)) on I, we use the following norms:

1/2
NU=(lull®+llo)1%)!/2 = U(uzﬂz)dx} ,

I

| Ul , =ess sup| U(x)| =ess sup{u(x)* + o(x)*} /2,

xel xel

1/2 1/2
I|u|‘2;a={f u2adx} ’ ||U||2;b={J vzbdx} ’
I I

1Tl 2= {lull 3,0+ N2l 3} 72

2. Main result

For convenience, we recall some results in [4] which will be fundamental for
the subsequent arguments.

Proposition 2.1. Suppose that (A) holds and that ¢=(¢,,¢,) satisfies
deL™()?, ¢;>0in I (i=1,2).
Then there exists a unique solution U=(u,u)e C*(Ix(0,00))® of (P) which satisfies

lim|| U(-,z)—@||=0. Furthermore,
z—0

() 0<ux,)<ldille, 0<e(x,2)<l¢sll, in Ix[0,00),

(i) U satisfies the “mass conservation” law, i..,

1 1
k—lilualll “;;2"017”1 =E, ze[0,00),

where

1 1
E=k—lll¢1all 1 —k—2||¢zbll 1
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(iii) if ¢, #0 (¢, #0) in I, then u>0 (resp. v>0) in Ix(0,00).

In the study of asymptotic properties for (P) as z — oo, (ii) of Propostion 2.1
plays an important role. As a limit problem associated with (P), we consider the
following algebraic problem for U, =(u,,v,)€ R%.

U, >0, 2,0,

(Pao) RO( Uco) =0,
laby, Wl _p
ky k,

Clearly, (P_) has a unique solution U, =(u,v,,) with
u =kl—E and v, = if E>0,

=0 if E=0,
_kalE]
11

u,=0 and v, if E<O.

By constructing infinitely many Lyapunov functions, we have obtained the
following results on the asymptotic behavior.

Proposition 2.2. Suppose that (A) holds. Then

lim |U(-,2)— Uyl o =0,

lim | DDLU, =0

zZ-
for all nonnegative integers i, j with (i,j) #(0,0).

For the proofs of Propositions 2.1 and 2.2, see [8] and [4]. In the present
paper we investigate the rates of convergence in Proposition 2.2. Our goal is to
show the following theorem.

Main Theorem. [In addition to (A), assume ¢, % 0(=0)and ¢, # 0(=0). Then
"u( : ,Z) Uy " 0= 0(pu(z))a " l)( : ,Z)— Vo " 0= O(pv(z))a

d* d*
D_D¥1 -0 DDyl =0 )
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& &
l I D’z‘u" o= 0(@“4(2)) > "D:D [ 0= 0(@"1:(2))

as z — o for every positive integer k. Here p,(2), p,(2) are defined in the following
way depending on E and reaction exponents m, n.

Case () —— E>0, n=1,
pu2)=exp(—oz), p.z)=exp(—Ao2);
Case (II) ——— E>0, n>1,
P =pe) =z with a=—
n__
Case (IIl) ——— E=0,
1
P =pue)=2 7" with f=—e
Case (IV) ———— E<0, m>1,
1
p2)=pf2)=2"" with y=——;
m—1

Case (V) ———— E<0, m=]1,
puz)=exp(—po2), p,2)=exp(—jto2),

where Aq, Xy, 1o and i, are appropriate positive constants.

REMARK 2.1. The constants 1,, 4, are characterized in the following way. Let
E>0 and n=1. Consider the eigenvalue problem

—Di f=la(x)f, —Dig=Ib(x)g,  xel,
2.1 D,f(0)=ky(u,)"g(0),  D.g(0)=k,(u,)"g(0),
D,f(1)=0, D,g(1)=0,

which is corresponding to the linearization of (P) around U,
a(x)Du=Du,  b(x)D,y=D% for (x,z)elx(0,00);

(LP) D,u(0,2) =ky(us)"(0,2),  D,(0,2)=k,(u,)"2(0,2),
D.u(1,2)=0, D »(1,2)=0 for ze(0,00).

It is easy to see that the set of eigenvalues for (2.1) coincides with the union of
the eigenvalues for



378 M. IpA, Y. YAMADA AND S. YOTSUTANI

22) { —Dlg=Jb(x)g  in I,
D,g(0)=k,(u,)"g(0),  D,g(1)=0

and

@3)

—D2f=2*a(x)f in I,
D, f(0)=D,f(1)=0.
The constant 1, is the least eigenvalue for (2.2) and can be characterized as

2 m 2
o inf { ID.g 1+ )50
lgllz;

2.4) ; ge H'(0,1),g # 0}>0.

The constant 1, is given by
;_ {min (odd) i Ag#Ad

o=
Jo—t if dg= A%

where ¢ is an arbitrarily small positive number and A} is the least positive eigenvalue
for (2.3). Observe that A} is characterized as

2.5 Ak = inf{"D "f;"z; feH'(0,1), f£0, f fadx=0}>0.
"f"z;n I

In particular, min {1,,A3} is the least positive eigenvalue for (2.1).
The constants u,, ji, are characterized in a similar way:

2 n 2
u0:=inf{"D SIS TOF o pio ), £4 0}>o,
"fIIZ;a
2
“3‘;=jnf{"D"g2" ; ge HY(0,1), g #0, Igbdx=0}>0,
g2 I
Y- {mln {/‘0’“3} if Ho 7é#(*)"
o= . N
Ho—¢€ if po=psg,

where ¢ is an arbitrarily small positive number.

REMARK 2.2. In Remark 2.1 We can expect neither that 1,= A% implies 1,=4,
nor that u,=u¥ implies jio=pu, . This fact is recently proved by Iida and Ninomiya
in [2] by using an argument on invariant manifolds. Moreover we see from [2]
that the rates of convergence in Main Theorem are optimal.
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ReMARK 2.3. Recently, Hoshino and Yamada [1] have investigated a
mathematical model for chemical reactions in a bounded domain. Using a different
method from ours, they have obtained similar results to ours.

In the sequel, we will use C or C;,C,,:-- to denote various positive
canstants. For simplicity, the same C sometimes denotes several different constants
if there is no confusion.

3. Preliminaries

We begin with an imbedding lemma of the Sobolev type.

Lemma 3.1. Suppose that p(x)e C(I) satisfies p(x)>0 in I and p(x)>0 in
I.  For any 6 >0, there exists a positive constant Cy depending only on p and  such that

Wl o <SID Wl +Cslwlly,  for all we H'(I).
Proof. See (3.2) of [4]. W

We give several lemmas on differential inequalities which are very useful to
derive the rates of convergence for solutions from various energy estimates.

Lemma 3.2. For a positive integer m, let {p(2)}o<r<m be a sequence of
nonnegative functions of class C'([Z,00)) and let {q(2)}o<kem {(PD}o<k<m be
sequences of nonnegative functions of class C([Z,00)). Suppose that

p=sup {p(2); 0<k<m, z>2} <1,

dp, x .
_+qkSkaqja ZE[Z,CD),
dZ j=0

APk <G z€[Z,00)

for k=0,1,---.m, where A is a positive constant. Then
Pk(z)‘_‘o(eXp(_/Tz)) as z— oo (k=0,19""m)

with a suitable constant 1€ (0,2).
Moreover, if pfz)e L)%, ) (k=0,1,---,m), then X can be replaced by A.

Proof. See Lemmas 3.2 and 3.3 of lida, Yamada, Yanagida and Yotsutani

(Bl =

Lemma 3.3. Let p(z) and q(z) be nonnegative functions of class C*([2,00)) and
C([2,0)), respectively. Suppose that
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Z—+q<r1exp( ) 12 ze[2,00),
Ap<q, z€e[Z,00)
with some positive constants A, u and n. Then
p(z)=O(exp(—Az)) as z — oo,
where
I {min {Auy  ifA#n,
A—e ifi=p,

and ¢ (>0) is an arbitrarily small number.

Proof. We divide the proof into three cases (A>p, A<y, A=p).

(i) Consider the case where A>pu. Choose a sufficiently small >0 such that
A—d6>p . Since the right-hand side of the first inequality in the assumptions can
be estimated as

z o
nexp(—%)q”zsiq+Cexp(—yz),
we have
+(l 6)—<Cexp( uz).
dz
Thus, by the second inequality in the assumptions, we get

d
d—p+(l—5)p£CeXP(—uZ), ze[Z,0),
A

from which we can easily derive
p(z) = O(exp(— uz)) as z — o0.

(i) Consider the case where A<u. Take a new small §(>0) such that
A<u—é6. We may assume Z>0 without loss of generality. Observing that

r]exp(———) 12 < exp(— 0z)q + Cexp(—{u—95}2),

we have



CHEMICAL INTERFACIAL REACTION PROBLEMS 381

d d
P 1 —exp(— 62 ip <P+ {1 —exp(—52)}q
dz dz
< Cexp(— {u—3}2)
for ze[%,00). Multiplication by

exp (lf{l —exp(— 6()}(1{)
2

and integration from £ to z eventually yield
p(z)=O(exp(—Az2)) as z — o0.

(iii) Consider the case where A=pu. Let > 1 and assume £>0again. In view of
n exp(—%)q”2 <(1+2)7%q+ C(1 + z)°%exp(— pz),
it is easy to derive
dp -5 s .
d_+ {1-(1+2)" % p< C(1 +2)%xp(—Az), z€e[Z,0).
4

Multiply each side of the inequality by

exp <lr{1 —(1 +C)""}d{>,

and integrate from 7 to z. After some calculations, we find that
p(2)=0(**'exp(—Az))  as z— oo,

which implies
p(z)=O(exp(— {1 —¢}2)) as z— o0,

where we can make ¢>0 arbitrarily small.

Lemma 3.4. Let p(z) be a nonnegative function of class C*([Z,00)). Suppose that

d
D mpo<0,  ze(Zm),
dz

where ne(0,00) and we(1,00) are constants. Then

p2)=0@E"Y®" Yy a5 7z 0.
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Proof. It is sufficient to multiply both sides of the given inequality by p(z)~™®
and integrate from Z to z. W

Lemma 3.5. Let p,(2), p,(z) be nonnegative functions of class C'([Z,00)) and
let qo(2), q1(2), 92(2) be nonnegative functions of class C([2,00)). Let p(z) be a positive
function of class C([Z,00)) such that

p(2)=0(z"% asz- o,

where 0 is a positive constant. Suppose that p(z) (i=1,2), q{2) (7=0,1,2) and p(2)
satisfy

d

—@+p1s11p+8q1, z€[Z,0),
dz

dp .
Eﬁ*“hSK(P*‘PlL z€[Z,00),

dq 5
A PSP Py gD begy  zE[5 )

dp )
d—;+qzs:<(p+pl+q1+p2), ze[£,),

qo<Kp1, z€[2,00),
where ¢, k and n are positive canstants with e<x~'. Then
90(2)+P1(D)+4:(2) +po(2)=0E"%)  as z— 0.

Proof. Since e<k ™!, there exist positive constants ¢,, 6, and o5 such that

no,+ ko3 <min{l —«xo,, 0, —¢},
KO3 <05,

£0,<03.

It is easy to see from the inequalities in the assumption that

d
z(%‘*‘alpl +0,9,+03p3)+p1+0,91+06.p,+ 039,

<(+ko,+no,+Kk0;3)p+ (Ko, +n0,+K03)p,
+(e+n0,+K03)q; +KG3p, +E€0,9,, ze[Z,00).

Hence we have
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d
E(qo'l'a]pl +029,+03p,)

1 .
+E(P1+Q1 +p,+4,)<Cp, z€[Z,00).
Moreover, since

Y(2):=qo(2) + 0 1p1(2) +0,9,(2)+03p,(2)
<C{p1(2)+91(2) +p,(2)},

we get

ay 1
d—'lz,+z,l//$Cp, z€(2,0).

Therefore, with the aid of p(z)=0(z"% as z - o0, we obtain
Y(@)=0(z"% asz- oo,

which completes the proof. W

4. Fundamental properties of solutions

In the sequel, we sometimes write u,=u—u, (v, =v—v,). We give three
types of fundamental identities which will later yield various useful estimates.

Lemmad.1. Let U=(u,v) be the solution of (P). The first component u satisfies

1d
S luyl3a= — 1Dl —u (0,2)R,(U(O,2)),

2dz
&
@.1) L Dz, = — 1D Dol — Da0,21 R (U0,2),
2dz dz
%diuuz-‘u—b';"lau%m
zZ
dk—l
“2 = — 10,05l ~ (DY u0,)— D5~} R, (UI0,2),
Z
(43) 1d, Dbt = — | Dhull2, — Diul0,2) % R,(U(0,2)
. 2dZ x~z z¥%112;a z ’ dzk_l 1 )

for ze(0,00) and every k=1,2,3,---. Here

! juadx
lallyJ:

i(z)=
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Similar equalities hold for v with some modification.

Proof. It is easy to see the first equality of (4.1) from (P). The second
equality of (4.1) and (4.3) are obtained from the boundary value problems for DU
and D* 1 U, respectively, which are obtained by differentiation of (P) with respect to z.

We will show (4.2) with k=1. We have

1d _ - dii
Eallu—ulli;a=L(u—u)(Dzu—E)adx

= J (u—@)D*udx — dﬁf (u—iadsx.
I dzJ;
Noting the fact

f(u——ﬁ)adx=0
I

and integrating by parts, we get (4.2).
The same argument for D%~ !y instead of u yields (4.2) with k>2. W

The following identities are a key property of solutions.

Lemma 4.2. The solution U=(u,v) of (P) satisfies

i u (x,2)a(x)dx = i v,.(x,2)b(x)dx,
1dr ‘ kyJi

1 D’,‘u(x,z)a(x)dx:—l— D u(x,z)b(x)dx
kyJr kyJr

for ze(0,00) and k=1,2,3,---.

Proof. Clearly, the first identity follows from (ii) of Proposition 2.1. It is
sufficient to apply D to its both sides to complete the proof. W

Finally we give some a priori estimates for solutions.

Lemms 4.3. Let U=(u,v) be the solution of (P). Then
1DD% ™ ull oo < llall 2 DSull 3,05
1DD5 ™ oll o < 1611121 D30l 5,5
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hold true for ze(0,00) and k=1,2,3,---.

Proof. By virtue of the boundary condition at x=1 of (P), we have
1
D, u(x,2)=D,u(1,z)— f Dlu(&,2)d¢

= —J Du(E,z)a(8)dE

for xel. Thus, with the aid of Schwarz’ inequality, we get
1Dl o, < llall 121 D ull 200
For k>2, we have only to use the boundary value problem which is obtained

by differentiating (P) k—1 times with respect to z. W

Lemma 4.4. Let U=(u,v) be the solution of (P). Then

lletgll o < K(ll24 4l 2,0+ | D21l 2,0),
S o4 llo < K(ll2, ll 26+ 1 D01l 53),
IDull o, < K(I1Djull 3,0+ 1 D5 1l 5,0),
D3]l o < K(ID%0ll 2+ D5 12ll 5,8

hold true for ze(0,00) and k=1,2,3,---. Here K is a positive constant independent
of z and k.

Proof. The assertion follows from Lemmas 3.1 and 43. B

5. Rates of convergence Cases ... (I) and (V)

In this section we will prove Main Theorem in Case (I), ie., E>0 and
n=1. The proof for Case (V) is the same. Note that

ky

“ lal,

Lemma 5.1. The solution U=(u,v) of (P) satisfies
1 d 2 2 m 2 2
Ezllvuz;b"""va“ +k()"[0(0,2)|* < Lofu ,(0,2)112(0,2)|7,
1 d k112 k. 112 m 2
(5.1) EzllDzvllz;ﬁlleDzvll +kp(u.)"| D5(0,2)|

SLk{|u*(0,Z)l+ iID'zu(O,Z)I} k |Dix(0,2)|%,
1=1 j=0

J
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k=1
|Dz4(0,2)],

j=0

1d
(5.2 Ed—llDﬁ”u—D'z‘"ﬂlli;ﬁ ID.DL™ 'ull® < Li| DDL™ 'ul
Z

4l 20 < L0 o + le — 2 5,0),
"D'z‘“"LnSIJ(HD:”" © + IID:u—D:ﬁIIZ,a)

forze[l,00)andk=1,2,3,---,where L and Ly,L,,---, are positive constants independent

of z.

(5.3)

Proof. Observing that

R{(U(0,2)) =k{u,)"(0,2) + kv(0,2) i (7)(%)"’ ~'uy(0,2),
=1

and lim Diu (0,2)=0, we obtain (5.1) from (4.1) (use similar identities for

v). Similarly, we can derive (5.2) from (4.2) by using a version of Poincaré’s
inequality:

|Du(0,2)— DZi(z)| < | DDjul.

To obtain the first inequality of (5.3), we have only to use the identity

u(x,2)= ! f u adx +u (x,2) — i (z)
lallyJr
k, _
= vbdx + u(x,z) — i(z),
kallall1Jr

which is a corollary of Lemma 4.2. The second inequality of (5.3) is similarly
verified. W

Proof of Main Theorem ... Case (I). The proof is carried out by dividing it
into several steps:

Step 1 |D%|,=0(xp(—vz)) as z— oo for k>0, where v is a positive
constant;

Step 2 || D*u,llo=0(exp(—¥z)) as z— oo for k>0, where ¥ is a positive
constant;

Step 3 | D Div||, = O(exp(—Aqz)) as z— oo for k>0 and j>0;

Step 4 || D Diu,|l,,=O(@exp(—1,z) as z— oo for k>0 and j>0.
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Step 1. By (2.4), v satisfies
(54 Aol D4ol| 3,5 < 1D Dol > + kot )" D50(0, 2)?

for ze(0,00) and k=0,1,2,---. Since

limu (0,2)=0,

z—

lim D%u(0,2)=0  (k=1,2,--),

z—

we can apply Lemma 3.2 to (5.1); so that
||D:v||2;,,=0(exp(——vz)) as z — (k=0a1’2a"')1

where ve(0,4,) is a constant independent of z. Thus, making use of Lemma 4.4,
we can also show

(55) "D’;Z}IIO():O(CXP(—VZ)) as z = o0 (k=031’2)"')'

Step 2. We see from (2.5) that
AglID'z‘_lu—D’z‘—lﬁ"%;aSl'DxD:_lu|l2

for ze(0,00) and k=:1,2,3,---. Hence, by virtue of (5.2) and (5.5) it follows from
Lemma 3.3 that

"D:— lu—D:_ 1ﬁ||2;a=0(exp(_ﬁz)) as z— 0 (k= 1’2935"'),

where ¥e(0,min{A§,v}] is a constant independent of z. Therefore, with use of
(5.3) and (5.5), we have

44 ll2.0=Oexp(—¥z)) asz— oo,
| Dku| 5..= O(exp(—¥z)) asz— o0 (k=1,2,3,---);
so that Lemma 4.4 yields

(5.6) llu, )l = Olexp(—7¥z)) asz— oo,

”D,z‘u"oozo(exp(_‘72» asz—> o (k=la2a3"")'

Step 3. In view of (5.6), we invoke the latter half of Lemma 3.2. Then it
follows from (5.1) and (5.4) that

ID%oll2=O(exp(—Ae2) as z—>o0  (k=0,1,2,--"),
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which, together with Lemma 4.4, imply
(5.7 | D%l o= Oexp(—A4z)) as z—> oo  (k=0,1,2,---).
Using Lemma 4.3, we get

IDED,oll . = Olexp(—Ag2)) as z— oo  (k=0,1,2,-+").

Moreover, since
; . . iz2
IDXDLol| o = | DL (D5D20)| o = 1 DL 2(BDE* '9)| < C; Y. 1D ' Dl
=0

we can inductively derive

ID:DJoll o = Oexp(—4ez)) as z— o0 (k=0, j>0).

Step4. Repeat the argument in Step 2 with (5.5) replaced by (5.7).  We get

O(exp(—min{Ay, A3z if Ay # A%,
”D:u*"w= ( p( { 0 0} )) 0 0

O(exp(—{Ao —€}2)) iflg=A%
asz — o0 (k=0,1,2,---), where ¢ >0 1is an arbitrarily small number. Thus we obtain
O(exp(—min{1y,A3}z))  ifo#43,

Ofexp(—{Ao—¢}2)) if do=4¢

as z— o (k=>0, j>0) in the same manner as in Step 3. W

I1D:Diu )l o =

6. Rates of convergence ... Cases (II) and (IV)

In this section we will prove Main Theorem in Case (II) where E>0 and
n>1. The discussion for Case (IV) is quite the same.

We will divide the proof into four steps and establish the following asymptotic
properties for U=(u,v) in each step:

(6.1) lo(-,2)le=0(z"") as z— oo,

(6.2) IDLUC,2)l o+ I DU ,2)l o =0("*"") as z - 0,

6.3) |DDX~1U(-,2)|| o + |1 DEUC-,2) ||, = Oz™*"%) for k>2 as z— oo,
(6.4) lu,2)lo=0="% as z— oo,

where a=1/(n—1).
In Steps 1-4 we will use Lemmas 6.1-6.6, whose proofs will be given at the
end of this section.
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Step 1. The following lemmas give essential estimates.

Lemma 6.1. Let U=(u,v) satisfy (P). Then

d 1
6.5 —ol|2.,+ |1 D)2 +—(0,2)" 1 <0,
(6.5) dZ"v"2,b Dol Mv( z)

d 2 2 2 n+1
(6.6) leDzvll 2w+ 1D Do)|* <M{||D,o||3,, +(0,2)"* '}

for ze[1,00), where M is a positive constant independent of z.

Lemma 6.2. Let U=(u,v) satisfy (P). For any positive number ¢ there exists
a positive constant M, such that

d
(6.7) d—IIvaII2 +1D,0)13, <€l DDyo]|> + M,u(0,2)"*
z

for ze(0,00).

Let e€(0,1/M). Combining (6.5), (6.6) and (6.7), we can deduce

d
d—z(llvlli;ﬁ CylID 0l +C, I D,v113,)

+ C3{9(0,2)" " + || D,o||> + | Dol 3,5} <O.
Since n+1>2, the boundedness of | D,v| and || D,z||,, for ze[1,00) leads us to

IDl"* ! < ClIDwl?, ze[1,00),
I1D2013%" < CID.vl13, ze[1,00).

Thus, with the aid of Lemma 3.4, we have
o2+ IDwll=0E"%  as z— o,

which, together with Lemma 3.1, yields (6.1).

Step 2. Observe that (4.1) and (4.3), combined with (6.1), yield the following
estimates (actually we will prove them later).

Lemma 6.3. Let U=(u,) satisfy (P). Then

d
EIIDZUII§;+ ID,D.U|*<M,|D.U|3,
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d
EHD:’UII%; +ID,DIU| <M(ID.U||3+ DD, U|*+|D2U|3)

for ze[1,00), where M is a positive constant independent of z.

Lemma 6.4. Let ¢ be any positive number and let U=(u,v) satisfy (P). Then
there exists a positive constant M, , such that

d
;,—lIDxUII2 +|D,U|2 <&l DD, U|2+ M, ;z~2*"2,
Z

d
a"DxDzU"z"'"DZUIlg;SEHDfoUHZ+Me,1(|IDzU"§;+|IDxDzU"2)
for ze[1,00).
We see from Lemma 4.3 that
1D U|*<CID, U3
for ze[1,00). Hence Lemmas 6.3 and 6.4 enable us to apply Lemma 3.5 to get
ID.Ull2,+ DD, U|=0("*"")  as z— 0.

By using Lemmas 3.1 and 4.3 again, we obtain (6.2).

Step 3. Let k be a positive integer with k>2. We need the following estimates
which correspond to Lemmas 6.3 and 6.4 in Step 2.

Lemma 6.5. Let U=(u,v) satisfy (P). Suppose that
IDiU(-,2)|l,=0(z""") asz—oo0
for j=1,2,---.k-1. Then

d —2a-2k—
ZEIIDZUH%;-FIIDxD'z‘UIIZSMk(Z S o V2 U AN

d
(TIID'Z“‘ U3 +1D. D3t U2
Z

SM(z” #7244 | DLUNS +IDDIUN + 1D 71 UIS)

for ze[1,00), where M, is a positive constant.
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Lemma 6.6. Let ¢ be any positive number. Under the assumption of Lemma
6.5, there exists a positive constant M,, such that

d - —_— -—
DD UI + | DU I3, <l DDLU I + M, =22,

d
-d—ZIIDxD'z‘UlI2+ IDZF U3,

<e| D, DYV + M, (27272 72+ | DLU ||, + | DDLU ||?)

for ze[1,0).

Recall that we have already verified the assumption of Lemmas 6.5 fork=2. In
a similar manner to Step 2, combining Lemma 3.5 with Lemmas 6.5 and
6.6 (k=2) we can show

ID:D.Ull,+D;U|,=0E"""%)  as z— .
By repeating this argument, we can inductively derive
IDD:™ Ul +ID:UN=0(z"""")  as z— 0

for k=3,4,5,---. Thus (6.3) has been proved.

Step 4. Since it follows from Lemma 4.2 with k=0 that

! ju,,,adxl
lallyJs

<Dl o+ 1ol )

llee*ll oo < llu—all o, +

we get (6.4) from (6.1) and (6.2). This completes the proof. W

Now we will give the proofs of Lemmas. We can derive Lemmas 6.1 and
6.2 directly from Lemma 4.1.

Proofs of Lemmas 6.1 and 6.2. Since limu(0,z)=u,>0 and u(0,z)>0 for

z—

z€(0,00), we see that
#0,2)R,(U0,2)) > Co(0,2)"*",  ze[1,00),

so that (6.5) follows from the equality for v corresponding to the first one of
4.1).
Recalling n+1>2, we see from the boundedness of u, v and D,u that
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D,v(o,z)dizR2<U(0,z))

< D,v(o,z)%’i’-( U0,2)D.4(0,2) 1D.(0,2)?
u

+|a~’ﬁ(v(o,z»
ov
< C{ID,0, 00,2 +1D,2(0,2)7}

< C{ID.x(0,2)1* +(0,2)"* '}

1
SE "DxDzv"2+ C{”Dzv”ib-l_v(osz)n-'- 1}

for ze[1,00). In the last inequality we have used Lemma 3.1. Then (6.6) comes
from (4.1) with k=1.
Observe that

IR,(U(0,2))> < Co(0,2)"

it is easy to get (6.7) from Lemma 3.1 and (4.3) with k=1. W

Proofs of Lemmas 6.3 and 6.4. We see from (6.1) that

(6.8) IR(UO,2)| <Cz7*71,  ze[1,00).

Moreover, by the boundedness of U and D,U,

(6.9) Ia;iRo(U(O,Z)) <qD,U0,2),, ze[1,00),
z

(6.10) j—zzRo( U(©,2)| < C{|D.UO0,2)| +|D; UQ,2)l},  ze[1,00).
Z

In the right-hand sides of (6.9) and (6.10), use Lemma 3.1 making 6 >0 sufficiently
small. Then we get Lemma 6.3 from (4.1) with k=1,2.
We see from (4.3) that

-1 2

&
FRo( U(0,2)

1d
EEHD,‘D'Z‘" YU+ DU I3, <nD:UO,2)1* +C,

for ze(0,00). Here # is an arbitrary positive number and C, is a corresponding
positive constant which is independent of z. Taking a sufficiently small #>0 for
¢, we can show Lemma 6.4 with the aid of (6.8), (6.9) and Lemma 3.1. W
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Proofs of Lemmas 6.5 and 6.6. In place of (6.8), (6.9) and (6.10), use the
following fundamental Lemma. Then the same argument as the proofs of Lemmas
6.3 and 6.4 completes the proofs. W

Lemma 6.7. Let U= (u,v) be the solution of (P) and let k be a positive
integer with k>2. Suppose that

lo(-,2)l,=0E"%  as z— o0

and
IDIU(-,2)|l o = Oz~ *¥) as z — o

for j=1,2,.-- k-1. Then there exists a positive constant M, (independent of z)
which satisfies
-1
dz k—1
a&
dz k
+1

dk+1

——Ry(U0,2))| < M;z~*7",

L R(U0,2))| < My{z™*~* 1 + | DU, 2)},

— 71 Ro(U0,2))

<M{z™*"*=2 4+ |DEU,2)| + | DX+ LU0, 2)|}

for ze[1,00).

7. Rates of convergence ... Case (III)

We will prove Main Theorem in the case E=0, where u,=v,=0. The
following Lemmas correspond to Lemmas 6.1 and 6.2; so that their proofs can be
accomplished with use of Lemmas 3.1 and 4.1.

Lemma 7.1. Let U=(u,v) satisfy (P). Then

1d

(7.1) EE" U3, + 1D, U 1%+ {k1u(0,2) + k,0(0,2)} Ro(U(0,2)) =0,
d 2 2 2

(7.2) EllDzUllz& IDD,U|I*<N|D,Ul3

for ze(0,00), where N is a positive constant independent of z.

Lemma 7.2. Let U=(u,v) satisfy (P). For any positive number ¢ there exists
a positive constant N, such that
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d 2 2 2 2
(7.3) EIID,;U I*+ 1D Ullz;<ell DD, U||*+ N,Ro(U(0,2))

for ze(0,0).

Since u and » are nonnegative and uniformly bounded, we have
0< Ro(U(0,2)) < Clk,u(0,2) + k,(0,2)}

for ze[0,00). Therefore, it follows from (7.1), (7.2) and (7.3) that

d
E{IIUII§;+C1 IDUI?+C, D, U3}

74 + C5{IDUN+1D,U 2+ (kyu(0,2) + kso(0,2) Ro(U(0,2)} <O

with some positive constants C,, C, and C;. Here we use the following lemma.

Lemma 7.3. The solution U=(u,v) of (P) satisfies
1O 25 P S N*CIDL U ,2)||? + {k14(0,2) + k 22(0,2)} Ro(U(0, 2))],
Jfor ze[1,00) with some N*>0.

We will continue the proof of main theorem. It follows from (7.4) and Lemma
7.3 that the assumption of Lemma 3.4 is satisfied with p(z)=||U||},+ C,| D, U|*+
C,|D,U|3, and w=(m+n+1)/2. Thus

1UC,2)ll o =0@E"*) as z — o0
with f=1/m+n—1).
In order to proceed the proof, we observe that Lemmas 6.3-6.6 remain valid

with o replaced by B. So it is sufficient to follow the argument of Steps 2 and
3 in section 6. W

Proof of Lemma 7.3. Using Lemma 4.2, we have

u(x,z)=u(x,z)—u(z) + ks u(x,z)b(x)dx
kallallyJy

—ux,2) i)+ | (oor,2) 0, bl + 20

9(0,2).
ksllallyJ; kslally
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The right-hand side is bounded by
C{ID, Ul +%0,2)}.
Hence we can show
(7.5 |U(x,2)| < C{II D, U|l +(0,2)}
with the aid of
u(x,2)<v(0,z) + || D,v|.
Similarly,
(7.6) |U(x,2)| < C{II DU || +u(0,2)}.
Setting x=0 in (7.5) and (7.6) we get
|U©, )™ "+ 1

<Cy{ID. Ul +u@,2)}"* {|I DUl +0,2)}"

<G{IDUN™ +u(0,2)"* ' H{IDLUN" +(0,2)"}

= Co{ID, U™ "1 +u(0,2)Ro(U(0,2)) +u(0,2)"* | D, U ||" + (0,2)"| DU ™+ }

SC{IDUI™ " +u0,AR VO + U0
We have used Young’s inequality to derive the last inequality. Recalling
m+n+1>2 and the boundedness of ||D, U(-,2)||, for ze[1,00), we obtain
|U©,z)|"*"* ! < C{|| D, U||*>+u(0,z)R,(U(0,2))}, ze[1,00).
We also see from similar calculations that
[UO,2)"* "+ < C{||D,U|1* 4+ (0,2)Ro(U(0,2))}, ze[1,00).

Consequently making use of these two estimates we can obtain the assertion from
(7.5) and (7.6). W
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